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Chromatin regulators (CRs) regulate the gene transcription process through combinatorial patterns,
which currently remain obscure for pan-cancer. This study identified the interaction of CRs and con-
structed CR-CR interaction networks across five tumor cell lines. The global interaction analysis revealed
that CRs tend to function in synergistically. In addition, common and specific CRs in interaction networks
were identified, and the epigenetic processes of these CRs in regulating gene transcription were analyzed.
Common CRs have conserved binding sites but cooperate with different partners in multiple tumor cell
lines. They also participate in gene transcription regulation, through mediation of different histone mod-
ifications (HMs). Specific CRs, ATF2 and PRDM10 were found to distinguish liver cancer samples with dif-
ferent prognosis. PRDM10 participates in gene transcription regulation, by exertion of influence on the
DNA methylation level of liver cancer. Through analysis of the edges in the CR-CR interaction networks,
it was found EP300-TAF1 has genome-wide distinct signaling patterns, which exhibit different effects on
downstream targets. This analysis provides novel insights for the understanding of synergistic mecha-
nism of CRs function, as controllers of gene transcription across cancer types.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Some epigenetic regulators play an essential role in the
regulation of chromatin structure, to control DNA templating,
and are broadly reprogrammed in the development and progres-
sion of malignant tumors [1,2]. Chromatin regulators (CRs), which
are indispensable in epigenetics, act as master controllers of gene
transcription in many common cellular processes [3]. Chromatin
regulators include a class of enzymes with specialized function
domains, which could recognize, shape, and maintain the epige-
netic state in a cell context-dependent fashion, such as histone
modifiers, DNA-modifying enzymes, and chromatin remodelers
[4-7]. Histone modifiers modify the basic residues of histone tail,
which lead to the alteration of chromatin structure, and in turn
influences the transcriptional regulation. Such as histone
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demethylase, histone acetyltransferase and histone
methyltransferase [8]. DNA-modifying enzymes (such as DNA
methyltransferases (DNMTs)) could establish and maintain DNA
methylation. It could also regulate several DNA mediated processes
sequentially, to influence transcriptional regulation [9]. Chromatin
remodelers are responsible for chromatin structural changes, and
regulation of gene transcription by affecting chromatin accessibil-
ity [10,11].

Growing evidence suggests that CRs tend to regulate gene tran-
scription by synergistic interactions, rather than an independent
role [12,13]. For instance, FOXA1 functions as a chromatin remod-
eler by facilitating access to chromatin for steroid hormone recep-
tors. Histone demethylase LSD1 (KDM1A) acts as an eraser. It was
reported that KDM1A cooperated with FOXA1, and they caused the
androgen receptor to fail in the completion of the transcription
process, which in turn inhibits the growth of prostate tumors
[14]. H3K9 and H3K27me methyltransferase enhancer of zeste
homolog 2 (EZH2) is a critical histone modifier in the germinal cen-
ter (GC) reaction. It recruits histone deacetylases HDAC 1/2 and
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DNA methyltransferases (DNMTs) to inhibit the expression of
PRC2, which could silence tumor suppressor genes [15-17]. These
studies demonstrated that the synergy of CRs regulates the tran-
scription process of genes, and affects tumor progression.

The increased attention paid to CRs and the advances in geno-
mic technologies (ChIP-seq) [18,19], allow researchers to charac-
terize chromatin structure at the whole-genome scale. It helps to
determine how CRs mediate distinct histone modifications (HMs)
and decipher how they influence transcription processes. Inte-
grated analysis of ChIP-Seq datasets of CR and HM could systemat-
ically characterize the genome-wide functions of CRs. The latest
research revealed that H3K36 methyltransferase NSD1 mediated
H3K36me2 is required for the recruitment of DNA methyltrans-
ferase DNMT3A, and the maintenance of DNA methylation at inter-
genic regions [20]. Jhd2 and its human homologs, KDM5B and
KDMB5A, function as an H3K4 demethylase in human cancer [21-
23]. Combined activities of histone methyltransferase Set1 and
H3K4 demethylase KDM5 via H3K4 methylation contribute to pos-
itive or negative transcriptional regulation [24]. These results sug-
gest that synergetic CRs play important roles in transcription
processes by mediating epigenetic features, including histone
modifications and DNA methylation.

To reveal the interactions between CRs and the HMs (or histone
variants) in related tumors, this study performed an integrative
analysis of ChIP-seq datasets for CRs and HMs in five cell types.
Next, the CR-CR interaction networks were built, and the common
and specific CR nodes were identified across the five networks. In
different cell lines, common CRs were associated with diverse his-
tone modifications through cooperation with different partners at
similar genomic locations, and further affect the downstream gene
expression and biological processes. Additionally, this study also
confirmed the synergy between different types of CRs. PRDM10,
as a histone methyltransferase, was screened to be the specific
CR in the hepatocellular carcinoma (HepG2) cell line. The results
show that PRDM10 cooperates with DNA methylator ZBTB33,
and causes downstream genome-wide hypomethylation, which
further contributed to differences in survival of liver cancer
patients. Further detailed analysis shows that the synergistic regu-
lation of CR-CR to target genes was fairly complicated. Even for a
pair of specific CR-CR, the multiple patterns had different effects
on the regulation of downstream HMs, and target genes such as
EP300-TAF1 interaction. In summary, CRs regulate gene transcrip-
tion processes through a variety of synergistic patterns.

2. Materials and methods
2.1. Data sets

CR and corresponding ChIP-seq datasets: the list of CRs was col-
lected from our previous study, including 870 CRs (Supplementary
Table S1) [5]. Total of 644 alignment BAM files were obtained in
human non-small cell lung cancer (A549), hepatocellular carci-
noma (HepG2), myelogenous leukemia (K562), breast cancer cells
(MCF-7), and neuroblastoma (SK-N-SH) tumor cell lines, from the
Encyclopedia of DNA Elements (ENCODE) and ChIP-Atlas [25,26].
A total of 166 CRs were collected. Readings from CRs ChIP-seq data
were aligned to hg38/GRCh38 assembly of the human genome. The
full ENCODE or ChIP-Atlas accession of CR ChIP-seq datasets and
their whole cell extracts were shown in Supplementary Table S2.
In the subsequent analysis, only the CR with ChIP-seq dataset in
more than two cell lines were retained.

Histone modification (HM) ChIP-seq datasets: for each of these
cell lines, the alignment BAM files from ChIP-seq experiments for
HMs were also downloaded from ENCODE. The sequence readings
were mapped to the human reference genome by hg38/GRCh38
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version. The data covers various types of HMs and histone variants,
which include H3K27ac, H3K27me3, H3K36me3, H3K4mel,
H3K4me2, H3K4me3, H3K9me3, H2AFZ, H3F3A, H3K79me2,
H3K9ac, H3K9me2 and H4K20me1. The full ENCODE accession of
HM ChIP-seq datasets and their whole cell extracts are shown in
Supplementary Table S3.

Gene expression datasets: the RNA-Seq data of liver tissue was
downloaded from UCSC Xena (https://xena.ucsc.edu/) and quanti-
fied gene expression as FPKM. The expression data of the HepG2
cell line was downloaded from the Cancer Cell Line Encyclopedia
(CCLE).

DNA methylation dataset: the HM450 DNA methylation profile of
liver cancer tissue was downloaded from the TCGA database.
Probes with missing values in >30% of the samples were removed,
and other missing values were imputed using the k-nearest neigh-
bors (KNN) imputation procedure.

2.2. Analysis of ChIP-Seq data (Peak Calling)

The MACS2 (version 2.1.4) [27] peak calling was used to com-
pare the ChIP-seq signals with a corresponding whole cell extract
sequenced control. The enriched intervals with the threshold of q
value <0.05 were considered as binding profiles (peaks) for a CR
or HM. It is only considered a peak, if it was found in at least
two replicate ChIP-seq experiments. DeepTools2 (version 3.5.1)
[28] was used to normalize and visualize the genome-wide data.

2.3. Identification of CR-CR pairs and CR-HM relationship pairs

The identification of CR-CR pairs and CR-HM relationship pairs
were based on Oren Ram’s method, which was published in Cell in
2011 [6]. First, five sets of CR binding sites (CRBSs) intervals were
compiled, by merging all peaks of CRs for each cell type. Next, slid-
ing windows were constructed by ‘makewindows’ function of Bed-
tools software (version 2.30.0) [29]. The size of sliding windows
was set as 200 bp center on peak summit positions. The BAM files
were transformed into BigWig files with bamCoverage (version
3.5.1) via the arguments normalizeUsing RPKM. Used the sliding
windows of peaks and the BigWig files of CRs in each tumor cell
line as input for the function multiBigwigSummary in DeepTools2,
the average scores of these sliding windows in each tumor cell line
were got. Then, the Pearson correlation coefficient R and BH-FDR
values between each pair of CRs were calculated, based on their
average scores across all windows. Those CR-CR pairs with
R > 0.4 and BH-FDR < 0.01 were considered as synergistic CR-CR
interactions. The CR-CR pairs with R < -0.4 and BH-FDR < 0.01 were
defined as the antagonistic pairs (Fig. 1A). Similarly, the CR-HM
regulatory interactions were identified by using the same co-
location method, and set the threshold as R > 0.3, BH-FDR < 0.01.
The visualization of CR-CR interaction networks was achieved
through Cytoscape software (version 3.9.0) [30,31].

2.4. Identification of CR-gene regulatory interactions and analysis of
DNA sequence motif

Gene annotation of the UCSC hg38 genome was used. The pro-
moter of a gene was defined as 1 kb upstream and downstream of
the transcriptional start site (TSS). For each cell type, a gene was
considered as a target of a CR if it had CR binding site in the pro-
moter region. DNA sequence motif analysis was performed using
HOMER (version 4.10). CR motifs with p < 0.005 were identified
as enriched motifs.
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2.5. Evaluating the effect of CRs on abnormal DNA methylation

To calculate the methylation regulation of CRs on liver cancer
samples, HyperZ and HypoZ indices were calculated based on the
downloaded DNA methylation data of liver cancer samples. The
values could measure the genome-wide hypermethylation and
hypomethylation levels of each sample, respectively. The indices
were performed in reference to a previous study [32].

1) All CpG sites in CGI (CpG islands) or open sea regions were
extracted. A maximum cluster width of 1500 bp and a max-
imum gap of 500 bp between any two neighboring CpGs,
CpG sites were particularly grouped into CGI clusters or
open sea clusters. This was completed with the
boundedClusterMaker function of the bumphunter BioC
package. The methylation level of these clusters was defined
as the average beta value of CpG sites.

2) For each given tumor sample cluster, labeled s, in a given
cluster labeled r, the Z score was defined as:

pr, — pr®

er = or™

pur™ and or®™ denote the mean and standard deviation of
the DNA methylation level of the regional cluster r over all
the normal tissue samples. Z score reflects the absolution
deviation in DNA methylation of that cluster in the given
cancer sample relative to all normal samples of the liver tis-
sue [32].

3) Since cluster regions in promoter CGIs and open sea regions
usually show hypermethylation and hypomethylation in
cancer samples respectively, only positive and negative Z
scores were used to calculate the hypermethylation and
hypomethylation for each cancer sample. The mean methy-
lation level of the CGI cluster in the cancer sample was
defined as HyperZ, which represents the genome-wide
hypermethylation value of the sample. Similarly, HypoZ
was calculated by the mean methylation level of the open
sea cluster in the cancer sample, which reflects the
genome-wide hypomethylation value of the sample.

Then the Pearson correlation coefficient and BH-FDR between
the expression of CRs and their HyperZ/ HypoZ indices were calcu-
lated respectively. If the expression of a CR was significantly corre-
lated with HyperZ or HypoZ (BH-FDR < 0.05), it was believed that
this particular CR had a regulatory role in genome-wide hyperme-
thylation or hypomethylation.

2.6. Prognosis analysis of specific CRs in HepG2 cell line

Survival data of 463 patients with liver cancer were down-
loaded from TCGA Data Portal. The patients were divided into three
groups, in accordance with the expression of synergistic CRs with
PRDM10 or ATF2 (two specific CRs of liver cell line), through hier-
archical clustering method. The Kaplan-Meier survival plots and
log-rank tests were used to evaluate the survival differences
between groups of patients. This process was performed with the
R package ‘survminer’.

2.7. Functional analysis

Metascape (https://metascape.org) was used to further verify
the function enrichment of synergistic CRs [33]. The cutoff value
was set to P < 0.05, Gene Ontology (GO) annotation was visualized
by R software. GREAT web interface was used (version 4.0.4)
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(https://great.stanford.edu/public/html/) to visualize EP300 and
RCOR1 putatively regulated genes TSS distance and annotate their
enriched biological process with whole genome (GRCh38/hg38) as
background parameters [34].

3. Results
3.1. The general synergistic patterns of CR across five tumor cell lines

A pipeline was proposed to identify CR-CR interactions in single
human tumor cell line, by integrating ChiP-seq datasets of CRs.
This involved three steps (Fig. 1A). First, the study selected the cell
line in which number of CRs ChIP-seq data was more than ten,
including A549, K562, HepG2, MCF-7, and SK-N-SH cell lines. Sec-
ond, the peaks of CRs binding sites (CRBSs) were obtained, then the
Pearson correlation coefficient and significance for each pair of CRs
were calculated, based on signal distributions across these CRBSs
intervals. Related CR-CR pairs (R > 0.4 or R < -0.4, BH-FDR < 0.01)
were identified. CR-CR interaction networks across five cell lines
were constructed (Supplementary Fig. S1), through the integration
of the CR-CR pairs.

All CR-CR pairs for each cell line were hierarchically clustered.
The dendrogram and correlation heatmap results revealed the
major synergistic pattern of CRs across five cell lines (Fig. 1B). In
A549 and SK-N-SH cell lines, CRs were aggregated into smaller
modules, with 2-4 CRs in each module. In the HepG2, K562 and
MCF-7 cell lines, more CRs were aggregated into larger modules,
with 14-20 CRs in each module. Notably, 69% of CRs were aggre-
gated into a large module in the MCF-7 cell line. Meanwhile, the
modules across different cell lines tended to be consistent, such
as CBX8 (PRC1 components) cooperated with RNF2 in A549 and
K562 cell lines [35,36]. This is consistent with a prior study, which
described the combinatorial patterning of 29 CRs in K562 cell line.
The same synergistic modules of SMARCE1, DPF2 and MTA1 were
found in K562 and MCF-7 cell lines. Apart from the extensive syn-
ergistic interaction between CRs, there were also several CRs which
showed antagonistic binding against other CRs, such as CTCF. It
was reported as a mark for chromatin insulators [37,38]|. CTCF
was discovered antagonizing with other CRs in the A549 cell line
except RCOR1. CBX2, CBX8 and RNF2 tend to antagonize with most
other CRs that play active roles in K562 cell line, which was consis-
tent with their repressive roles in a previous study [6]. These
results suggest that most CRs tended to coordinate with certain
CRs to perform functions in a modular manner.

Through the extraction of significantly synergistic or antagonis-
tic CR-CR pairs, 4 to 408 related CR-CR pairs across five cell lines
were obtained. This involved 7 to 64 CRs (Table 1). Next, the clus-
tering coefficients of each CR-CR interaction network were ana-
lyzed, except for SK-N-SH due to its small number of nodes.
Compared with random networks, the clustering coefficient of
each CR-CR interaction network was significantly higher (all
P < 0.001, Supplementary Fig. S1). Among these CR-CR pairs, the
vast majority were synergistic pairs, and only a few pairs showed
antagonistic effects. Overall, 3 antagonistic CR pairs were found
in the A549 cell line, and 17 antagonistic CR pairs in the K562 cell
line. In summary, the results show that most of the CR-CR pairs
present a synergistic effect.

3.2. Common CRs have diverse synergistic partners across five cell lines

There were large-scale synergistic CRs in five cell lines, thus the
study aimed to further explore the common and specific character-
istics across various tumor types, based on the synergistic pattern
of CRs. As shown in Supplementary Table S4, eight CRs (EP300,
SIN3A, RCOR1, TAF1, ZBTB33, MAX, REST, and CTCF) have ChIP-
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Table 1
The number of nodes and edges of CR-CR associated networks across five cell lines.

Cell lines Number of nodes Number of edges
A549 21 46

HepG2 56 408

K562 64 396

MCF-7 29 275

SK-N-SH 7 4

seq data in five tumor cell lines, however only four common CRs
(EP300, SIN3A, RCOR1 and TAF1) are associated with other CRs
(FDR < 0.01 and |R| > 0.4). In addition, five specific CRs including
ATF2, PRDM10, CTCF, EZH2 and KAT2B play roles in a specific cell
line (Fig. 2A).

Correspond to target genes among five cell types for each com-
mon CR, there are same common binding sites (Table 2, Fig. 2B). A
large proportion of these binding sites are shared between cell
lines as shown in Supplementary Fig. S2. Then it was explored
whether each common CR cooperated with the same CRs in differ-
ent cell lines. The results show that the same synergistic interac-
tions exist in no more than three cell lines. There were only 7.1%
synergistic pairs in three cell lines, and 30.5% synergistic pairs
maintained in two cell lines, while the majority of synergistic pairs
were cell line specific at a ratio of 62.4%. The synergistic pair of
EP300 and HDAC2 in HepG2, K562 and MCF-7 cell lines was consis-
tent with prior reports, which noted that the binding of the histone
deacetylase HDAC2 and the enhancer-binding protein EP300 were
mediated by cell-line specific motifs [39] (Fig. 2C). The latest
research found the role of LSD1(KDM1A)/RCOR1 corepressor com-
plex for proteasomal degradation in human hematopoietic stem
cells [40,41]. The synergistic role of KDM1A and RCOR1 was also
found in the K562 cell line (Fig. 2D). SIN3A had been reported to
be a major HDAC1/2 co-repressor [42-45]. SIN3A cooperated with
HDAC2 in A549, HepG2, and K562 cell lines in our study (Fig. 2E).
Recent research showed the binding of YY1 and TAF1 in
schizophrenia [46]. Their synergistic relationship also exists in
A549, HepG2 and K562 cell lines (Fig. 2F). In addition, new syner-
gistic CRs which had not been reported in the previous research
were also identified. For an instance, EP300 cooperated with
DPF2 in the HepG2, K562 and MCF-7 cell lines. In summary, many
important CRs were identified in multiple cancer types. These
include both the synergistic CRs proven in the research, and the
novel synergistic model of CRs. The results underlined that com-
mon CRs play an important role in cell lines, but their synergistic
CRs were rewired in these cell lines, which suggest that the role
of common CRs may vary across different cell lines.

3.3. Common CRs have conserved binding sites whereas mediate
rewired histone modifications

The binding sites in five cell lines were analyzed, to uncover
their combinatorial binding of common CRs to the genome. The
results show that the binding pattern of common CRs in different
cell types was relatively similar, which is consistent with Fig. 2B.
SIN3A and TAF1 were integrally characterized, through preferen-
tially binding in promoter regions (Fig. 3A and Supplementary
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Fig. S3A). Around 40% to 75% of the binding sites overlaps TSSs,
which is consistent with prior reports [47]. However, the binding
sites of SIN3A and TAF1 are not completely identical across the five
cell lines. SIN3A had 11,864 peaks on the promoter regions in SK-
N-SH, and the numbers of the promoter regions peaks in A549,
HepG2, K562 and MCF-7 cell lines are 16,307, 11,982, 17,957 and
19,438 respectively (Fig. 3A). Compared to the other four cell lines,
the binding sites of TAF1 have preference location at the promoter
regions in the MCF-7 cell line (Supplementary Fig. S3A). However,
EP300 preferentially bound intron, intergenic and distal regulatory
elements, the same trend was observed in all tumor cell lines
(Fig. 3A). RCOR1 preferentially bound to promoters, introns, and
distal intergenic regions. In K562, MCF-7 and SK-N-SH cell lines,
the binding sites are more evenly distributed in different regions,
while in A549 and HepG?2 cell lines, more sites are bound to the
promoter regions (Supplementary Fig. S3A). Further analysis of
the binding sites for each common CR synergistic partner showed
that partners of common CR are roughly similar to them in differ-
ent cell lines, but there are some differences (Fig. 3B and Supple-
mentary Fig. S3B). For instance, <50% of SIN3A’s synergistic
partners located at promoters. The results demonstrate that com-
mon CRs tend to bind conserved sites, but there are some differ-
ences in different cell lines. On the other hand, although partners
of common CR are rewired across tumor cell lines, the corporate
targeting sites of common CRs and their partners are generally
conserved across five cell lines.

The four common CRs are all histone modifiers, thus the pattern
of common CRs associated with histone modifications were
explored. We found that SIN3A is in association with H3K4me?2,
H3K4me3, H3K27ac and H3K9ac, in five cell types (Fig. 3C). This
is consistent with a recent study about RREB1 recruiting SIN3A
and KDM1A to control H3K4 methylation, at MAPK pathway gene
promoters [48]. The pattern of TAF1 is similar to SIN3A. This may
be due to the similarity between TAF1 and SIN3A cis-regulatory
regions (Supplementary Fig. S3C). A prior study reported that over
70% of EP300 sites are distal from TSSs, and ~50% of those distal
regions are enriched for modifications, which correlate with
enhancer activity, such as H3K4me1l and H3K27ac [49,50]. Simi-
larly, the peak of EP300 overlapped with H3K4mel and H3K27ac
modifications in MCF-7 and HepG2 cell lines (Fig. 3C). This lead
to the activation of downstream gene expression [51]. RCOR1 is
associated with H3K4me2 modification in A549, HepG2, K562
and MCF-7 (Supplementary Fig. S3C). It inhabits the expression
of downstream target genes [52]. This study found that common
CRs associated with rewired histone modifications across five cell
lines, all common CRs have conservative binding sites at promot-
ers. Then the dynamics of histone modifications at the binding
sites of common CRs promoter regions were analyzed. For the
same histone modification, its positioning pattern on the common
CRs promoter binding regions were the same (Supplementary
Fig. S3D, E and Fig. 3D, E). SIN3A is associated with different pat-
terns of H3K27ac, H3K9ac, H3K4me2 and H3K4me3 in all cell lines
(Fig. 3D). However, EP300 deposited similar patterns of H3K27ac in
A549, HepG2, K562 and MCF-7 cell lines (Fig. 3E). Importantly, for
four common CRs, the positioning pattern of histone modifications
in MCF-7 are all completely different from other cell lines. These
may be due to the large-scale synergistic CRs in MCF-7 cell line

<

Fig. 1. The pipeline of identifying the interactions of CR-CR and the global CR-CR interactive patterns. (A) The processes of identifying CR-CR interactions for each cell type.
Step I: collection and preprocessing of CR ChIP-seq datasets of five cancer cell lines from Encode database. Step II: obtain the binding sites of CRs, merge these intervals and
normalize the signal to 200 bp windows. Step III: pairwise calculation of Pearson correlation coefficient based on window-based signal distribution to get the CR-CR
interactions using the method described in section “Materials and Methods”. (B) The correlation matrix reflects pairwise correlations of CRs in five cell lines respectively,
including positive correlation (purple), no correlation (white) and negative correlation (yellow) between CRs. CRs divide into modules based on correlated binding signal in

each cell line.
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Fig. 2. Common CRs have conserved binding sites and different synergistic partners across five cell lines. (A) Venn diagram shows intersection of the CRs in A549, K562,
HepG2, MCF-7 and SK-N-SH cell lines. (B) Examples of common CRs have conserved binding sites in chromosome 1 and chromosome 3. ChIP-seq signals for common CRs are
shown on four genome loci (chromosome 3: 149,179,900-149,180,500; chromosome 1: 77,682,310-77,683,450; chromosome 3: 167,734,000-173,734,000; chromosome 1:
77,779,450-77,780,370). (C-F) Alluvial diagram of common CRs show their synergistic CRs in different cell lines.

(Fig. 1B). The study also found, that in diverse cell lines, common
CRs generally regulate different important biological processes,
which play key roles in gene transcription (Supplementary Fig. S4-
A-D). In addition, EP300 and RCOR1 have more peaks away from
the TSS of their putative regulatory gene (Supplementary Fig. S4-
E-F). SIN3A participate in ribosomal large subunit biogenesis, reg-
ulation of mitochondrial gene expression, the regulation of
telomerase RNA localization, the regulation of RNA splicing and

Table 2

The number of common CRs binding sites in five cell types.
Cell lines EP300 RCOR1 SIN3A TAF1
A549 20,590 827 31,603 14,469
HepG2 8967 16,897 17,204 22,671
K562 26,026 21,259 24,297 25,197
MCF-7 8499 14,883 29,501 2534
SK-N-SH 27,903 17,168 32,444 35,251
Overlap 684 417 9943 2269
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DNA-templated transcription in A549, HepG2, K562, MCF-7 and
SK-N-SH cell lines, respectively.

In summary, each common CR plays an important role in differ-
ent cell lines. Its binding sites are relatively similar, but its syner-
gistic CRs may be different, and are associated with rewired
downstream HMs. These further affect different biological func-
tions, which may ultimately lead to different phenotypes.

3.4. Specific CRs play vital roles in particular cell lines through mediate
downstream epigenetic modifications

In addition to common CRs, five specific CRs were also identi-
fied, including CTCF, EZH2, KAT2B, ATF2 and PRDM10 (Fig. 2A).
Among them, CTCF tends to play an independent role in the
A549 cell line. EZH2 specifically exhibits synergistic and
antagonistic dual effects in the K562 cell line. It synergized with
SUZ12 and antagonized with SP1 and SRSF. EZH2 is in association
with H3K27me3 histone modification in the K562 and HepG2 cell
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binding sites in the promoter region.

lines. The Pearson correlation coefficient of them is 0.617 and
0.623 respectively. This is consistent with the report that
H3K27me3 is mediated by EZH2. KAT2B associated with histone
variant H2AFZ and histone modification H3K9me3 with its binding
sites evenly distributed across the genome. The detailed informa-
tion of their synergistic CRs, associated with histone modifications
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and histone variants are listed in Supplementary Table S5 and S6.
Due to lacking corresponding transcription data in the K562 cell
line, special CRs ATF2 and PRDM10 in HepG2 were chosen for fur-
ther study.

It was found that ATF2 cooperates with 5 chromatin remodelers
(SFPQ, SRSF1, SP1, NFYB and MTAT1) and 8 histone modifiers (CBX5,
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EP300, HDAC1/2/6, TFDP1, BRCA1 and KDM4B) (Supplementary
Fig. S5A). ATF2 is in association with H3K4me2, H3K4me3,
H3K27ac and H3K9ac in the HepG2 cell line, with about 45% pro-
moter binding sites, and shows a consistent bimodal distribution
trend (Supplementary Fig. S5B-C). These results also illustrate the
nucleosome occupancy around TSS. CRs usually play a key regula-
tory role in the occurrence and development of tumors, the expres-
sion of ATF2 in liver tumor tissue is significantly higher than that of
normal tissue (Wilcoxon rank-sum test P = 1.2e-12, Supplementary
Fig. S5D). It is widely known that tumors exist multiple subtypes
with different molecular perturbations and treatment responses.
Therefore, this study devotes to investigating the contribution of
CRs to tumor subtyping. Based on transcriptome data of ATF2
and its synergistic CRs, the liver tumor samples were divided into
three groups (Supplementary Fig. S5E). The Kaplan-Meier survival
plot and log-rank test show that the difference between the three
groups is significant (Log-rank P = 0.0081, Supplementary Fig. S5F).
These results suggest that the expression of ATF2 and its synergis-
tic CRs could distinguish liver cancer patients (LIHC) with different
survival times, the result is consistent with the report that ATF2
influences the development of hepatocellular carcinoma [53].
PRDM10 cooperated with 11 CRs, which include the histone
deacetylase HDAC1/2. This is usually related to the formation of
SMRT/NCOR complexes [54] (Fig. 4A). Its binding sites distribution

Computational and Structural Biotechnology Journal 20 (2022) 5028-5039

is similar to histone deacetylases, with more binding sites located
at promoters (Fig. 4B). Noticeably, the zinc finger protein ZBTB33 is
a synergistic CR of PRDM10. ZBTB33 is a DNA methylator and has
been shown to bind preferentially to methylated DNA and to inter-
act with the SMRT/NCOR histone deacetylase complexes in vitro
[55]. Combing through PRDM10 expression data and methylation
data of LIHC downloaded from the TCGA database, PRDM10 was
found to be significantly negatively correlated with the HypoZ
indice (P < 0.05, Fig. 4C). Meanwhile, the expression of PRDM10
in LIHC is higher than in normal tissue (P = 1.3e-14, Fig. 4D).
PRDM10 was reported as a supporting factor of NK cell function
and it has connection with immune evasion of hepatocellular car-
cinoma cells, it might influence the progression of hepatocellular
carcinoma [56]. In this study PRDM10 and its synergistic CRs also
are associate with the development of hepatocellular carcinoma
(Log-rank P < 0.0001, Fig. 4E-F). Notably, PRDM10 and ATF2 shared
nine CRs, among these shared CRs, eight CRs including HDAC1/2,
TFDP1, SRSF1, MTA1, SP1, BRCA1 and KDM4B were all reported
in connection with the invasion and progression of hepatocellular
carcinoma cells [57-64]. These results suggest that CRs regulate
the diversity of the transcription process. It not only mediates his-
tone modifications, but also affects DNA methylation and different
types of CRs can collaboratively influence biological processes,
such as the occurrence and development of cancer.

LAy HDAC2
CBX5
6 . R =-0.1314, P =0.01104 |,
ZBTB33 -y PRDM10 []Promoter CE) . p =-0.1243, P =0.01637
I E 5 ¢
.\ [C]other Exon g 4
o
[ other Intron 2
o
SRSF1 Hs utr 5;
BRCA1 [[]1stExon £2
[ st Intron E -
MTA1 |:|Distal Intergenic %
KDM4B 0
0.5 1.0 1.5 2.0
HDACH1 SP1 Expression level of PRDM10
D E group2 group3 F
‘ " ‘ H l | ||| | ‘ Strata =l group2 smgroup3
. KDM4B
1.00
25 —I\‘l H”H HI M \ IH | BTB33 2
Wilcoxon, p = 1.3e-14 | ‘ BRCA1 % 0.75
= 2.0 : I_E | | TFDP1 8
3° \ CBX5 S 050
& | | ! | sP1 3
< 15 \ | \ PRDM10 3 025 p<o:.ooo1 |
é | LI I MTA1 0.00 1 | 1
'é 1.0 “ H ‘ h ’ :g::g; 0 1000 2000 3000 4000
o Time
u% { ‘ ‘ SFPQ - Number at risk
0.5 ‘ | ‘ H | SRSF1 §group2 151 49 18 5 0
Z score group & group3{ 77 12 1 0 0
0 1000 2000 3000 4000
-2 -1 0 1- - Time

LIHC Normal

Fig. 4. Specific CR PRDM10 influenced liver cancer progression by affecting DNA methylation. (A) The network of CRs cooperate with PRDM10. ZBTB33 is one of the DNA
methylators. (B) Pie chart depicts the distribution of PRDM10 binding sites in the genome. (C) Scatter plots show correlation of PRDM10 expression with the HypoZ indice in
LIHC. R represents the Pearson correlation coefficient, and p represents the Spearman correlation coefficient. (D) PRDM10 exhibits higher expression in LIHC patients. The p
value was calculated by Wilcoxon rank-sum test. (E) The heatmap depicts the expression of PRDM10 and its synergistic CRs in three groups of LIHC patients. (F) Kaplan-Meier
survival curves plotted for three groups LIHC patients stratified by PRDM10 and its synergistic CRs expression; differences assessed with the log-rank test.
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Fig. 5. The synergetic regulation of EP300 and TAF1 has a complex model with different effects on downstream target genes. (A) ChIP-seq signal distribution of EP300, TAF1
and their mediated histone modifications. A region around +3 kb of EP300 and TAF1 binding sites is shown. The peaks are grouped into three clusters based on the dynamics
of EP300 and TAF1 occupancy. (B) TFs enriched in three clusters. (C) The expression of target genes in three clusters. (D) Biological processes enriched by target genes of three
clusters. (E) Genome browser snapshots for representative genomic loci depict three clusters mediate histone modifications.

3.5. The hierarchical effects of synergistic CRs binding levels with their
associated histone modifications

The edges were then analyzed in the CR-CR interaction network.
EP300 and TAF1 are the common CRs in five cell types, and they
have a synergistic effect in the HepG2 cell line. Then all of their
binding sites were divided into three clusters using the Elbow
method, based on signal distributions across enriched intervals.
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These three clusters involve 2869, 2188 and 4574 sites, respec-
tively. The cluster 1 and cluster 3 are primarily located in the pro-
moter regions, while the cluster 2 is mostly located in the intron
and distal intergenic regions (Supplementary Fig. S6 and Fig. 5E).
There are three patterns in binding sites of EP300 and TAF1: the
signal of TAF1 higher than EP300 (cluster 1), the signal of TAF1
lower than EP300 (cluster 2), the signal of TAF1 nearly equal to
EP300 (cluster 3). The signal distributions of EP300, TAF1 and their
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associated HMs in the HepGz2 cell line were divided into three clus-
ters. The HMs include H3K27ac, H3K9ac and H3K4me2 (Fig. 5A).
The synergistic CRs exist multiple signal patterns in different geno-
mic regions. These multiple signal patterns of synergistic CRs fur-
ther affect associated histone modifications. Among the genome
regions in cluster 1, the signal distributions of H3K27ac, H3K9ac
and H3K4me2 are persistently occupied. However, in the cluster
2, the signal distributions of H3K27ac further enhanced while the
signal of H3K9ac and H3K4me2 weakened. The sharp drop in CRs
signal in cluster 3 is accompanied by the weak signal distribution
of these three histone modifications (Fig. 5A). These results
revealed that there are varying signal patterns of synergistic CRs
in different genomic regions. Compared with binding genomic
regions, histone modifications are more affected by the signal pat-
terns of particular CRs. The correlation between histone modifica-
tions signal and CRs signal is maintained in these patterns, for
example, the signal pattern of H3k27ac is same as that of EP300.

Based on the sequences of cluster 1 and cluster 3, the binding
sites of ELK4, ELK1 and ELF1 are all significantly enriched. The clus-
ter 1 and cluster 3 mainly concentrate in the promoter regions. For
the cluster 2, three CRs were identified significantly binding to the
sequences which are different from the other two clusters (Fig. 5B).
These revealed that synergistic CR combining is more affected by
binding genomic regions. The impact of three clusters on down-
stream target genes were further analyzed. The result shows no
difference between target gene expression of cluster 1 and cluster
2 in CCLE (Wilcoxon rank-sum test P = 0.9, Fig. 5C). However, the
expression of target genes in cluster 3 is significantly higher than
cluster 1 and cluster 2 (Wilcoxon rank-sum test P < 2.2e-16 and
P = 0.00097, respectively). These results were also confirmed in
liver tissue samples (Fig. 5C). This implies that different signal pat-
terns of synergistic CRs is associated with various downstream HM
intensity, which result in downstream gene expression differences.
Functional enrichment of target genes show that three clusters are
respectively enriched in different biological functions, cluster 1
enriched to DNA repair and autophagy, cluster 2 participate in
the regulation of protein modifications, and cluster 3 is involved
in the mRNA metabolic process (Fig. 5D). The cluster 1 and cluster
3 are localized at the promoters of DOT1L and FOXA1 respectively.
The cluster 2 is positioned in the distal of HLF. These target genes
were reported by EP300 or TAF1 [65-67](Fig. 5E). The binding sites
of cluster 1 and cluster 3 tend to bind to promoter regions.
However, the binding sites of cluster 2 are almost all located in
the distal regulatory region. It implies a unique binding pattern
for each pair of CR-CR.

These results revealed that there are multiple signal patterns of
synergistic CRs in their binding sites. The signal patterns of CRs
have various effects on histone modifications, binding motif, regu-
lation of downstream target genes and biological functions. These
further supports the notion of CRs regulate the transcription pro-
cess of downstream target genes in a variety of ways.

4. Discussion

CRs are crucial regulatory factors of epigenetics, which have
important roles in many cellular events [68,69]. Despite their
indispensability, the systematic binding patterns in cancers remain
largely unknown. In this study, the landscape of CRs synergistic
patterns in A549, HepG2, K562, MCF-7 and SK-N-SH cell lines from
ENCODE database were comprehensively depicted. The results
showed that CR-CR interactions have both synergistic and antago-
nistic effects, and most CRs tend to act synergistically. These
maybe due to a lot more CRs with active roles than CRs with
repressive roles were selected and antagonistic effects are more
likely from a pair of CRs with opposite roles. Common CRs which
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simultaneously cooperated with other CRs in multiple cell lines
were defined. Specific CRs which cooperated with other CRs only
in one cell type were also defined. Furthermore, common CRs have
conserved binding sites, but cooperate with different partners and
associate with diverse histone modifications in multiple tumor cell
lines. For example, TAF1 have 2269 same binding sites in five cell
lines, it associates with H3K9ac and H3K4me3 by cooperating with
YY1, KDM5B, MAZ, MBD2 etc. Meanwhile, specific CRs and their
synergistic CRs play important roles in identifying prognostic
biomarkers. This reinforced the understanding of the underlying
mechanisms for the pathogenesis of human cancers.

Through analysis, common CR-CR synergistic pairs and CR-HM
regulatory pairs were found in the 5 cell lines. Furthermore, it
was analyzed whether the correlation strength between CR-CR
synergistic pairs and CR-HM regulatory pairs is conserved between
different cell lines. The trend of CR-CR pairs is conservative in A549
and K562 cell lines (p = 0.67, P = 0.04). Fewer CR-CR pairs were rec-
ognized in the SK-N-SH cell line. The same CR-CR pairs were not
found in other cell lines. The trend of CR-HM pairs is conserved
in A549, K562, HepG2 and SK-N-SH cell lines, with all the Pearson
correlation >0.3, and P values less than or equal to 0.05 (Supple-
mentary Fig. S7). Besides, the strength of the relationship between
CR-CR and CR-HM obtained in the MCF-7 cell line is quite different
from other cell lines. The specific reasons need to be further stud-
ied. We also found that common CRs associate with rewired his-
tone modifications across five cell lines. There are more CRs
associated with histone modifications in the MCF-7 cell line and
fewer CR-HM regulatory pairs in the SK-N-SH cell line. This may
be due to a lack of comparable number of ChIP-seq data, there were
11 CRs have ChIP-seq data in SK-N-SH cell line but 33 CRs with
ChIP-seq data in MCF-7 cell line.

Besides DNA-modifying enzymes and histone modifiers, CRs
can also act as chromatin remodelers [10,70]. They achieve down-
stream regulation by twisting and folding chromatin [11,71]. How-
ever, due to the limitation of the corresponding data such as Assay
for Transposase-Accessible Chromatin with high throughput
sequencing (ATAC-seq) and High-throughput chromosome confor-
mation capture (Hi-C), we only analyzed how DNA-modifying
enzymes and histone modifiers regulate the transcription process.

Overall, this study comprehensively analyzed the interactions
among CRs and how they regulate gene transcription. We found
that CRs perform their regulatory function in multiple ways. First,
CRs mediate different histone modifications by binding regulatory
elements. Second, CRs cooperate with DNA-modifying enzymes to
affect the DNA methylation regulation of target genes. At the same
time, the synergistic regulation of a particular CR-CR pair has mul-
tiple signal patterns in their binding sites. These patterns of partic-
ular CR-CR pair can affect histone modifications, binding motif,
regulation of downstream target genes and biological functions.

Funding

This work was supported by Major Science and Technology Pro-
gram of Hainan Province (ZDKJ2021040 and ZDKJ202003), the
National Natural Science Foundation of China (32160152,
31900493), Hainan Province Science and Technology special fund
(ZDYF2021SHFZ097, ZDYF2021SHFZ247 and ZDYF2020132), Hai-
nan Provincial Natural Science Foundation of China (820RC637
and 822QN462), China Postdoctoral Science Foundation
(2019M661296 and 2020T130163), Open Foundation of Key Labo-
ratory of Tropical Translational Medicine of Ministry of Education,
Hainan Medical University (2021TTMO006), Innovation Research
Fund for Graduate Students (Hyb2020-56, Hys2020-378,
HYYS2021A33, Qhys2021-354, 202111810014, X202111810069



M. Cao, L. Wang, D. Xu et al.

and X202111810108), and Hainan Province Clinical Medical Center
(QWYH202175).

Author contributions

KL, JL and BW came up with the design and conception. Devel-
opment of methodology was performed by MC, LW, DX and XB.
Acquisition, analysis and interpretation of data were performed
by MC, LW, DX, XB, SG, ZX, LC, DZ, PL, JX, SZ and HW. Writing,
review, and/or revision of the manuscript were performed by
MC, LW, DX, XB, KL, JL and BW. MC, LW, DX and XB contributed
equally to this study and shared co-first authors. All authors read
and approved the final manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.09.008.

References

[1] Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer
2006;5:60. https://doi.org/10.1186/1476-4598-5-60.

[2] Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in
cardiovascular disease (2013 Grover Conference series). Pulm Circ
2014;4:169-74. https://doi.org/10.1086/675979.

[3] Smits VA], Alonso-de Vega I, Warmerdam DO. Chromatin regulators and their
impact on DNA repair and G2 checkpoint recovery. Cell Cycle
2020;19:2083-93. https://doi.org/10.1080/15384101.2020.1796037.

[4] Ru B, Sun ], Tong Y, Wong CN, Chandra A, Tang ATS, et al. CR2Cancer: a
database for chromatin regulators in human cancer. Nucleic Acids Res
2018;46:D918-24. https://doi.org/10.1093/nar/gkx877.

[5] LuJ, Xu ], LiJ, Pan T, Bai ], Wang L, et al. FACER: comprehensive molecular and

functional characterization of epigenetic chromatin regulators. Nucleic Acids

Res 2018;46:10019-33. https://doi.org/10.1093/nar/gky679.

Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, et al. Combinatorial

patterning of chromatin regulators uncovered by genome-wide location

analysis in human cells. Cell 2011;147:1628-39. https://doi.org/10.1016/
j.cell.2011.09.057.

[7] Wang Q, Huang ], Sun H, Liu J, Wang ], Wang Q, et al. CR Cistrome: a ChIP-Seq

database for chromatin regulators and histone modification linkages in human

and mouse. Nucleic Acids Res 2014;42:D450-8. https://doi.org/10.1093/nar/
gkt1151.

Bauer AJ, Martin KA. Coordinating regulation of gene expression in

cardiovascular disease: interactions between chromatin modifiers and

transcription factors. Front Cardiovasc Med 2017;4:19. https://doi.org/
10.3389/fcvm.2017.00019.

Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as

potential therapeutic targets. Pharmacol Ther 2018;184:98-111. https://doi.

org/10.1016/j.pharmthera.2017.11.002.

[10] Tyagi M, Imam N, Verma K, Patel AK. Chromatin remodelers: We are the
drivers!! Nucleus 2016;7:388-404. https://doi.org/10.1080/
19491034.2016.1211217.

[11] Langst G, Manelyte L. Chromatin Remodelers: From Function to Dysfunction.
Genes (Basel) 2015;6:299-324. https://doi.org/10.3390/genes6020299.

[12] An W, Kim ], Roeder RG. Ordered cooperative functions of PRMT1, p300, and
CARM1 in transcriptional activation by p53. Cell 2004;117:735-48. https://
doi.org/10.1016/j.cell.2004.05.009.

[13] Duren Z, Wang Y. A systematic method to identify modulation of
transcriptional regulation via chromatin activity reveals regulatory network
during mESC differentiation. Sci Rep 2016;6:22656. https://doi.org/10.1038/
srep22656.

[14] Gao S, Chen S, Han D, Wang Z, Li M, Han W, et al. Chromatin binding of FOXA1
is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet
2020;52:1011-7. https://doi.org/10.1038/s41588-020-0681-7.

[15] Lue JK, Prabhu SA, Liu Y, Gonzalez Y, Verma A, Mundi PS, et al. Precision
Targeting with EZH2 and HDAC Inhibitors in Epigenetically Dysregulated
Lymphomas. Clin Cancer Res 2019;25:5271-83. https://doi.org/10.1158/1078-
0432.CCR-18-3989.

[6]

[8

[9

5038

Computational and Structural Biotechnology Journal 20 (2022) 5028-5039

[16] Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb
group protein EZH2 directly controls DNA methylation. Nature
2006;439:871-4. https://doi.org/10.1038/nature04431.

[17] van der Vlag ], Otte AP. Transcriptional repression mediated by the human
polycomb-group protein EED involves histone deacetylation. Nat Genet
1999;23:474-8. https://doi.org/10.1038/70602.

[18] Lloyd SM, Bao X. Pinpointing the genomic localizations of chromatin-
associated proteins: the yesterday, today, and tomorrow of ChIP-seq. Curr
Protoc Cell Biol 2019;84:e89.

[19] Ma S, Zhang Y. Profiling chromatin regulatory landscape: insights into the
development of ChIP-seq and ATAC-seq. Mol Biomed 2020;1:9. https://doi.org/
10.1186/s43556-020-00009-w.

[20] Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan KN,
et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic
DNA methylation landscape. Nature 2019;573:281-6. https://doi.org/10.1038/
s41586-019-1534-3.

[21] Klein BJ, Piao L, Xi Y, Rincon-Arano H, Rothbart SB, Peng D, et al. The histone-
H3K4-specific demethylase KDM5B binds to its substrate and product through
distinct PHD fingers. Cell Rep 2014;6:325-35. https://doi.org/10.1016/].
celrep.2013.12.021.

[22] Torres 10, Kuchenbecker KM, Nnadi CI, Fletterick R], Kelly MJS, Fujimori DG.

Histone demethylase KDM5A is regulated by its reader domain through a

positive-feedback mechanism. Nat Commun 2015;6:6204. https://doi.org/

10.1038/ncomms7204.

Rasmussen PB, Staller P. The KDM5 family of histone demethylases as targets

in oncology drug discovery. Epigenomics 2014;6:277-86. https://doi.org/

10.2217/epi.14.14.

Ramakrishnan S, Pokhrel S, Palani S, Pflueger C, Parnell TJ, Cairns BR, et al.

Counteracting H3K4 methylation modulators Setl and Jhd2 co-regulate

chromatin dynamics and gene transcription. Nat Commun 2016;7:11949.

https://doi.org/10.1038/ncomms11949.

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in

the  human  genome. Nature 2012;489:57-74.  https://doi.or:

10.1038/nature11247.

Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. ChIP-Atlas: a

data-mining suite powered by full integration of public ChIP-seq data. EMBO

Rep 2018;19. , https://doi.org/10.15252/embr.201846255.

[27] Feng ], Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using
MACS. Nat Protoc 2012;7:1728-40. https://doi.org/10.1038/nprot.2012.101.

[28] Ramirez F, Ryan DP, Griining B, Bhardwaj V, Kilpert F, Richter AS, et al.
deepTools2: a next generation web server for deep-sequencing data analysis.
Nucleic Acids Res 2016;44:W160-5. https://doi.org/10.1093/nar/gkw257.

[29] Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 2010;26:841-2. https://doi.org/10.1093/
bioinformatics/btq033.

[30] Legeay M, Doncheva NT, Morris JH, Jensen Lj. Visualize omics data on networks

with Omics Visualizer, a Cytoscape App. F1000Research 2020;9:157.

https://doi.org/10.12688/f1000research.22280.2.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:

a software environment for integrated models of biomolecular interaction

[23]

[24]

[25]

[26]

[31]

networks. Genome Res 2003;13:2498-504. https://doi.org/10.1101/
gr.1239303.
[32] Yang Z, Jones A, Widschwendter M, Teschendorff AE. An integrative pan-

cancer-wide analysis of epigenetic enzymes reveals universal patterns of
epigenomic deregulation in cancer. Genome Biol 2015;16:140. https://doi.org/
10.1186/s13059-015-0699-9.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-
level datasets. Nat Commun 2019;10:1523. https://doi.org/10.1038/s41467-
019-09234-6.
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
improves functional interpretation of cis-regulatory regions. Nat Biotechnol
2010;28:495-501. https://doi.org/10.1038/nbt.1630.
[35] Creppe C, Palau A, Malinverni R, Valero V, Buschbeck M. A Cbx8-containing
polycomb complex facilitates the transition to gene activation during ES cell
differentiation. PLoS Genet 2014;10:e1004851.
Bardos ]I, Saurin A], Tissot C, Duprez E, Freemont PS. HPC3 is a new human
polycomb orthologue that interacts and associates with RING1 and Bmil and
has transcriptional repression properties. ] Biol Chem 2000;275:28785-92.
https://doi.org/10.1074/jbc.M001835200.
Klenova EM, Morse HC, Ohlsson R, Lobanenkov VV. The novel BORIS + CTCF
gene family is uniquely involved in the epigenetics of normal biology and
cancer. Semin Cancer Biol 2002;12:399-414. https://doi.org/10.1016/s1044-
579x(02)00060-3.
Barisic D, Stadler MB, lIurlaro M, Schiibeler D. Mammalian ISWI and SWI/SNF
selectively mediate binding of distinct transcription factors. Nature
2019;569:136-40. https://doi.org/10.1038/s41586-019-1115-5.
Wang ], Zhuang ], Iyer S, Lin X, Whitfield TW, Greven MC, et al. Sequence
features and chromatin structure around the genomic regions bound by 119
human transcription factors. Genome Res 2012;22:1798-812. https://doi.org/
10.1101/gr.139105.112.
Chagraoui ], Girard S, Spinella J-F, Simon L, Bonneil E, Mayotte N, et al. UM171
preserves epigenetic marks that are reduced in ex vivo culture of human HSCs
via potentiation of the CLR3-KBTBD4 complex. Cell Stem Cell 2021;28:48-62.
https://doi.org/10.1016/j.stem.2020.12.002.

[33]

[34]

[36]

[37]

[38]

[39]

[40]


https://doi.org/10.1016/j.csbj.2022.09.008
https://doi.org/10.1186/1476-4598-5-60
https://doi.org/10.1086/675979
https://doi.org/10.1080/15384101.2020.1796037
https://doi.org/10.1093/nar/gkx877
https://doi.org/10.1093/nar/gky679
https://doi.org/10.1016/j.cell.2011.09.057
https://doi.org/10.1016/j.cell.2011.09.057
https://doi.org/10.1093/nar/gkt1151
https://doi.org/10.1093/nar/gkt1151
https://doi.org/10.3389/fcvm.2017.00019
https://doi.org/10.3389/fcvm.2017.00019
https://doi.org/10.1016/j.pharmthera.2017.11.002
https://doi.org/10.1016/j.pharmthera.2017.11.002
https://doi.org/10.1080/19491034.2016.1211217
https://doi.org/10.1080/19491034.2016.1211217
https://doi.org/10.3390/genes6020299
https://doi.org/10.1016/j.cell.2004.05.009
https://doi.org/10.1016/j.cell.2004.05.009
https://doi.org/10.1038/srep22656
https://doi.org/10.1038/srep22656
https://doi.org/10.1038/s41588-020-0681-7
https://doi.org/10.1158/1078-0432.CCR-18-3989
https://doi.org/10.1158/1078-0432.CCR-18-3989
https://doi.org/10.1038/nature04431
https://doi.org/10.1038/70602
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0090
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0090
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0090
https://doi.org/10.1186/s43556-020-00009-w
https://doi.org/10.1186/s43556-020-00009-w
https://doi.org/10.1038/s41586-019-1534-3
https://doi.org/10.1038/s41586-019-1534-3
https://doi.org/10.1016/j.celrep.2013.12.021
https://doi.org/10.1016/j.celrep.2013.12.021
https://doi.org/10.1038/ncomms7204
https://doi.org/10.1038/ncomms7204
https://doi.org/10.2217/epi.14.14
https://doi.org/10.2217/epi.14.14
https://doi.org/10.1038/ncomms11949
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.15252/embr.201846255
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/s13059-015-0699-9
https://doi.org/10.1186/s13059-015-0699-9
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/nbt.1630
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0175
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0175
http://refhub.elsevier.com/S2001-0370(22)00413-5/h0175
https://doi.org/10.1074/jbc.M001835200
https://doi.org/10.1016/s1044-579x(02)00060-3
https://doi.org/10.1016/s1044-579x(02)00060-3
https://doi.org/10.1038/s41586-019-1115-5
https://doi.org/10.1101/gr.139105.112
https://doi.org/10.1101/gr.139105.112
https://doi.org/10.1016/j.stem.2020.12.002

M. Cao, L. Wang, D. Xu et al.

[41] Upadhyay G, Chowdhury AH, Vaidyanathan B, Kim D, Saleque S. Antagonistic
actions of Reor proteins regulate LSD1 activity and cellular differentiation. Proc
Natl Acad Sci U S A 2014;111:8071-6. https://doi.org/10.1073/
pnas.1404292111.

Heideman MR, Lancini C, Proost N, Yanover E, Jacobs H, Dannenberg J-H.

Sin3a-associated Hdac1l and Hdac2 are essential for hematopoietic stem cell

homeostasis and contribute differentially to hematopoiesis. Haematologica

2014;99:1292-303. https://doi.org/10.3324/haematol.2013.092643.

Cox EJ, Marsh SA. Exercise and diabetes have opposite effects on the assembly

and O-GIcNAc modification of the mSin3A/HDAC1/2 complex in the heart.

Cardiovasc Diabetol 2013;12:101. https://doi.org/10.1186/1475-2840-12-101.

Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, et al. Histone

deacetylase 1 and 2 are essential for normal T-cell development and genomic

stability in mice. Blood 2013;121:1335-44. https://doi.org/10.1182/blood-

2012-07-441949.

Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-

cell biology and targeted therapy. Haematologica 2020;105:1494-506.

https://doi.org/10.3324/haematol.2019.243543.

[46] LiY,MaC, Li W, Yang Y, Li X, Liu ], et al. A missense variant in NDUFAG6 confers

schizophrenia risk by affecting YY1 binding and NAGA expression. Mol

Psychiatry 2021. https://doi.org/10.1038/s41380-021-01125-x.

Tiana M, Acosta-lborra B, Puente-Santamaria L, Hernansanz-Agustin P,

Worsley-Hunt R, Masson N, et al. The SIN3A histone deacetylase complex is

required for a complete transcriptional response to hypoxia. Nucleic Acids Res

2018;46:120-33. https://doi.org/10.1093/nar/gkx951.

Kent OA, Saha M, Coyaud E, Burston HE, Law N, Dadson K, et al.

Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic

reprogramming of RAS-MAPK pathway genes. Nat Commun 2020;11:4673.

https://doi.org/10.1038/s41467-020-18483-9.

Lai B, Lee J-E, Jang Y, Wang L, Peng W, Ge K. MLL3/MLL4 are required for CBP/

p300 binding on enhancers and super-enhancer formation in brown

adipogenesis. Nucleic Acids Res 2017;45:6388-403. https://doi.or!
10.1093/nar/gkx234.

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct

and predictive chromatin signatures of transcriptional promoters and

enhancers in the human genome. Nat Genet 2007;39:311-8. https://doi.org/
10.1038/ng1966.

Waddell A, Mahmud I, Ding H, Huo Z, Liao D. Pharmacological Inhibition of

CBP/p300 Blocks Estrogen Receptor Alpha (ERa) Function through Suppressing

Enhancer H3K27 Acetylation in Luminal Breast Cancer. Cancers (Basel)

2021;13. https://doi.org/10.3390/cancers13112799.

Cellier MFM. Developmental control of NRAMP1 (SLC11A1) expression in

professional phagocytes. Biology (Basel) 2017;6. https://doi.org/10.3390/

biology6020028.

[53] Sun J, Dong Z, Chang Z, Liu H, Jiang Q, Zhang D, et al. MARCH6 promotes
hepatocellular carcinoma development through up-regulation of ATF2. BMC
Cancer 2021;21:827. https://doi.org/10.1186/s12885-021-08540-x.

[54] Smith E, Shilatifard A. The chromatin signaling pathway: diverse mechanisms
of recruitment of histone-modifying enzymes and varied biological outcomes.
Mol Cell 2010;40:689-701. https://doi.org/10.1016/j.molcel.2010.11.031.

[55] Blattler A, Yao L, Wang Y, Ye Z, Jin VX, Farnham PJ. ZBTB33 binds unmethylated
regions of the genome associated with actively expressed genes. Epigenet
Chromatin 2013;6:13. https://doi.org/10.1186/1756-8935-6-13.

[56] Han ], Ke C, Jiang B, Zhou H, Xu H, Xie X. Down-regulation of PR/SET domain 10
underlies natural killer cell dysfunction in hepatocellular carcinoma. Clin Exp
Immunol 2021;206:366-77. https://doi.org/10.1111/cei.13666.

[42]

[43]

[44]

[45]

[47]

[48]

[49]

[50]

[51]

[52]

5039

Computational and Structural Biotechnology Journal 20 (2022) 5028-5039

[57] Wang Z, Yu W, Qiang Y, Xu L, Ma F, Ding P, et al. LukS-PV inhibits
hepatocellular carcinoma progression by downregulating HDAC2 expression.
Mol  Ther  Oncolytics  2020;17:547-61. https://doi.org/10.1016/j.
omto.2020.05.006.

Zhang Y, Chen ], Wu S-S, Lv M-, Yu Y-S, Tang Z-H, et al. HOXA10 knockdown
inhibits proliferation, induces cell cycle arrest and apoptosis in hepatocellular
carcinoma cells through HDAC1. Cancer Manag Res 2019;11:7065-76. https://
doi.org/10.2147/CMAR.S199239.

Yasui K, Okamoto H, Arii S, Inazawa ]. Association of over-expressed TFDP1
with progression of hepatocellular carcinomas. ] Hum Genet 2003;48:609-13.
https://doi.org/10.1007/s10038-003-0086-3.

Lei S, Zhang B, Huang L, Zheng Z, Xie S, Shen L, et al. SRSF1 promotes the
inclusion of exon 3 of SRA1 and the invasion of hepatocellular carcinoma cells
by interacting with exon 3 of SRA1pre-mRNA. Cell Death Discov 2021;7:117.
https://doi.org/10.1038/s41420-021-00498-w.

[58]

[59]

[60]

[61] LiY-H, Zhong M, Zang H-L, Tian X-F. MTA1 promotes hepatocellular carcinoma
progression by downregulation of DNA-PK-mediated H1.2T146
phosphorylation. Front Oncol 2020;10:567. https://doi.or:

10.3389/fonc.2020.00567.

Liao Y, Wang C, Yang Z, Liu W, Yuan Y, Li K, et al. Dysregulated Sp1/miR-130b-

3p/HOXA5 axis contributes to tumor angiogenesis and progression of

hepatocellular carcinoma. Theranostics 2020;10:5209-24. https://doi.org/
10.7150/thno.43640.

Chen Z, Wang X, Liu R, Chen L, Yi ], Qi B, et al. KDM4B-mediated epigenetic

silencing of miRNA-615-5p augments RAB24 to facilitate malignancy of

hepatoma cells. Oncotarget 2017;8:17712-25. , https://doi.org/10.18632/
oncotarget.10832.

[64] Ju Q, Li X-M, Zhang H, Zhao Y-J. BRCA1-associated protein is a potential

prognostic biomarker and is correlated with immune infiltration in liver

hepatocellular carcinoma: A pan-cancer analysis. Front Mol Biosci 2020;7:.

https://doi.org/10.3389/fmolb.2020.573619573619.

Liu B, Yang L, Zhu X, Li H, Zhu P, Wu ], et al. Yeats4 drives ILC lineage

commitment via activation of Lmo4 transcription. ] Exp Med

2019;216:2653-68. https://doi.org/10.1084/jem.20182363.

Huang Y, Mouttet B, Warnatz H-J, Risch T, Rietmann F, Frommelt F, et al. The

leukemogenic TCF3-HLF complex rewires enhancers driving cellular identity

and  self-renewal conferring EP300 vulnerability. Cancer Cell
2019;36:630-644.€9. https://doi.org/10.1016/j.ccell.2019.10.004.

Baumgart SJ, Nevedomskaya E, Lesche R, Newman R, Mumberg D, Haendler B.

Darolutamide antagonizes androgen signaling by blocking enhancer and

super-enhancer activation. Mol Oncol 2020;14:2022-39. https://doi.org/

10.1002/1878-0261.12693.

[68] Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science
2013;339:1567-70. https://doi.org/10.1126/science.1230184.

[69] Skinner MK. Role of epigenetics in developmental biology and
transgenerational inheritance. Birth Defects Res C Embryo Today
2011;93:51-5. https://doi.org/10.1002/bdrc.20199.

[70] Patel AB, Moore CM, Greber BJ, Luo ], Zukin SA, Ranish ], et al. Architecture of
the chromatin remodeler RSC and insights into its nucleosome engagement.
Elife 2019;8. https://doi.org/10.7554/eLife.54449.

[71] Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and
the emerging roles of chromatin remodeling in signal integration and stable
transmission of reversible phenotypes. Front Behav Neurosci 2017;11:41.
https://doi.org/10.3389/fnbeh.2017.00041.

[62]

[63]

[65]

[66]

[67]



https://doi.org/10.1073/pnas.1404292111
https://doi.org/10.1073/pnas.1404292111
https://doi.org/10.3324/haematol.2013.092643
https://doi.org/10.1186/1475-2840-12-101
https://doi.org/10.1182/blood-2012-07-441949
https://doi.org/10.1182/blood-2012-07-441949
https://doi.org/10.3324/haematol.2019.243543
https://doi.org/10.1038/s41380-021-01125-x
https://doi.org/10.1093/nar/gkx951
https://doi.org/10.1038/s41467-020-18483-9
https://doi.org/10.1093/nar/gkx234
https://doi.org/10.1093/nar/gkx234
https://doi.org/10.1038/ng1966
https://doi.org/10.1038/ng1966
https://doi.org/10.3390/biology6020028
https://doi.org/10.3390/biology6020028
https://doi.org/10.1186/s12885-021-08540-x
https://doi.org/10.1016/j.molcel.2010.11.031
https://doi.org/10.1186/1756-8935-6-13
https://doi.org/10.1111/cei.13666
https://doi.org/10.1016/j.omto.2020.05.006
https://doi.org/10.1016/j.omto.2020.05.006
https://doi.org/10.2147/CMAR.S199239
https://doi.org/10.2147/CMAR.S199239
https://doi.org/10.1007/s10038-003-0086-3
https://doi.org/10.1038/s41420-021-00498-w
https://doi.org/10.3389/fonc.2020.00567
https://doi.org/10.3389/fonc.2020.00567
https://doi.org/10.7150/thno.43640
https://doi.org/10.7150/thno.43640
https://doi.org/10.18632/oncotarget.10832
https://doi.org/10.18632/oncotarget.10832
https://doi.org/10.3389/fmolb.2020.573619
https://doi.org/10.1084/jem.20182363
https://doi.org/10.1016/j.ccell.2019.10.004
https://doi.org/10.1002/1878-0261.12693
https://doi.org/10.1002/1878-0261.12693
https://doi.org/10.1126/science.1230184
https://doi.org/10.1002/bdrc.20199
https://doi.org/10.7554/eLife.54449
https://doi.org/10.3389/fnbeh.2017.00041

	The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines
	1 Introduction
	2 Materials and methods
	2.1 Data sets
	2.2 Analysis of ChIP-Seq data (Peak Calling)
	2.3 Identification of CR-CR pairs and CR-HM relationship pairs
	2.4 Identification of CR-gene regulatory interactions and analysis of DNA sequence motif
	2.5 Evaluating the effect of CRs on abnormal DNA methylation
	2.6 Prognosis analysis of specific CRs in HepG2 cell line
	2.7 Functional analysis

	3 Results
	3.1 The general synergistic patterns of CR across five tumor cell lines
	3.2 Common CRs have diverse synergistic partners across five cell lines
	3.3 Common CRs have conserved binding sites whereas mediate rewired histone modifications
	3.4 Specific CRs play vital roles in particular cell lines through mediate downstream epigenetic modifications
	3.5 The hierarchical effects of synergistic CRs binding levels with their associated histone modifications

	4 Discussion
	Funding
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


