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Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older

adults are more pronounced when they perform a simultaneous cognitive task while

walking (i.e., dual task walking). Although it is known that aging results in widespread

brain atrophy, few studies have integrated across more than one neuroimaging modality

to comprehensively examine the structural neural correlates that may underlie dual

task walking in older age. We collected spatiotemporal gait data during single and

dual task walking for 37 young (18–34 years) and 23 older adults (66–86 years). We

also collected T1-weighted and diffusion-weighted MRI scans to determine how brain

structure differs in older age and relates to dual task walking. We addressed two

aims: (1) to characterize age differences in brain structure across a range of metrics

including volumetric, surface, and white matter microstructure; and (2) to test for age

group differences in the relationship between brain structure and the dual task cost

(DTcost) of gait speed and variability. Key findings included widespread brain atrophy

for the older adults, with the most pronounced age differences in brain regions related

to sensorimotor processing. We also found multiple associations between regional brain

atrophy and greater DTcost of gait speed and variability for the older adults. The older

adults showed a relationship of both thinner temporal cortex and shallower sulcal depth

in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally,

the older adults showed a relationship of ventricular volume and superior longitudinal

fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait.

These relationships were not present for the young adults. Stepwise multiple regression

found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal

fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the

superior temporal gyrus to best predict DTcost of gait variability for older adults. These

results contribute to scientific understanding of how individual variations in brain structure

are associated with mobility function in aging. This has implications for uncovering

mechanisms of brain aging and for identifying target regions for mobility interventions

for aging populations.
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1. INTRODUCTION

Nearly 25 percent of older adults report serious mobility
problems such as difficulty walking or climbing stairs (Kraus,
2016). Older adults tend to encounter even greater difficulty with
performing a secondary cognitive task while walking, i.e., dual
task walking (e.g., Springer et al., 2006; Hollman et al., 2007;
Malcolm et al., 2015; Smith et al., 2016). A common measure of
dual task walking performance is dual task cost (DTcost), or the
magnitude of performance decline when conducting two tasks at
once as opposed to individually (Yogev-Seligmann et al., 2008;
Bayot et al., 2020). Older adults typically exhibit greater DTcosts
compared with young adults, such as greater slowing of gait speed
from dual to single task conditions (for review, see Al-Yahya
et al., 2011; Beurskens and Bock, 2012). Examining DTcost is
considered more useful than assessing single or dual condition
performance in isolation, as cost metrics incorporate individual
differences in baseline performance (Verhaeghen et al., 2003).

Poorer dual task walking abilities have been related to
increased fall risk (e.g., Lundin-Olsson et al., 1997; Montero-
Odasso et al., 2012; Bridenbaugh and Kressig, 2015), cognitive
decline (Montero-Odasso et al., 2017), frailty, disability, and
mortality (Verghese et al., 2012). Importantly, dual task walking
performance is more predictive of falls in aging than single task
walking performance (Ayers et al., 2014; Johansson et al., 2016;
Verghese et al., 2017; Halliday et al., 2018; Gillain et al., 2019).
This could be because dual task walking provides a better analog
for real-world scenarios. Indeed, a recent study reported that in-
lab dual task walking attributes were more similar to real-world
gait, as compared with normal walking in the lab with no dual
tasking requirements (Hillel et al., 2019). Thus, given the link
between dual task walking performance and falls, and its greater
ecological validity, we selected to analyze dual instead of single
task walking.

There are clear cortical contributions to the control of walking
(Miyai et al., 2001; Petersen et al., 2012; Allali et al., 2014;
Koenraadt et al., 2014; Takakusaki, 2017). Thus, poorer dual task
walking performance in older age has been attributed, at least
in part, to age-related brain atrophy (Allali et al., 2019; Lucas

et al., 2019; Ross et al., 2021). A large body of literature suggests
that age-related structural brain atrophy occurs in an anterior-
to-posterior pattern, with the frontal cortices atrophying earlier
and faster than other regions of the brain (e.g., Salat et al., 2004;

Fjell et al., 2009a; Thambisetty et al., 2010; Lemaitre et al., 2012).
Given this, it is not surprising that previous work has linked
lower prefrontal cortex gray matter volume with poorer dual task
walking abilities in older adults (Tripathi et al., 2019; Wagshul
et al., 2019). Aging is hypothesized to increase reliance on
alternative (i.e., non-motor) neural resources, such as the frontal
cortex (Mirelman et al., 2017), to compensate for brain atrophy
in sensorimotor regions and maintain performance (Cabeza
et al., 2002; Steffener and Stern, 2012; Fettrow et al., 2021b).
Interestingly, recent work in a large sample of middle- to older-
aged adults (n = 966) has reported disproportionately steep age
differences (i.e., atrophy, demyelination, and iron reduction) in
the sensorimotor cortices rather than in more anterior prefrontal
regions (Taubert et al., 2020). Thus, structural changes in the

sensorimotor cortices with aging may also contribute to age-
related mobility declines.

Many previous studies have reported relationships between
age differences in regional brain structure and worse gait for
older adults during single task walking (for review, see Tian
et al., 2017; Wilson et al., 2019). However, compared to the
extensive literature examining single task walking, only limited
work examining brain structure has focused on dual task walking
in aging. A majority of the studies examining correlates of
dual task walking in aging have instead focused on brain
function, using functional near-infrared spectroscopy (fNIRS).
These studies have largely found increases in prefrontal cortex
oxygenation levels from single to dual task walking for older
adults, suggesting that dual compared with single task walking
demands more prefrontal neural resources (e.g., Doi et al., 2013;
Beurskens et al., 2014; Holtzer et al., 2015). As dual task walking
is more cognitively demanding than normal walking, it is logical
that functional contributions from the prefrontal cortex increase
during dual task walking (Holtzer et al., 2015); thus, markers of
prefrontal cortex structure might also relate to dual task walking
performance in older age. Overall, while these functional studies
provide important insight into the vasodynamic response to dual
task walking, further work is needed to understand how markers
of brain structure relate to dual task walking in aging.

The small body of work that has investigated relationships
between brain structure and dual task walking in older adults
suggests an important link between “maintenance” of brain
structure and maintenance of dual task walking abilities.
Two previous studies found associations between greater gait
slowing during dual task walking in older adults and lower
gray matter volume in the middle frontal gyrus (Allali et al.,
2019), medial prefrontal and cingulate cortices, and thalamus
(Tripathi et al., 2019). Further, several studies found that older
adults who showed a greater increase in prefrontal cortex
oxygenation from single to dual task walking also had lower
white matter fractional anisotropy (averaged across the whole
white matter mask; Lucas et al., 2019), lower gray matter
volume within the frontal lobe (Wagshul et al., 2019), and
reduced thickness across the cortex (Ross et al., 2021). These
imaging metrics were not related to faster dual task walking,
though, suggesting that the observed increases in prefrontal
cortex activity represented compensation to maintain walking
performance, despite atrophying brain structure.

The prior work described above examining the brain
structural correlates of dual task walking tested only one
imaging modality in isolation. Here we combined across multiple
structural imaging modalities to provide more comprehensive
information about age differences in brain structure and how
these relate to dual task walking. We assessed volumetric
measures of atrophy, i.e., gray matter, cerebellum, hippocampus,
and ventricular volume. In addition to widespread declines
in gray matter volume (paired with ventricular enlargement)
with aging (Raz et al., 2010; Lemaitre et al., 2012), prior work
has also reported widespread cerebellar atrophy with aging,
particularly in the anterior and superior-posterior lobes of
the cerebellum (Koppelmans et al., 2017). We also examined
surfacemetrics, including cortical thickness (Dahnke et al., 2013),
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sulcal depth (Yun et al., 2013), cortical complexity (i.e., folding
complexity of the cortex; Yotter et al., 2011b), and gyrification
index (i.e., mean curvature of the cortex; Luders et al., 2006).
Surface-based morphometry metrics have several advantages
over volume-based metrics (Hutton et al., 2009; Winkler et al.,
2010; Lemaitre et al., 2012), including more accurate spatial
registration (Desai et al., 2005), sensitivity to surface folding, and
independence from head size (Gaser and Kurth, 2017). Despite
these potential benefits, compared to volumetric measures, less
work has examined how surface measures relate to dual task
walking in aging.

We also examined white matter microstructure metrics
derived from diffusionMRI, including free-water (FW) corrected
fractional anisotropy (FAt, “t” refers to the tissue compartment
remaining after FW correction), axial diffusivity (ADt), and
radial diffusivity (RDt), and the fractional volume of FW
(Pasternak et al., 2009). FW correction is particularly important
for analyses of older adult brains because age-related whitematter
degeneration can lead to enlarged interstitial spaces (Meier-Ruge
et al., 1992) and thereby increased partial volume effects between
white matter fibers and extracellular water (Chad et al., 2018).
Recent work found that FW correction results in less pronounced
age differences in white matter microstructure than previously
reported (Chad et al., 2018), suggesting that prior age difference
results are at least partially driven by fluid effects. Thus, to
increase interpretability of white matter microstructural effects, it
is important to correct for FW when examining white matter in
aging. Moreover, higher FW has been related to poorer cognition
in aging (Maillard et al., 2019; Gullett et al., 2020) and poorer
function (e.g., bradykinesia) in Parkinson’s disease (Ofori et al.,
2015).

In the present work, we addressed several aims: (1) To
characterize age differences in brain structure; we predicted the
most pronounced age differences in the prefrontal cortex. (2) To
identify regions of age differences in the relationship between
brain structure and DTcost of gait speed and variability; given the
fNIRS literature reporting increased prefrontal cortex activation
during dual task walking (Doi et al., 2013; Beurskens et al., 2014;
Holtzer et al., 2015), we predicted that greater prefrontal atrophy
would correlate with greater DTcost of gait speed and variability
for older but not younger adults. (3) To determine the strongest
predictors(s) of DTcost of gait in older adults using a stepwise
regression approach. This was an exploratory aim, and thus we
did not define an a priori hypothesis.

2. MATERIALS AND METHODS

The University of Florida’s Institutional Review Board provided
ethical approval for the study. All individuals provided their
written informed consent.

2.1. Participants
37 young and 25 older adults from the Gainesville, FL community
participated in this study. Participants were in generally good
health, with no reported neurologic or psychiatric problems.
Two older adults were excluded from analyses of the T1-
weighted images. Thus, n = 23 older adults for all analyses

involving the T1-weighted images. A diffusion MRI was not
collected for one young and two older adults; thus, n = 36
young and n = 21 older adults for all diffusion MRI analyses.
See Supplementary Section 1 for further details regarding
participant selection and exclusion criteria. Of note, we reported
on a different subset of behavioral and brain metrics from this
same cohort in two recent publications (Fettrow et al., 2021a;
Hupfeld et al., 2021a).

2.2. Testing Sessions
Before the first session, we collected self-reported participant
information on: demographics (e.g., age, sex, and years of
education), medical history, handedness, footedness, exercise,
and sleep. We also collected anthropometric information (e.g.,
height and weight). Participants then completed mobility testing,
followed by an MRI scan approximately 5 days later (Figure 1).
For 24 h prior to each session, participants were requested to
not consume alcohol, nicotine, or any drugs other than the
medications they disclosed to us.

2.3. Session 1: Mobility Testing
Participants completed three walking tasks while instrumented
with six Opal inertial measurement units (IMUs; v2; APDM
Wearable Technologies Inc., Portland, OR, USA). IMUs were
placed on the feet, wrists, around the waist at the level of the
lumbar spine, and across the torso at the level of the sternal
angle (Figure 1). First, participants walked back and forth across
a 9.75 m room for 4 min at whichever pace they considered to be
their “normal” walking speed (NW). Participants were instructed
to refrain from talking, to keep their arms swinging freely at
their sides, and to keep their head up and gaze straight ahead.
Each time they reached the end of the room, they completed a
180-degree turn and walked the length of the room again.

Next, participants completed two trials of walking while
talking (WWT-1 and WWT-2) and one trial of talking only. The
WWT and talking only trials lasted for 2 min each. During the
WWT trials, participants walked at their normal speed while
counting backwards by 7s (Li et al., 2014), starting at number
299, 298, or 296. The WWT instructions were identical to
those provided for the 4-min walk, except that participants were
additionally instructed to “try and pay equal attention to walking
and talking” (Verghese et al., 2007). For the talking only trial,
participants sat in a chair and counted backwards by 7s for 2
min.We counterbalanced the order of theWWT-1,WWT-2, and
talking only trials and the starting number across all participants.

2.4. Spatiotemporal Variable Calculation
During the walking tasks, we recorded inertial data using
MobilityLab software (v2; APDM Wearable Technologies Inc.,
Portland, OR, USA). After each trial, MobilityLab calculated
14 spatiotemporal gait variables based on the straight-ahead
(non-turning) portions of each walking trial. The algorithm for
calculating these metrics has been validated through comparison
to force plate and motion capture data (see internal validation
by MobilityLab: https://support.apdm.com/hc/en-us/articles/
360000177066-How-are-Mobility-Lab-s-algorithms-validated-
andWashabaugh et al., 2017). To condense the gait variables into
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FIGURE 1 | Methods overview. Left: During Session 1, participants first completed a normal (single task) overground walk (NW) at a comfortable self-selected speed.

Next, participants completed three trials in a counterbalanced order: two walking while talking trials (WWT-1 and WWT-2) in which participants counted backwards by

7s while walking, and one talking only trial in which participants stayed seated while counting backwards by 7s. Right: Approximately 5 days later, during Session 2,

participants completed an MRI protocol, which included a T1-weighted anatomical scan and a diffusion-weighted scan.

several summary metrics, for each trial, we extracted one variable
from each of the four gait domains described by Hollman et al.
(2011a): gait rhythm [cadence (steps/min)], gait phase [stance
(% gait cycle)], gait pace [speed (m/s)], and gait variability [step
time variability (standard deviation)]. Each of these variables
was reported to have high validity when compared to the same
metrics calculated using force plate data (Washabaugh et al.,
2017). We then calculated the average of each of these four
variables for the NW and WWT-1 and WWT-2 trials to produce
one variable for each of the four gait domains for NW andWWT.

2.5. Cognitive Outcome Variable
Calculation
We also measured cognitive performance during the seated
compared to WWT conditions. We examined both speed (i.e.,
total number of subtraction problems attempted) and accuracy
(i.e., % correct) during both the seated and WWT conditions.

2.6. DTcost Calculation
To characterize differences in these gait and cognitive
performance summary metrics between single and dual
task conditions, similar to a large body of previous work (e.g.,
Kelly et al., 2010; Van Impe et al., 2011; Patel et al., 2014), we
calculated the DTcost of each variable as follows:

DTcost = (
WWT measure− ST measure

WWT measure
) ∗ 100 (1)

We then calculated a correlation matrix for the four resulting
DTcost of gait measures across the whole sample. This revealed
that DTcost of gait speed was highly correlated with the DTcost
of cadence (r = 0.90, p < 0.001) and DTcost of stance time (r =
–0.85, p < 0.001). Thus, we opted to analyze only two variables
as primary outcome metrics in our final statistical analyses: (1)
DTcost of gait speed; and (2) DTcost of step time variability.
Both slower gait speed and increased step time variability have
been related to higher fall risk for older adults (Espy et al., 2010;
Callisaya et al., 2011; Quach et al., 2011).

2.7. Session 2: MRI Scan
We acquired an MRI scan for each participant using a Siemens
MAGNETOM Prisma 3 T scanner (Siemens Healthcare,
Erlangen, Germany) with a 64-channel head coil. We collected
a 3D T1-weighted anatomical image using a magnetization-
prepared rapid gradient-echo (MPRAGE) sequence. The
parameters for this anatomical image were as follows: repetition
time (TR) = 2,000 ms, echo time (TE) = 3.06 ms, flip angle =
8◦, field of view = 256 × 256 mm2, slice thickness = 0.8 mm,
208 slices, voxel size = 0.8 mm3. We also collected a diffusion-
weighted spin-echo prepared echo-planar imaging sequence
with the following parameters: 5 b0 scans (without diffusion
weighting), 64 gradient directions with diffusion weighting 1,000
s/mm2, TR = 6,400 ms, TE = 58 ms, isotropic resolution = 2
x 2 x 2 mm, FOV = 256 x 256 mm2, 69 slices, phase encoding
direction = Anterior to Posterior. Immediately prior to this
acquisition, we collected 5 b0 scans (without diffusion weighting)
in the opposite phase encoding direction (Posterior to Anterior)
for later use in distortion correction.

2.8. T1-Weighted Image Processing for
Voxelwise Analyses
For further details regarding T1-weighted image preprocessing,
see Supplementary Section 2.

2.8.1. Gray Matter Volume
We processed the T1-weighted scans using the Computational
Anatomy Toolbox toolbox (version r1725; Gaser and Dahnke,
2016; Gaser and Kurth, 2017) in MATLAB (R2019b). We
implemented default CAT12 preprocessing steps, which
ultimately produces whole-brain modulated, normalized gray
matter maps for each participant. To increase signal-to-noise
ratio, we smoothed these modulated, normalized gray matter
segments using Statistical Parametric Mapping 12 (SPM12,
v7771; Ashburner et al., 2014) with an 8 mm full width at
half maximum kernel. We entered these preprocessed gray
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matter volume maps into the group-level voxelwise statistical
models described in Section 2.11.2. We used CAT12 to calculate
total intracranial volume for each participant for later use as a
covariate in these group-level statistical analyses.

2.8.2. Cortical Surface Metrics
The CAT12 pipeline also extracts surface-based morphometry
metrics (Yotter et al., 2011a; Dahnke et al., 2013). We used
CAT12 to extract four surface metrics: (1) cortical thickness: the
thickness of the cortical gray matter between the outer surface
(i.e., the gray matter-cerebrospinal fluid boundary) and the inner
surface (i.e., the gray matter-white matter boundary) (Dahnke
et al., 2013); (2) cortical complexity: fractal dimension, a metric
of folding complexity of the cortex (Yotter et al., 2011b); (3) sulcal
depth: the Euclidean distance between the central surface and
its convex hull (Yun et al., 2013); and (4) gyrification index: a
metric based on the absolute mean curvature, which quantifies
the amount of cortex buried within the sulcal folds as opposed to
the amount of cortex on the “outer” visible surface (Luders et al.,
2006). We resampled and smoothed the surfaces at 15 mm for
cortical thickness and 20 mm for the three other metrics (Gaser
and Kurth, 2017). We entered these resampled and smoothed
surface files into the group-level voxelwise statistical models
described in Section 2.11.2.

2.8.3. Cerebellar Volume
To improve the normalization of the cerebellum (Diedrichsen,
2006; Diedrichsen et al., 2009), similar to our past work (Salazar
et al., 2020, 2021; Hupfeld et al., 2021b), we applied specialized
preprocessing steps to the cerebellum to produce cerebellar
volume maps. First, we entered each participant’s whole-brain
T1-weighted image into the CEREbellum Segmentation (CERES)
pipeline (Romero et al., 2017). We then used the Advanced
Normalization Tools package (ANTs; v1.9.17; Avants et al.,
2010, 2011) to warp (in a single step) each participant’s
extracted subject space cerebellum to the Spatially Unbiased
Infratentorial Template (SUIT) template (Diedrichsen, 2006;
Diedrichsen et al., 2009). The flowfields that were applied to
warp these cerebellar segments to SUIT space were additionally
used to calculate the Jacobian determinant image, using ANTs’
CreateJacobianDeterminantImage.sh function. We multiplied
each normalized cerebellar segment by its corresponding
Jacobian determinant to produce modulated cerebellar images in
standard space for each participant. Lastly, to increase signal-to-
noise ratio, we smoothed the modulated, normalized cerebellar
images using a kernel of 2 mm full width at half maximum and
entered the resulting cerebellar volumemaps into the group-level
voxelwise statistical models described in Section 2.11.2. Of note,
we examined cerebellar total volumes in our statistical analyses
instead of segmenting the cerebellum by tissue type, in order
to avoid any inaccuracy due to low contrast differences between
cerebellar gray and white matter.

2.9. Diffusion-Weighted Image Processing
for Voxelwise Analyses
See Supplementary Section 3 for further details regarding
preprocessing of the diffusion-weighted data.

2.9.1. Diffusion Preprocessing
We then corrected images for signal drift (Vos et al., 2017)
using the ExploreDTI graphical toolbox (v4.8.6; www.exploredti.
com; Leemans et al., 2009) in MATLAB (R2019b). Next, we
used the FMRIB Software Library (FSL; v6.0.1; Smith et al.,
2004; Jenkinson et al., 2012) processing tool topup to estimate
the susceptibility-induced off-resonance field (Andersson et al.,
2003). This procedure yielded a single corrected field map
for use in eddy current correction. We used FSL’s eddy_cuda
to simultaneously correct the data for eddy current-induced
distortions and both inter- and intra-volume head movement
(Andersson and Sotiropoulos, 2016).

2.9.2. FW Correction and Tensor Fitting
We implemented a custom FW imaging algorithm (Pasternak
et al., 2009) in MATLAB. This algorithm estimates FW
fractional volume and FW-corrected diffusivities by fitting a two-
compartment model at each voxel (Pasternak et al., 2009). The
two-compartment model consists of: (1) a tissue compartment
modeling water molecules within or in the vicinity of white
matter tissue, quantified by diffusivity (FAt, RDt, and ADt);
and (2) a FW compartment, reflecting the proportion of water
molecules with unrestricted diffusion, and quantified by the
fractional volume of this compartment. FW ranges from 0 to 1;
FW = 1 indicates that a voxel is filled with freely diffusing water
molecules (e.g., as in the ventricles). These metrics (FAt, RDt,
ADt, FW) are provided as maps for each voxel in the brain.

2.9.3. Tract-Based Spatial Statistics
We applied FSL’s tract-based spatial statistics (TBSS) processing
steps to prepare the data for voxelwise analyses across
participants (Smith et al., 2006). We used the TBSS pipeline as
provided in FSL, which first includes eroding the FA images
slightly and zeroing the end slices. Next, each participant’s FA
data is brought into a common space (i.e., the FMRIB58_FA
1 mm isotropic template) using the nonlinear registration tool
FNIRT (Andersson et al., 2007a,b). A mean FA image is then
calculated and thinned to create a mean FA skeleton. Then,
each participant’s aligned FA data is projected onto the group
mean skeleton. Lastly, we applied the same nonlinear registration
to the FW, FAt, RDt, and ADt maps to project these data
onto the original mean FA skeleton. Ultimately, these TBSS
procedures resulted in skeletonized FW, FAt, ADt, and RDt maps
in standard space for each participant. These were the maps
that we entered in the group-level voxelwise statistical models
described in Section 2.11.2.

2.10. Image Processing for Region of
Interest Analyses
See Supplementary Section 4 for further details regarding
extraction of the regions of interest (ROIs).

2.10.1. Ventricle and Gray Matter Volume ROIs
CAT12 automatically calculates the inverse warp, from standard
space to subject space, for several volume-based atlases.
We isolated multiple ROIs from these atlases in subject
space: the lateral ventricles and pre- and postcentral gyri
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from the Neuromorphometrics (http://Neuromorphometrics.
com) volume-based atlas, and the thalamus, striatum, and globus
pallidus from the CoBra Subcortical atlas (Tullo et al., 2018;
Supplementary Figure S1). We then calculated ROI volume in
mL as: (number of voxels in the ROI mask)*(mean intensity
of the tissue segment within the ROI mask)*(volume/voxel). In
subsequent statistical analyses, we used the average of the left
and right side structures for each ROI, and we entered these ROI
volumes as a percentage of total intracranial volume (to account
for differences in head size).

2.10.2. FW ROIs
We also extracted FW values from the diffusion MRI maps for
the same ROIs for which we calculated gray matter volume.
We rigidly registered the subject space T1-weighted image to
the subject space FW image. We then used ANTs to apply the
inverse of that transformation to the subject T1-space atlases
described in Section 2.10.1. This resulted in volumetric atlases
for each participant in their native diffusion space. We then
isolated masks for the same ROIs described in Section 2.10.1.
Finally, we used fslstats to extract mean image intensity in the
FW map within each ROI mask. Here we used mean intensity
as our outcome metric (rather than volume in mL as above) to
estimate the fractional volume of FW within the ROI and obtain
a metric more representative of microstructural FW, rather than
the size of the ROI which represents macrostructural atrophy.
We calculated the average mean intensity for the left and right
side for each structure and used this average value in subsequent
statistical analyses.

2.10.3. Hippocampal ROIs
We implemented the Automatic Segmentation of Hippocampal
Subfields (ASHS)-T1 (Yushkevich et al., 2015) pipeline within
ITK-SNAP (Yushkevich et al., 2015) to segment and extract
the volume in mL of three hippocampal structures: anterior
hippocampus, posterior hippocampus, and parahippocampal
cortex. Though this pipeline is currently validated for use on only
older adults (defined as those 55+ years old; Yushkevich et al.,
2015), for completeness, here we also implemented the pipeline
onmy younger adult participants. For statistical analyses, we used
the average of the left and right side structures, and we entered
these volumes as a percentage of total intracranial volume (to
account for differences in head size).

2.11. Statistical Analyses
2.11.1. Participant Characteristics and Behavioral

Data
We conducted all statistical analyses on the demographic and
behavioral data using using R (v4.0.0; R Core Team, 2013). For
each set of analyses, we applied the Benjamini-Hochberg false
discovery rate (FDR) correction to the p-values for the age group
predictor (Benjamini and Hochberg, 1995).

First, we compared demographic, physical characteristics, and
testing timeline variables between the age groups. We tested
the parametric t-test assumptions: normality within each group
(Shapiro test, p > 0.05) and homogeneity of variances between
groups (Levene’s test, p > 0.05). The majority of variables did not

meet parametric assumptions, so we conducted nonparametric
two-sided Wilcoxon rank-sum tests for age group differences.
We report the group medians and interquartile ranges for each
of these variables. We also report nonparametric effect sizes
(Rosenthal et al., 1994; Field et al., 2012). To test for differences
in the sex distribution within each age group, we conducted a
Pearson chi-square test.

To examine whether gait and subtraction performance
differed between the single and dual task conditions and/or
between the age groups, we used a linear mixed model approach
(lme; Pinheiro et al., 2007). We entered age group, condition (i.e.,
single or dual task), and the age group*condition interaction as
predictors, and included a random intercept for each subject. In
the case of outliers (i.e., ±3 SD from the whole-group mean), we
reran the linear mixed model excluding outlier data points. In all
of these instances, the statistical significance of each predictor did
not change with the exclusion of outliers.

2.11.2. Voxelwise Statistical Models
We tested the same voxelwise models for each of the imaging
modalities. In each case, we defined the model using SPM12
and then re-estimated each model using the Threshold-Free
Cluster Enhancement toolbox (TFCE; http://dbm.neuro.uni-
jena.de/tfce) with 5,000 permutations. This toolbox provides
non-parametric estimation using TFCE for models previously
estimated using SPM parametric designs. Non-parametric
estimation avoids parametric (e.g., random field theory)
distribution assumptions. TFCE produces results in which
voxelwise values represent the amount of cluster-like local spatial
support. TFCE is favorable as it does not require an arbitrary
cluster-forming threshold, and it is more sensitive compared with
other thresholdingmethods (Smith andNichols, 2009). Statistical
significance was determined at p < 0.05, family-wise error (FWE)
corrected for multiple comparisons.

2.11.2.1. Age Differences in Brain Structure
First, we conducted two-sample t-tests to test for age differences
in brain structure. In each of these models, we set the imaging
modality (e.g., normalized, modulated gray matter volume
segments) as the outcome variable and controlled for sex (as
there are reported sex differences in brain structure across
the lifespan Ruigrok et al., 2014, including greater between-
subject variability in brain structure for males compared to
females Wierenga et al., 2020). In the gray matter and cerebellar
volume models, we also controlled for head size (i.e., total
intracranial volume). Also in the gray matter volume models
only, we set the absolute masking threshold to 0.1 (Gaser
and Kurth, 2017) and used an explicit gray matter mask
that excluded the cerebellum (because we analyzed cerebellar
volume separately from "whole brain" gray matter volume;
Section 2.8.3).

2.11.2.2. Age Differences in Brain Structure - DTcost of Gait

Relationships
Our primary analysis of interest then tested for regions in which
the relationship between brain structure and the DTcost of gait
differed between young and older adults. We ran two-group
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t-test models and included the DTcost of gait speed or step
time variability for young and older adults as covariates of
interest. We tested for regions in which the correlation between
brain structure and DTcost was greater for the young compared
with the older adults, and where the correlation between brain
structure and DTcost was lower for the young compared with
the older adults. As above, we controlled for sex in all models,
and we controlled for head size in the gray matter and cerebellar
volume models.

2.11.3. ROI Statistical Models
We conducted ROI analyses in R. For each set of analyses, we
applied the Benjamini-Hochberg FDR correction to the p-values
for the predictor(s) of interest (Benjamini and Hochberg, 1995).

2.11.3.1. Age Differences in Brain Structure
Similar to the above voxelwise models, we first ran linear models
to test for age group differences in ROI volume or mean intensity,
controlling for sex. We applied the FDR correction to the p-
values for the age group predictor (i.e., the primary analysis of
interest). Post hoc, we also FDR-corrected the p-values for the
sex predictor, to better interpret several statistically significant sex
difference results.

2.11.3.2. Age Differences in Brain Structure - DTcost of Gait

Relationships
Also similar to above, we ran linear models testing for an
interaction of age group with the DTcost of gait speed or step time
variability, controlling for sex.We FDR-corrected the p-values for
the interaction term.

2.11.4. Multiple Regression to Identify the Best

Predictors of DTcost of Gait in Older Adults
We used two stepwise multivariate linear regressions to directly
compare the neural correlates of the DTcost of gait identified by
the voxelwise and ROI analyses described above. We ran one
model for the DTcost of gait speed, and one model for the DTcost
of step time variability.We included only the older adults in these
models because the older adults showed stronger relationships
between brain structure and the DTcost of gait (whereas the
young adults tended to show either a weak relationship or
no clear relationship between brain structure and the DTcost
of gait).

In each of the two full models, we included sex and values
from the peak result coordinate for each voxelwise model
that indicated a statistically significant age difference in the
relationship between brain structure and the DTcost of gait
as predictors. We also included ROI values as predictors in
any cases where the linear model yielded a significant age
group by DTcost interaction term. We used stepAIC (Venables
and Ripley, 1999) to produce a final model that retained
only the best predictor variables; stepAIC selects a maximal
model based on the combination of predictors that produces
the smallest Akaike information criterion (AIC). Overall, this
stepwise regression approach allowed us to fit the best models
using brain structure to predict the DTcost of gait for the
older adults.

3. RESULTS

3.1. Comparison of Participant
Characteristics and Testing Timeline
There were no statistically significant differences between the
age groups in sex, handedness, footedness, alcohol use, or hours
of sleep prior to each testing session. Both groups reported
a strong preference for using their right hand and right foot
for motor tasks (Oldfield, 1971; Elias et al., 1998), and both
groups reported "low-risk" consumption of alcohol (Saunders
et al., 1993). In addition, there were no age group differences
in the number of days elapsed between the testing sessions or
in the difference in start time for the sessions. Older adults
did report higher body mass indices (BMIs); the group median
young adult BMI (22.71 kg/m2) fell into the "normal" range, while
the group median older adult BMI (25.86 kg/m2) fell into the
"overweight" range. Older adults also self-reported less physical
activity than the young adults, though both groups reported
sufficient physical activity to be classified as "active" (Godin and
Shephard, 1985). Compared to the young adults, the older adults
reported lower balance confidence and greater fear of falling,
though the older adults did not report a clinically significant fear
of falling (i.e., scores >70; Tinetti et al., 1990). See Table 1 for
complete demographic information.

3.2. Age and Condition Differences in
Performance
Across both age groups, gait speed slowed and gait variability
increased during WWT compared to NW (Table 2 and
Supplementary Figure S2). There was not a statistically
significant difference in serial subtraction accuracy between the
seated and WWT conditions (Table 2), though both young and
older adults attempted fewer subtraction problems during the
WWT conditions compared to the seated condition (Table 2
and Supplementary Figure S2). Thus, across both age groups,
subtraction speed decreased from single to dual task, but
accuracy did not change.

Across both conditions, the young adults performed with
higher accuracy compared with the older adults (Table 2).
However, there were no statistically significant age group
differences in the DTcost of walking or subtraction performance
(i.e., there were no significant age group by condition
interactions; Figure 2 and Supplementary Figure S2). That is,
the magnitude of single to dual task decrements in gait speed
and number of subtraction problems attempted, as well as the
magnitude of the increase in gait variability, was similar for young
and older adults.

3.3. Comparison of Brain Structure
Between Age Groups
3.3.1. T1-Weighted MRI Metrics
Across the whole brain, older adults had significantly lower gray
matter volume compared with young adults (Figure 3). The
greatest differences between young and older adults occurred
in the bilateral pre- and postcentral gyri, temporal lobe, insula,
and inferior portion of the frontal cortex. Cerebellar volume was
lower for older compared with younger adults across most of
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TABLE 1 | Participant characteristics and testing timeline.

Variables Young adult

median

(IQR)

Older adult

median

(IQR)

W or χ
2 FDR

corr. p

Effect

sizea

Demographics

Sample size 37 23

Age (years) 21.78 (2.45) 72.82 (9.94)

Sex 19 F; 18 M 12 F; 11 M 0.004 0.951

Physical characteristics and fitness

Handedness

laterality scoreb
85.71 (25.00) 100.00

(22.43)

351.00 0.373 –0.15

Footedness

laterality scoreb
100.00

(22.22)

100.00

(133.93)

479.00 0.522 –0.12

Body mass index

(kg/m2)

22.71 (5.57) 25.86 (3.72) 200.50 0.009** –0.44

Leisure-time

physical activityc
46.00 (38.00) 26.00 (22.00) 578.50 0.020* –0.35

Balance and fear of falling

Balance

confidenced
97.81 (3.75) 94.38 (4.85) 624.50 0.014** –0.39

Fear of fallingd 17.00 (3.00) 19.00 (2.00) 233.00 0.014* –0.38

Education and cognition

Years of

education

15.00 (3.00) 16.00 (4.00) 243.00 0.018** –0.36

MoCA score 28.00 (3.00) 27.00 (2.50) 563.50 0.079 –0.27

Alcohol use

AUDIT scoree 2.00 (3.00) 1.00 (4.00) 509.50 0.347 –0.17

Hours of sleep

Behavioral

session

7.00 (1.50) 7.50 (1.38) 365.00 0.647 –0.09

MRI session 7.00 (2.00) 7.00 (1.25) 339.00 0.347 –0.17

Testing timelinef

Behav. vs. MRI

(days)

4.00 (7.00) 5.00 (4.50) 392.00 0.716 –0.07

Behav. vs. MRI

start (hours)

1.33 (1.45) 1.25 (1.01) 432.50 0.951 –0.01

In the second and third columns, we report the median± interquartile range (IQR) for each

age group in all cases except for sex. For sex, we report the number of males and females

in each age group. In the fourth and fifth columns, for all variables except sex, we report

the result of a nonparametric two-sample, two-sided Wilcoxon rank-sum test. For sex, we

report the result of a Pearson’s chi-square test for differences in the sex distribution within

each age group. All participants with T1-weighted scans are included in the comparisons

in this table. However, we excluded several individuals from the diffusion-weighted image

analyses (see Section 2.1). P values were FDR-corrected (Benjamini and Hochberg, 1995)

across all models included in this table. *pFDR−corr < 0.05, **pFDR−corr < 0.01. Significant

p values are bolded.
a In the sixth column, we report the nonparametric effect size as described by (Rosenthal

et al., 1994; Field et al., 2012).
bWe calculated handedness and footedness laterality scores using two self-report

surveys: the Edinburgh Handedness Inventory (Oldfield, 1971) and the Waterloo

Footedness Questionnaire (Elias et al., 1998). Higher positive scores indicate stronger

preference for using the right hand and foot, respectively.
cWe assessed self-reported physical activity using the Godin Leisure-Time Exercise

Questionnaire (Godin and Shephard, 1985). Higher scores indicate more frequent self-

reported physical activity.
dParticipants self-reported Activities-Specific Balance Confidence scores (Powell and

Myers, 1995) and fear of falling using the Falls Efficacy Scale (Tinetti et al., 1990). Higher

scores indicate greater confidence in one’s ability to maintain balance in various scenarios,

and greater fear of falling, respectively.
eParticipants self-reported alcohol use on the Alcohol Use Disorders Identification Test

(AUDIT) (Piccinelli, 1998). Higher scores indicate more alcohol use.
fHere we report the days between the testing sessions and the hours between the start

time of the testing sessions.

the cerebellum, though there were no age differences in some
regions, including the vermis and bilateral crus I (Figure 3).
Across the entire cortical surface, older adults had lower cortical
thickness compared with young adults (Figure 4). The largest
age differences in cortical thickness occurred in the bilateral pre-
and postcentral gyri and portions of the superior frontal cortex.
Gyrification index was lower for older adults in the bilateral
insula only. Cortical complexity was lower for older adults across
portions of the bilateral insula, left middle frontal cortex, and
posterior cingulate gyrus. Sulcal depth was reduced for older
adults across the bilateral temporal lobes and insula, within the
lateral fissure of the brain. Sulcal depth was higher for older
compared with young adults across the superior frontal cortex,
along the midline (Figure 4).

3.3.2. Diffusion MRI Metrics
Compared with young adults, older adults showed lower FAt,
lower ADt, higher RDt, and higher FW across almost the entire
white matter skeleton (Figure 5). There were some exceptions to
this pattern, however, in portions of the superior corona radiata,
corpus callosum (e.g., splenium), internal capsule, and thalamic
radiations in which older adults showed higher FAt, higher ADt,
and lower RDt compared with young adults.

3.3.3. ROIs
Lateral ventricular volume was higher for older compared
with younger adults (Supplementary Figure S3 and
Supplementary Table S1). Older adults exhibited lower
gray matter volume in all ROIs except for the globus pallidus
and higher FW in all ROIs except for postcentral gyrus
(Supplementary Figure S4 and Supplementary Table S1).
Older adults had lower hippocampal volume across each of
the three hippocampal ROIs (Supplementary Figure S5 and
Supplementary Table S1). In several regions, pooling across
both age groups, females had higher gray matter volume
(thalamus) and FW (pre- and postcentral gyri and thalamus)
compared with males.

3.4. Age Differences in the Relationship of
Brain Structure With the DTcost of Gait
Speed
There were no statistically significant age group by DTcost of
gait speed interactions for gray matter or cerebellar volume.
However, for the older adults, shallower sulcal depth across the
sensorimotor, supramarginal, and superior frontal and parietal
cortices was associated with greater DTcost of gait speed
(Figure 6 and Table 3). That is, those older adults who showed
the largest decreases in gait speed from single to dual task also
had the shallowest sulcal depth across these regions. Young
adults did not exhibit a clear relationship between sulcal depth
in these regions and the DTcost of gait speed. There were no
statistically significant age group differences in the correlation of
cortical thickness, cortical complexity, or gyrification index with
the DTcost of gait speed.

There were age differences in the relationship between DTcost
of gait speed and both ADt and RDt in portions of the left
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TABLE 2 | Age and condition differences in gait and subtraction performance.

Mean (SD) Predictors Estimates (SE) CI t FDR corr. p R2

Gait speed (m/s)

Young: 1.02 (0.17) Old: 0.97 (0.20) Fixed effects

Single: 1.06 (0.16) Dual: 0.95 (0.19) (Intercept) 1.08 (0.03) 1.02–1.14 37.90

Age group (Old) –0.05 (0.05) –0.14-0.04 –1.12 0.358

Condition (Dual) –0.12 (0.02) –0.15–(–0.09) -7.41 <0.001***

Age group (Old)*

Condition (Dual)

0.01 (0.03) –0.05–0.06 0.24 0.810

Random effects

σ
2 0.00

τ00Participant 0.03

0.12

Step time variability (SD)

Young: 0.02 (0.01) Old: 0.02 (0.01) Fixed effects

Single: 0.02 (0.01) Dual: 0.02 (0.01) (Intercept) 0.02 (0.002) 0.01–0.02 9.91

Age group (Old) 0.0004 (0.003) 0.00–0.01 0.16 0.870

Condition (Dual) 0.01 (0.002) 0.00–0.01 3.23 0.004**

Age group (Old)*

Condition (Dual)

0.003 (0.003) 0.00–0.01 1.15 0.787

Random effects

σ
2 0.00

τ00Participant 0.03

0.11

Subtraction accuracy (% correct)

Young: 93.53 (8.34) Old: 85.87 (11.15) Fixed effects

Single: 89.72 (91.63) Dual: 91.63 (9.11) (Intercept) 92.93 (1.56) 89.80–96.06 59.50

Age group (Old) –8.62 (2.56) –13.75–(–3.50) -3.37 0.005**

Condition (Dual) 1.20 (1.36) –1.53–3.93 0.88 0.381

Age group (Old)*

Condition (Dual)

1.92 (2.23) –2.55–6.39 0.86 0.787

Random effects

σ
2 34.34

τ00Participant 55.92

0.30

Total # of subtractions attempted

Young: 33.97 (16.52) Old: 28.14 (15.08) Fixed effects

Single: 33.36 (17.82) Dual: 30.24 (14.34) (Intercept) 35.62 (2.64) 30.33–40.91 13.49

Age group (Old) –6.08 (4.32) –14.74-2.58 –1.41 0.331

Condition (Dual) –3.30 (1.19) –5.69–(–0.91) -2.76 0.010*

Age group (Old)*

Condition (Dual)

0.48 (1.95) -3.43-4.39 0.25 0.810

Random effects

σ
2 26.33

τ00Participant 231.65

0.29

On the left, we report the mean (standard deviation) for each outcome variable, split by age group and by condition (i.e., single or dual). On the right, we report the results of a linear mixed

effects model testing for age group, condition, and interaction effects for each variable. P values were FDR-corrected based on each predictor of interest (e.g., age group; Benjamini

and Hochberg, 1995). We report marginal R2 values, which consider only the variance of the fixed effects. SD, standard deviation; SE, standard error; CI, 95% confidence interval.

*pFDR−corr < 0.05, **pFDR−corr < 0.01, ***pFDR−corr < 0.001. Significant p values are bolded.

superior corona radiata involving the superior longitudinal
fasciculus and corticospinal tract (Figure 7 and Table 4). For the
older adults only, higher ADt and lower RDt in these regions was

associated with greater slowing of gait speed from single to dual
task conditions. Young adults showed no relationship between
ADt or RDt in these regions and DTcost of gait speed. There were
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FIGURE 2 | Differences in walking and subtraction performance during single vs. dual task conditions. Gait and serial subtraction performance are depicted for each

young (orange) and older (blue) adult. Each line represents one participant. Group means are shown in red. Across both age groups, gait speed slowed, gait variability

increased, and number of subtraction problems attempted decreased from single to dual task conditions. *pFDR−corr < 0.05, **pFDR−corr < 0.01, ***pFDR−corr < 0.001.

FIGURE 3 | Age differences in gray matter and cerebellar volume. Increasingly warm colors indicate regions where young adult volumes were greater than older adult

volumes. Results are overlaid onto a whole brain MNI-space template (left) and onto the SUIT cerebellar template (right). pFWE−corr < 0.05.
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FIGURE 4 | Age differences in surface measures. Warm colors indicate regions where young adult values were greater than older adult values. Cool colors indicate

regions where young adult values were lower than older adult values. Results are overlaid onto CAT12 standard space templates. L, left; R, right. pFWE−corr < 0.05.

no statistically significant age group differences in the correlation
of FAt or FW with the DTcost of gait speed.

For older adults only, larger lateral ventricular volume was
associated with greater decreases in gait speed from single to dual
task walking (Figure 8 and Table 5). There was no relationship
between lateral ventricular volume and DTcost of gait speed
for young adults. Older adult relationships between DTcost of
gait speed with several other ROIs [i.e., thalamus gray matter
volume (p = 0.025; pFDR−corr = 0.172) and parahippocampal
cortex volume (p = 0.045; pFDR−corr = 0.208)] did not survive
FDR correction. There were no other statistically significant
interactions between age group and DTcost of gait speed for the
remaining ROIs.

3.5. Age Differences in the Relationship of
Brain Structure With the DTcost of Step
Time Variability
There were no statistically significant age group by DTcost of step
time variability interactions for gray matter or cerebellar volume.
For older adults, thinner temporal lobe cortex was associated with
greater DTcost of step time variability (Figure 6 and Table 6).
That is, those older adults with the thinnest temporal cortex also
showed the greatest increase in step time variability from single
to dual task. Young adults showed a weak opposite relationship
between temporal cortex thickness and the DTcost of step
time variability. In addition, those older adults with shallower

sulcal depth across the sensorimotor, supramarginal, insular,
and superior frontal and parietal cortices also showed a greater
DTcost of step time variability (Figure 6 and Table 3). Young
adults showed a weak opposite relationship between sulcal depth
in these regions and the DTcost of step time variability. There
were no statistically significant age differences in the relationship
of cortical complexity or gyrification index with the DTcost of
step time variability.

There were no statistically significant age differences in the
relationship between the DTcost of step time variability and
FW-corrected white matter microstructure. Greater DTcost of
step time variability was associated with lower parahippocampal
cortex volume for the older adults, though this relationship did
not survive FDR correction (p= 0.039; pFDR−corr = 0.433). There
were no statistically significant interactions between age group
and the DTcost of step time variability for the remaining ROIs
(Supplementary Table S2).

3.6. Multiple Regression to Identify the Best
Predictors of DTcost of Gait in Older Adults
For the DTcost of gait speed full model, we entered each
participant’s left precentral gyrus sulcal depth and superior
longitudinal fasciculus ADt and RDt (extracted from the peak
region resulting from each voxelwise model). We also entered
lateral ventricular volume (expressed as a percentage of total
intracranial volume) and sex. The stepwise regression returned a
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FIGURE 5 | Age differences in FW-corrected white matter microstructure. Warm colors indicate regions where young adult values were greater than older adult

values. Cool colors indicate regions where young adult values were lower than older adult values. Results are shown on the FMRIB58 FA template with the group

mean white matter skeleton (green) overlaid. Age differences at pFWE−corr < 0.05 covered almost the entire white matter skeleton; these results are depicted in the

rightmost column of each panel. The left portion of each panel depicts more conservative statistical thresholding (noted under each colorbar) to better illustrate which

regions showed the most pronounced age differences.

model containing only sulcal depth, ADt, and sex, indicating that
the combination of these three variables best predicts the DTcost
of gait speed for older adults (Table 7).

For the DTcost of step time variability full model, we entered
each participant’s right superior temporal gyrus cortical thickness
and left precentral gyrus sulcal depth, as well as sex. The stepwise
regression returned a model containing only cortical thickness,
indicating that this surface metric best predicts the DTcost of step
time variability for older adults (Table 7).

4. DISCUSSION

We examined a comprehensive set of structural MRI metrics
in relation to dual task walking in older adults. We identified
widespread brain atrophy for older adults; across imaging
modalities, we found the most prominent age-related atrophy
in brain regions related to sensorimotor processing. Moreover,
though the DTcost of gait speed and variability did not differ
by age group, we identified multiple age differences in the
relationship between brain structure and DTcost of gait. These
age differences occurred both in regional metrics such as the
temporal cortices and white matter tracts involved in motor
control, and also for more general markers of brain atrophy,
such as the lateral ventricles. We selected dual task walking

performance as our outcome metric, as it is more predictive
of falls in aging than single task walking (Ayers et al., 2014;
Johansson et al., 2016; Verghese et al., 2017; Halliday et al., 2018;
Gillain et al., 2019) and more related to real-world mobility
(Hillel et al., 2019). Together, these results provide greater
scientific understanding of the structural correlates of dual
task walking in aging and highlight potential targets for future
mobility interventions.

4.1. No Age Differences in the DTcost of
Gait
Gait speed slowed, gait variability increased, and total number
of subtraction problems attempted decreased between the single
and dual task conditions. However, there were no age differences
in the DTcost of gait speed, step time variability, or serial
subtraction performance. That is, older adults did not exhibit a
disproportionately larger decrease in gait speed or increase in
gait variability between the NW and WWT conditions. Older
adults also did not exhibit a disproportionately larger decrease
in the total number of subtraction problems attempted between
the seated and WWT conditions. While previous literature has
mostly reported larger DTcosts to gait in older adults (e.g., for
review see Al-Yahya et al., 2011; Beurskens and Bock, 2012),
other previous work (which used a similar linear mixed model
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FIGURE 6 | Age differences in the relationship of surface metrics with the DTcost of gait. Top. Regions showing statistically significant (pFWE−corr < 0.05) age group

differences in the relationship of cortical thickness (left) and sulcal depth (middle, right) with the DTcost of gait speed and step time variability. Warmer colors indicate

regions of greater age differences in brain-behavior correlations. Results are overlaid onto CAT12 standard space templates. L = left; R = right. Bottom. Surface

values for the peak result coordinate for each model are plotted against DTcost of gait to illustrate examples of the relationships identified by the voxelwise statistical

tests. The fit line and confidence interval shading are included only to aid visualization of these relationships. We plotted the residuals instead of the raw values here to

adjust for the effects of the sex covariate included in each model.

TABLE 3 | Regions of age difference in the relationship of sulcal depth with the

DTcost of gait speed and step time variability.

TFCE Level

Region Overlap of atlas

region (%)

Extent (kE) pFWE−corr

DTcost of gait speed

L precentral gyrus 31 3,573 0.012*

L postcentral gyrus 25 – –

L supramarginal gyrus 19 – –

L superior frontal gyrus 15 – –

L superior parietal lobule 100 196 0.048*

DTcost of step time variability

L precentral gyrus 25 5,720 0.008**

L postcentral gyrus 20 – –

L supramarginal gyrus 17 – –

L insula 8 – –

L pars opercularis 7 – –

L pars triangularis 6 – –

L superior parietal lobule 5 – –

L superior frontal gyrus 5 – –

Here we list all atlas regions from the Desikan-Killiany DK40 atlas (Desikan et al., 2006)

that overlapped by 5% or more with each resulting cluster. The clusters were sorted by

pFWE−corr value (from smallest to largest), then by cluster size (from largest to smallest).

We do not list volumetric (e.g., MNI space) coordinates in this table because volumetric

coordinates cannot be mapped directly onto cortical surfaces. L, left. *pFWE−corr < 0.05,

**pFWE−corr < 0.01. Significant p values are bolded.

approach to our study) has found no age differences in the DTcost
of gait speed (Holtzer et al., 2011). Moreover, much of this prior
work has focused on comparisons of aging with pathologies such
as cognitive impairment (Pettersson et al., 2007;Montero-Odasso
et al., 2012), rather than comparisons of young and older adults.
In our sample of relatively high-functioning older adults, the
lack of group differences in the DTcost of gait and subtraction
performance is perhaps unsurprising. Of note, we do believe that
our cognitive task (serial 7s) was sufficiently difficult to divide
attention between walking and talking for both age groups, as
our task was more difficult than other common paradigms, such
as reciting alternate letters of the alphabet (Verghese et al., 2007;
Ayers et al., 2014; Tripathi et al., 2019). This lack of group
differences in behavioral performance then frames our brain
structure analyses to probe the neural correlates of preservation
of function in aging. Thus, we can explore the neural correlates
that might underlie compensation for normal brain aging and
permit successful maintenance of dual task walking abilities into
older age.

4.2. Age Differences in Brain Structure
4.2.1. Gray Matter Volume, Cerebellar Volume, and

Cortical Thickness
Overall, we found evidence of widespread brain atrophy for
older compared with young adults. This observation is well
in line with previous literature, which has similarly identified

Frontiers in Aging Neuroscience | www.frontiersin.org 13 March 2022 | Volume 14 | Article 809281

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hupfeld et al. Brain Structure and Dual Task Walking

FIGURE 7 | Age differences in the relationship of FW-corrected white matter microstructure with the DTcost of gait speed. Left. Regions showing statistically

significant (pFWE−corr < 0.05) age group differences in the relationship of ADt (top) and RDt (bottom) with the DTcost of gait speed. Warmer colors indicate regions of

greater age differences. Results are shown on the FMRIB58 FA template with the group mean white matter skeleton (green) overlaid. Right. ADt and RDt values for the

peak result coordinate for each model are plotted against the DTcost of gait speed to illustrate examples of the relationships identified by the voxelwise statistical tests.

The fit line and confidence interval shading are included only to aid visualization of these relationships. We plotted the residuals instead of the raw values here to adjust

for the effects of the sex covariate included in each model.

widespread age differences in brain gray matter volume (e.g.,
Raz et al., 2010; Lemaitre et al., 2012; Storsve et al., 2014),
cerebellar volume (e.g., Raz et al., 2010; Bernard et al., 2015;
Koppelmans et al., 2017; Han et al., 2020), and cortical thickness
(e.g., Salat et al., 2004; Fjell et al., 2009b; Thambisetty et al.,
2010; Lemaitre et al., 2012; van Velsen et al., 2013; Storsve et al.,
2014). Many reports suggest that age-related atrophy occurs
disproportionately in the frontal cortices (e.g., Salat et al., 2004;
Fjell et al., 2009a; Thambisetty et al., 2010; Lemaitre et al., 2012).
However, our finding of the most prominent age differences in
gray matter volume and thickness of the sensorimotor cortices
(and comparatively less age difference in the frontal cortices) fits
with recent work which identified the greatest age differences
(gray and white matter atrophy, demyelination, FW, and iron
reduction) within the sensorimotor cortices in a large (n = 966)
sample of middle- to older-aged adults (Taubert et al., 2020).
Taubert et al. suggested that the particular age differences in
sensorimotor cortex structure could be either a cause or an effect

of age-related impairments to motor control (Papegaaij et al.,
2014; Taubert et al., 2020).

4.2.2. Additional Surface Metrics
While previous reports indicate that patterns of cortical thinning
with aging largely mirror age-related changes in gray matter
volume, the effects of aging on the other surface metrics studied
here (i.e., sulcal depth, cortical complexity, and gyrification
index) are not as well characterized. A couple of prior reports
have indicated that, with aging, sulci become wider and shallower
(Rettmann et al., 2006; Jin et al., 2018), and the cortex
becomes less complex (Madan and Kensinger, 2016), with lower
gyrification indices (Hogstrom et al., 2013; Cao et al., 2017;
Madan and Kensinger, 2018; Lamballais et al., 2020; Madan,
2021). Our findings fit with these patterns, although across
each of these metrics, we found the most prominent age
differences within the lateral sulcus, whereas some previous
work identified the largest age differences in other regions
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TABLE 4 | Regions of age difference in the relationship of FW-corrected white

matter microstructure with the DTcost of gait speed.

TFCE Level MNI Coordinates (mm)

Region Extent (kE ) pFWE−corr X Y Z

ADt

L corona radiata

(superior)/

superior long. fasciculus

204 0.026* –24 –7 34

L corona radiata

(superior)/

corticospinal tract

– 0.027* –26 –15 31

L corona radiata

(superior)/

superior long. fasciculus

– 0.045* –26 1 27

RDt

L corona radiata

(superior)/

superior long. fasciculus

126 0.034* –24 –7 34

L corona radiata

(superior)/

corticospinal tract

– 0.035* –26 –15 30

Here we list up to three local maxima separated by more than 8 mm per cluster for all

clusters with size k > 10 voxels. The clusters were labeled using two atlases: the Johns

Hopkins University (JHU) ICBM-DTI-82 White Matter Labels (listed first, to the left side of

the slash), and the JHU White Matter Tractography atlas within FSL (listed second, to the

right side of the slash) (Wakana et al., 2007; Hua et al., 2008). The clusters were sorted by

pFWE−corr value (from smallest to largest), then by cluster size (from largest to smallest).

L, left; Long, longitudinal. *pFWE−corr < 0.05. Significant p values are bolded.

such as the central sulcus (cortical thickness; Rettmann et al.,
2006), parietal lobe (sulcal depth; Jin et al., 2018), and frontal
lobe (cortical complexity; Madan and Kensinger, 2016; and
gyrification index; Lamballais et al., 2020). Differences in subject
characteristics across studies might explain these differences; for
instance, Jin et al. (2018) reported sulcal depth differences in
middle vs. older aged adults, rather than young compared with
older adults.

4.2.3. FW-Corrected White Matter Microstructure
Only one previous study has directly compared FW-corrected
white matter microstructure between healthy young and older
adults (Chad et al., 2018), despite that FW-corrected diffusion
metrics have significantly higher test-retest reliability than
conventional diffusion-weighted metrics (Albi et al., 2017), and
that FW correction allows for separation of atrophy effects (i.e.,
increased extracellular fluid) from changes to the structure of
the remaining white matter. Our findings here of age differences
in FW-corrected white matter microstructure largely mirror
those of Chad et al. (2018). As anticipated, we found lower
FAt and ADt, paired with higher RDt and FW across almost
the entire white matter skeleton. This pattern fits with previous
literature examining FW-uncorrected white matter as well:
prominent declines in FA, typically interpreted as decreased
white matter microstructural organization and integrity (Bennett
et al., 2010; Sexton et al., 2014) although also reflective of
crossing fiber integrity (Chad et al., 2018), decreases in AD,
interpreted as accumulation of debris or metabolic damage with

FIGURE 8 | Age differences in the relationship of lateral ventricular volume with the DTcost of gait speed. Left. Here we depict the lateral ventricular volume mask for a

single exemplar participant overlaid onto that participant’s native space cerebrospinal fluid segment. Right. Lateral ventricular volume residuals (expressed as a

percentage of total intracranial volume) are plotted against the DTcost of gait speed. We plotted the residuals instead of the raw values here to adjust for the effects of

the sex covariate included in the model. **pFDR−corr < 0.01.
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TABLE 5 | Regions of age difference in the relationship of structural ROIs with the

DTcost of gait speed.

Predictors Estimates

(SE)

t FDR

corr.

p

Ventricular volume (% TIV)

Lateral ventricle DTcost speed*age group –0.03

(0.01)

–3.23 0.030*

GM volume (% TIV)

Precentral gyrus DTcost speed*age group 0.001

(0.002)

0.46 0.782

Postcentral gyrus DTcost speed*age group 0.002

(0.002)

0.96 0.782

Thalamus DTcost speed*age group 0.002

(0.001)

2.31 0.172

Striatum DTcost speed*age group –0.002

(0.001)

–1.16 0.782

Globus pallidus DTcost speed*age group –0.0001

(0.0002)

–0.57 0.782

FW (mean intensity)

Precentral gyrus DTcost speed*age group 0.0003

(0.0004)

0.76 0.782

Postcentral gyrus DTcost speed*age group 0.0002

(0.0003)

0.82 0.782

Thalamus DTcost speed*age group 0.0001

(0.0004)

0.23 0.820

Striatum DTcost speed*age group –0.0002

(0.0005)

–0.43 0.782

Globus pallidus DTcost speed*age group 0.0002

(0.001)

0.28 0.820

Hippocampal volume (% TIV)

Ant. hippocampus DTcost speed*age group 0.001

(0.001)

0.98 0.782

Post. hippocampus DTcost speed*age group 0.0004

(0.001)

0.60 0.782

Parahippo. cortex DTcost speed*age group 0.001

(0.001)

2.06 0.208

Here we report the results of linear models testing for age differences in the DTcost of gait

speed, controlling for sex. For conciseness, we report only the estimates (standard error,

SE), t, and p values for the statistical test of interest: the interaction of age group with the

DTcost of gait speed. P values for the interaction term were FDR-corrected (Benjamini and

Hochberg, 1995). TIV, total intracranial volume; Ant, anterior; Post, posterior; Parahippo,

parahippocampal. *pFDR−corr < 0.05. Significant p values are bolded.

age (Pierpaoli et al., 2001; Song et al., 2003; Madden et al.,
2012), and increases in RD, interpreted as decreased myelin
integrity or demyelination (Song et al., 2002, 2005; Madden et al.,
2012).

After applying the FW correction to our data, we found
several areas of opposite age differences, quite similar to the
results described by Chad et al. (2018). Specifically, we observed a
seemingly paradoxical finding in portions of the superior corona
radiata, corpus callosum (e.g., splenium), internal capsule, and
thalamic radiations, in which FAt and ADt were higher and
RDt was lower for the older compared with the young adults.
In addition to the report by Chad et al. (2018), several large
datasets of normal aging (examining FW-uncorrected white

TABLE 6 | Regions of age difference in the correlation of cortical thickness with

the DTcost of step time variability.

TFCE Level

Region Overlap of atlas

region (%)

Extent (kE) pFWE−corr

DTcost of step time variability

R superior temporal gyrus 68 790 0.032*

R middle temporal gyrus 22 – –

R transverse temporal gyrus 8 – –

Here we list all atlas regions from the Desikan-Killiany DK40 atlas (Desikan et al., 2006)

that overlapped by 5% or more with the resulting cluster. We do not list volumetric (e.g.,

MNI space) coordinates in this table because volumetric coordinates cannot be mapped

directly onto cortical surfaces. R, right. *pFWE−corr < 0.05. Significant p values are bolded.

TABLE 7 | Stepwise multiple regression results for the best models of DTcost of

gait in older adults.

Predictors Estimates (SE) t p R2

DTcost of gait speed

Intercept 7.47 (22.01) 0.34 0.738

L precentral gyrus

sulcal depth

2.65 (0.86) 3.09 0.007**

L superior

longitudinal

fasciculus ADt

–57084.67 (15931.84) –3.58 0.002**

Sex –4.29 (1.24) –3.46 0.003** 0.73

DTcost of step time variability

Intercept 406.64 (97.23) 4.18 0.001**

R superior temporal

gyrus cortical

thickness

–134.61 (36.17) –3.72 0.001** 0.42

Here we report the results of the stepwise multiple linear regressions testing for the best

models of the DTcost of gait speed and step time variability, for the older adults only. In

each full model, we included as predictors sex, as well as the top result coordinate for any

significant voxelwise analyses, and values for any ROI models which returned a significant

age group by DTcost of gait interaction. As diffusion-weighted results were included in

these models, n = 21 older adults, as this was the number of older adults who completed

a diffusion-weighted scan. L, left; R, right. **p < 0.01. Significant p values are bolded.

matter) also corroborate this finding (Sexton et al., 2014; de Groot
et al., 2016; Miller et al., 2016). Previous interpretations of this
increased FA include selective degeneration of non-dominant
tracts paired with a relative sparing of the primary bundle at
fiber crossings (Chad et al., 2018). In particular, in this region,
the corona radiata, internal capsule, and corpus callosum all cross
the corticospinal tract (Tuch et al., 2003). The diffusion tensors in
these regions indicate that the corticospinal tract is the principal
fiber (Chad et al., 2018); bedpostx tractography analyses by Chad
et al. (2018) suggest that the superior longitudinal fasciculus
crosses the corona radiata in this region, and that the thalamic
radiations also cross the corticospinal tract in this region of the
internal capsule. Thus, as the superior longitudinal fasciculus and
thalamic radiations are thought to degenerate substantially with
age (Cox et al., 2016), while the corticospinal tract is thought
to be relatively spared in aging (Jang and Seo, 2015), it is likely
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that the selective degeneration of non-dominant fibers in these
locations is driving this seemingly paradoxical finding in the
older adults.

4.2.4. Structural ROIs
We selected the ROIs used in this study because of their
purported roles in mobility function (i.e., the sensorimotor
cortices, basal ganglia, and hippocampus; Callisaya et al., 2013;
Beauchet et al., 2015, 2019). We also examined the lateral
ventricles as a more general metric of subcortical atrophy.
As anticipated, almost all of these ROIs showed significant
age differences (i.e., reduced gray matter volume, increased
FW, and increased ventricular volume). This fits with the
existing literature reporting ventricular expansion in older age
(Carmichael et al., 2009; Fjell et al., 2009a). However, it is
interesting to note that FW fractional volumes showed less
pronounced age differences compared to gray matter volumes.
This could indicate that microstructural FW does not change as
markedly with normal aging, in comparison to macrostructural
graymatter tissue. Comparison of FW fractional volumes to prior
aging work is difficult, as most previous papers report increased
subcortical (e.g., substantia nigra) FW in pathological aging (e.g.,
Parkinson’s disease) compared with controls (Guttuso et al., 2018;
Yang et al., 2019), as opposed to reporting comparisons of healthy
young and older adults.

4.3. Interaction of Age Group With the
DTcost of Gait
4.3.1. Gray Matter and Cerebellar Volumes
We did not identify any statistically significant age group
differences in the relationship between the DTcost of gait speed
or variability and regional gray matter volume. While extensive
previous literature has examined relationships of single task
overground walking with gray matter and cerebellar volume
(e.g., Rosano et al., 2007; Dumurgier et al., 2012; Callisaya
et al., 2013; Beauchet et al., 2015; Demnitz et al., 2017),
comparatively less work has examined such relationships with
dual task walking (Allali et al., 2019; Lucas et al., 2019; Tripathi
et al., 2019; Wagshul et al., 2019; Ross et al., 2021). Further,
these studies had methodological differences from our work
(e.g., they used an alphabet task instead of serial 7s as the
cognitive task). Moreover, it could be that we did not identify
gray matter volume associations with the DTcost of gait because
other measures (e.g., surface-based morphometry metrics) may
provide a more sensitive correlate of behavior as compared with
volume metrics. Surface-based metrics have been found to have
several advantages over volume-based metrics (Hutton et al.,
2009; Winkler et al., 2010; Lemaitre et al., 2012), including more
accurate spatial registration (Desai et al., 2005), sensitivity to
surface folding, and independence from head size (Gaser and
Kurth, 2017).

4.3.2. Surface Metrics
We identified several age differences in brain-behavior
relationships for two surface metrics: cortical thickness and
sulcal depth. Only a few previous studies have examined
relationships between cortical thickness and dual task walking

in aging (Maidan et al., 2021; Ross et al., 2021), and, to our
knowledge, no prior literature has examined sulcal depth in
relation to dual task walking in aging. In the present work, we
identified a relationship between thinner temporal cortex and
greater increases in step time variability from single to dual task
walking for older adults. Interestingly, the superior, middle, and
transverse temporal gyri where we identified this result have
functions in visual perception (Miyashita, 1993; Ishai et al.,
1999), multimodal sensory integration (Mesulam, 1998; Downar
et al., 2000), and spatial navigation (Howard et al., 2005). Given
these functional roles, it is plausible that these regions of the
temporal cortex would play a role in gait control.

Moreover, this region of temporal cortex is not one in which
we found prominent age-related cortical thinning. Thus, it is
possible that this temporal region plays a compensatory role in
aging, to compensate for the substantial cortical thinning with
aging that we identified in classical sensorimotor brain regions,
such as the pre- and postcentral gyri. This notion fits with the
hypothesis of neural inefficiency in aging (Zahodne and Reuter-
Lorenz, 2019; Fettrow et al., 2021b), which suggests that, when
neural resources become limited (as with age-related atrophy
of the sensorimotor cortices), different neural resources (e.g.,
in this case, the temporal cortices) are used to compensate and
maintain performance (e.g., as seen in the lack of age differences
in the DTcost of gait). This also results in a stronger relationship
between temporal lobe structure and dual task walking, which
only emerges in older age when these neural resources start to
become limited. This interpretation fits with a recent report of an
association between lower cortical thickness and greater increases
in prefrontal oxygenation from single to dual task walking, with
no effect on performance (Ross et al., 2021). The study authors
suggested that older adults with the poorest neural resources
(i.e., the thinnest cortex) also required the most compensation
from alternative brain regions (i.e., the greatest increases in
prefrontal oxygenation) to maintain performance. One caveat
to this interpretation, however, is that hypotheses of neural
compensation with aging were largely developed in relation to
functional, not structural, MRI data—though our data appear to
follow a similar pattern.

We also identified two relationships between sulcal depth
in aging and greater DTcost of gait speed and variability for
older adults. Similar to cortical thickness, these brain-behavior
relationships did not fall within the prominent regions of age
difference in sulcal depth (i.e., the bilateral temporal lobes and
insula), and instead spanned the sensorimotor, supramarginal,
superior frontal and parietal cortices. Thus, these sulcal depth
findings could similarly represent an age-related compensation.
That is, in compensation for shallowing of other cortical regions
in aging, those who retained deeper sulci into older age were also
able to maintain the best functional walking performance.

Of note, while young adults did not show a clear relationship
between cortical thickness or sulcal depth and DTcost of gait
speed, young adults did exhibit a relationship between greater
sulcal depth and lower DTcost of step time variability (which is
in the opposite direction of what we might expect). Greater step
time variability is clearly related to negative outcomes for older
adults, such as higher fall risk (Callisaya et al., 2011). However,

Frontiers in Aging Neuroscience | www.frontiersin.org 17 March 2022 | Volume 14 | Article 809281

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hupfeld et al. Brain Structure and Dual Task Walking

the case is less clear for young adults (Beauchet et al., 2009;
Moe-Nilssen et al., 2010). For instance, higher gait variability
for younger adults can indicate more stable gait (Beauchet et al.,
2009). Additionally, it could be that young adults were using a
different strategy to complete the task.

4.3.3. FW-Corrected White Matter Microstructure
Several prior studies have linked lower white matter diffusivity
metrics to poorer overground walking (e.g., Bruijn et al., 2014;
Tian et al., 2016; Verlinden et al., 2016) and dual task walking
in older adults (e.g., Ghanavati et al., 2018). However, though
one prior study identified relationships between FW-corrected
white matter microstructure and cognition in normal aging
(Gullett et al., 2020), to our knowledge, no previous work has
examined how FW-corrected white matter microstructure relates
to mobility in older adults.

We identified two relationships in which higher ADt and
lower RDt were associated with worse dual task performance, i.e.,
greater slowing of gait speed from single to dual task conditions.
This is perhaps the opposite pattern from what one might
expect, as lower ADt is often associated with accumulation of
debris or metabolic damage (Pierpaoli et al., 2001; Song et al.,
2003; Madden et al., 2012), and higher RDt is interpreted as
decreased myelin integrity or demyelination (Song et al., 2002,
2005; Madden et al., 2012). However, this result occurred in the
superior corona radiata, where older adults had higher ADt and
lower RDt than young adults (see Section 4.2.3). It could be
that, in these white matter regions, the poorest performing older
adults also have the greatest degeneration of crossing fibers, such
as the superior longitudinal fasciculus crossing the corticospinal
tract. As the superior longitudinal fasciculus is implicated in
functions such asmotor control, proprioception, and visuospatial
attention and awareness (Spena et al., 2006; Shinoura et al., 2009;
Rodríguez-Herreros et al., 2015; Amemiya and Naito, 2016), it is
logical that deterioration of this pathway could negatively impact
dual task walking in aging.

4.3.4. Structural ROIs
We identified a relationship between larger lateral ventricular
volume and greater DTcost of gait speed for older but not
younger adults. This fits with some previous work that has linked
larger ventricular volume with higher gait variability (Annweiler
et al., 2014) and slower gait speed (Camicioli et al., 1999) in
older adults. However, it is surprising that we did not identify
relationships betweenDTcost of gait and the remaining structural
ROIs, as previous work has linked sensorimotor (Rosano et al.,
2007), basal ganglia (Dumurgier et al., 2012), and hippocampal
(Beauchet et al., 2015) volumes to gait in aging. Our results
thus suggest that generalized atrophy of subcortical structures,
as opposed to atrophy of a single subcortical structure, is a better
correlate of dual task locomotor function in aging.

4.4. Best Models of DTcost of Gait in Aging
Across the multimodal neuroimaging markers examined, left
precentral gyrus sulcal depth, left superior longitudinal fasciculus
ADt, and sex were the best predictors of DTcost of gait speed for
older adults, and right superior temporal gyrus cortical thickness

represented the best predictor of DTcost of step time variability.
Given the purported benefits of surface metrics over volumetric
measures (Desai et al., 2005; Hutton et al., 2009; Winkler et al.,
2010; Lemaitre et al., 2012), the inclusion of sulcal depth and
cortical thickness in these final models is perhaps unsurprising.
Further, by minimizing partial volume effects resulting from
white matter atrophy with aging, FW-corrected measures should
provide greater sensitivity than traditional diffusion metrics for
detecting true microstructural effects in aging cohorts. Thus,
it is also perhaps unsurprising that ADt in a region (superior
longitudinal fasciculus) particularly affected by aging (Cox et al.,
2016) was also a good predictor of DTcost of gait in aging.
Females showed larger DTcosts of gait speed; previous literature
has only infrequently reported sex differences in dual task
walking in older adults (e.g., Yogev-Seligmann et al., 2010;
Hollman et al., 2011b; MacAulay et al., 2014), and findings have
been conflicting.

We would like to note that these surface and white matter
metrics are complicated measures and that, although these
produced the best models of DTcost of gait, it is worth
mentioning that lateral ventricular volume also represented a
good predictor of DTcost of gait speed in aging. Ventricular
volume can be extracted easily by applying automated algorithms
to common T1-weighted MRI sequences, and provides a
useful general metric of subcortical atrophy, which our
data suggest contributes functionally to gait speed slowing
in aging.

4.5. Limitations
Our cross-sectional approach precluded us from tracking
concurrent changes in brain structure and mobility over time.
Additionally, our statistical models focused on the interaction
of age group with the DTcost of gait, in order to identify
regions where the relationship between brain structure and
DTcost of gait differed for young vs. older adults. We did not
test for regions where brain structure related to DTcost of gait
in the same manner for each age group. Such models may
have uncovered more brain-behavior relationships in classical
motor control regions, such as pre- and postcentral gyrus and
the cerebellum. However, this was not a focus of the present
work. Instead, our primary goal was to understand what brain
regions contributed differently to maintenance of dual task
walking in older age, to probe age-related shifts in the cortical
control of gait and potential compensatory processes. In addition,
we did not test for relationships between brain structure and
subtraction performance. Subtraction accuracy did not differ
between single and dual task conditions (i.e., most DTcost scores
were close to 0) and thus it would not have made sense to assess
brain-behavior relationships in this case. The total number of
subtraction problems attempted was lower for both age groups
during single compared to dual task, though this difference was
less pronounced compared to the gait metrics. Future work
could test whether there are different brain structure-behavior
relationships for the DTcost of serial subtraction speed compared
to the DTcost of gait metrics. Finally, though instructions
affect self-selected gait speed (Brinkerhoff et al., 2019) and we
provided identical instructions to all participants, we cannot
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be sure that participants all similarly interpreted and followed
our instructions to “try and pay equal attention to walking
and talking.”

4.6. Conclusions
In this multimodal neuroimaging study, we found widespread
age-related atrophy across cortical, subcortical, and cerebellar
regions, but particularly in regions related to sensorimotor
processing (e.g., the pre- and postcentral gyri). We then
identified potential compensatory relationships between better
maintenance of brain structure in regions not classically
associated with motor control (e.g., the temporal cortices)
and preserved dual task walking abilities in older adults.
This suggests a role for the temporal cortices in maintaining
behavioral function in aging, particularly when other brain
regions responsible for locomotor control (e.g., the sensorimotor
cortex, basal ganglia, and cerebellum) may be largely atrophied.
Additionally, we identified one relationship between less specific
subcortical atrophy (i.e., larger lateral ventricles) and greater
slowing during dual task walking in aging. As the global
population quickly ages, and emerging evidence continues to
relate mobility problems with pathologies such as cognitive
decline (Dodge et al., 2012; Knapstad et al., 2019), it is becoming
increasingly critical to understand the structural neural correlates
of locomotor function in aging. Identifying such brain markers
could help identify those at the greatest risk of mobility declines,
as well as identify targets for future interventions to preserve
mobility and prevent disability among older adults.
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