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Abstract
We study global dynamics of an SIR model with vaccination, where we assume that
individuals respond differently to dynamics of the epidemic. Their heterogeneous
response is modeled by the Preisach hysteresis operator. We present a condition for
the global stability of the infection-free equilibrium state. If this condition does not
hold true, the model has a connected set of endemic equilibrium states characterized
by different proportion of infected and immune individuals. In this case, we show that
every trajectory converges either to an endemic equilibriumor to a periodic orbit.Under
additional natural assumptions, the periodic attractor is excluded, and we guarantee
the convergence of each trajectory to an endemic equilibrium state. The global stability
analysis uses a family of Lyapunov functions corresponding to the family of branches
of the hysteresis operator.
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1 Introduction

In the classical compartmental models of epidemiology, the key parameters such as
the transmission and vaccination rates are assumed to remain the same during an
epidemic. As an example, consider a SIR model with vaccination of the form

Ṡ = −βSI

N
− vS − μS + μN ,

İ = βSI

N
− γ I − μI ,

Ṙ = γ I + vS − μR,

(1)

where S, I and R are densities of the populations of susceptible, infected and recovered
individuals, respectively; N = S + I + R is the total population density; β is the
transmission rate, which can be expressed as the product of the average number of
daily contacts a susceptible individual has with other individuals and the probability of
transmission during each contact; v is the vaccination rate; γ is the recovery rate; and,
μ is the birth/mortality rate (or immigration/emigration rate; for childhood infections,
individuals leave the group at a certain age). The recovered individuals are assumed
to be immune to the disease. In this particular model setup, the equality of the birth
and mortality rates ensures the conservation of the total population density, i.e. N is
constant. A simpler version of this model without vaccination was first published in
Kermack (1927); (1932); (1933).

The key parameter is the so-called basic reproduction number R0. For model (1)
it equals R0 = βμ/((γ + μ)(μ + v)). If R0 < 1, the infection dies out in the long
run; if R0 > 1, the infection spreads in the population (Korobeinikov and Wake 2002;
Korobeinikov and Maini 2004; Ullah et al. 2013)

Due to their simplicity, the standard SIR model and its variants, including (1),
assume that the hosts are unable to respond in any way to the advent of an epi-
demic and disregard the ability of the community to adapt its behavior to the danger.
Humans, however, are able to intelligently respond to a threat as they receive and per-
ceive information regarding the epidemic from the “outside” world, the government
and health authorities, and can adjust their behavior to avoid or to reduce the risk of
being infected. Typical aspects of this adaptability may include simple precautionary
measures, such as refraining from potentially dangerous contacts, increasing hygiene,
using hand sanitizer and disinfectants, adjusting a general life style, taking an extra
portion of vitamin C in a case of a common cold, using vaccination in the case of
influenza or face covering in public places (Javid and Balaban 2020). At the threat of
epidemics, the government and health authorities can intervene by promoting immu-
nizations, if available, raising awareness in the population about the current severity of
the epidemic, providing access to effective and affordable medicines and tests, work-
ing with school authorities, using media and/or administrative pressure, etc. During
the covid-19 epidemics we have seen such interventions imposed by the authorities on
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an unprecedented scale including massive quarantine and social distancing measures,
business restrictions, gathering limitations, stay-at-home and shelter-in-place orders
and closing the state borders (Marquioni and de Aguiar 2020).

In order to account for the adaptability of the population, the assumptions of the
standard SIR models, which postulate constant transmission and vaccination rates
during the whole time period in question, was revisited in several different ways.
The incidence rate of the modified form βSI/(1 + aI ) or βSI/(1 + aS) was used to
account for the saturation effect with saturation rate a. The first form is based on the
assumption that an increase in the number of infective individuals leads to a reduction
of the incidence rate; the second form is associated with protective measures taken
by susceptible individuals against the infection. The two effects were also combined
into the incidence rate of the form βSI/(1 + aS + bI ) (Dubey et al. 2015; Kaddar
2010) for an overview of several models. Their extensions of these models include
non-pharmaceutical intervention factors such as quarantine and isolation of patients
(Hou et al. 2020; Davies et al. 2020; Volpert et al. 2020; Wearing et al. 2005). Time-
dependent transmission rates were used to account for seasonal effects and varying
weather conditions (Grassly and Fraser 2006; Liu and Stechlinski 2012).

Immunization is a proven and probably the most effective tool for controlling and
eliminating infectious diseases (Chauhan et al. 2014). It was hypothesized that a vac-
cination effort can be more efficient when it is pulsed in time rather than uniform.
The effect of pulsed vaccination policy has been studied quite extensively (Agur et al.
1993; Lu et al. 2002) where a detailed comparison of models with constant and pulsed
vaccination rate is provided. Piecewise smooth epidemiological models of switched
vaccination, implemented once the number of people exposed to a virus reaches a
critical level, were studied in Wang et al. (2014). In yet another class of epidemio-
logical models with adaptive switching behavior, a stochastic switching model was
combined with an economic optimal stopping problem to determine the optimal tim-
ings for public health interventions (Sims et al. 2016). Models studied in Chladná
et al. (2020) assume that intervention measures are implemented when the number
of infected individuals exceeds a critical level, and the intervention stops when this
number drops below a different (lower) threshold. Implications of such two-threshold
intervention strategies for dynamics of an SIR model were considered both in the case
of switched vaccination rate (see Sect. 2.1) and switched transmission rate.

Multiple factors can influence the willingness of an individual to receive immu-
nization depending on the perceived risk of contracting the disease, risk of possible
complications, personal beliefs, etc. These risks vary with age, health conditions,
lifestyle and profession (Guidry et al. 2021; Lazarus et al. 2021). Further, interven-
tions of the health authorities and administrative measures at the level of a county
or state can vary in scale depending on the availability of resources, the local eco-
nomic situation and other factors. All these variations lead to the heterogeneity of the
response of the population to the advent of an epidemic.

Hysteresis effect in adopting a ‘healthy behavior’, with the associated two switching
thresholds, can result form social interaction, social reinforcement and social imitation
(Su et al. 2017). In particular, in the presence of imperfect vaccine, hysteresis loops
of vaccination rate arise with respect to changes in the perceived cost of vaccination
(Chen and Fu 2019). This cost changes dynamically as individuals revisit their vacci-
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nation decision in response to dynamics of the epidemic and through a social learning
processes under peer influence, through which process they try to learn vaccination
strategies that are more successful. One of the findings in (Chen and Fu 2019) is that
hysteresis becomesmore pronouncedwith increasing heterogeneity of the population.

In this paper, we propose a variant of the SIR model with a heterogeneous response
and analyze how the heterogeneity affects the dynamics. We focus on the scenario
when interventions of the health authorities affect the vaccination rate (assuming vac-
cines are available) while the transmission rate remains constant; the case of variable
transmission rate will be considered elsewhere. As a starting point, we adopt the
approach of Chladná et al. (2020) to modeling the homogeneous switched response
of a subpopulation to the varying number of infected individuals by a two-threshold
two-state relay operator (as described in Sect. 2.1). To reflect the heterogeneity, multi-
ple subpopulations are considered, each characterized by a different pair of switching
thresholds. In order to keep the model relatively simple, we apply averaging under
further simplifying assumptions. The main simplification is that perfect mixing of the
population is assumed. This leads to a differential model with just two variables, S
and I , but with a complex operator relationship between the vaccination rate v and
the density of the infected individuals I . As such, this operator relationship, known as
the Preisach operator, accounts for the heterogeneity of the response. Heterogeneity
of intervention policies can be modeled in a similar fashion (see Sect. 2.2).

We show that the system with the Preisach operator is amenable to analysis when
interpreted as a switched system (Bernardo et al. 2008) associatedwith a one-parameter
family of nonlinear planar vector fields Φu = Φu(I , S) (where u ∈ R is a parameter).
Between the switching moments, a trajectory of the system is an integral curve of a
particular vector field. The Preisach operator imposes non-trivial rules for switching
from one vector field to another. Some intuition can be drawn from dynamics of
systems with dry friction such as models of presliding friction behavior (Al-Bender
et al. 2004; Ruderman 2011), and populationmodels with thresholds (Meza and Bhaya
2009).

Using the switched systems approach, we show that if R0 ≤ 1, then the infection-
free equilibrium is globally stable. In the case of R0 > 1, the bi-stable nature of
an individual response leads to multi-stability in the aggregated model. Namely, the
system has a connected set of endemic equilibrium states characterized by different
proportion of infected and immune individuals1. In this case, we show that every
trajectory converges either to oneof the endemic equilibriumstates or to a periodic orbit
corresponding to the recurrence of the disease. Under additional natural assumptions,
we prove the global stability of the set of endemic equilibrium states by adapting the
method of Lyapunov functions. Each vector field Φu has a global Lyapunov function
Vu = Vu(I , S). We establish the global stability of the switched system by controlling
the increment Vu(I1, S1) − Vu(I2, S2) of the Lyapunov function along a trajectory
between the switching points, and the differenceVu1(I , S)−Vu2(I , S) of theLyapunov

1 Using an analogy with mechanical systems that exhibit dry friction this is not surprising: for example,
an object can achieve an equilibrium on a curved surface at any point where the slope does not exceed
the dry friction coefficient because friction balances the gravity. On the other hand, this is not unlike the
classical SIRmodel (1) with zero mortality and vaccination rates rates,μ = v = 0, where the infection-free
equilibrium states form the segment S + R = N , 0 ≤ S ≤ N .
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functions at those points. Numerical analysis of SIRmodels with the Preisach operator
was previously performed in (Pimenov et al. 2010, 2012).

The paper is organized as follows. In the next sectionwepresent themodel and recall
the definition of the Preisach operator. In Sect.3 some preliminary properties of the
Preisach operator and the model are discussed, including hysteresis loops, equilibrium
states and the global stability of the infection-free equilibrium in the case R0 ≤ 1.
Sects. 4 and 5 present the main results on dynamics in the case R0 > 1 and their
proofs.

2 Model

We consider the following SIR model

İ = β I S − (γ + μ)I ,

Ṡ = −β I S − v(t)S − μS + μ,

Ṙ = γ I + v(t)S − μR (2)

with an additional feedback loop, which relates the variable vaccination rate v = v(t)
to the concurrent and past values of the density I = I (t) of the infected population.
In the main part of the paper, it is assumed that the function I : R+ → R is mapped
to the function v : R+ → R by the so-called continuous Preisach operator, which is
described in the following sections. In order to motivate and explain the nature of the
assumed operator relationship between I and v, we first briefly discuss the non-ideal
relay operator in the same context. Regardless of the specific form of the feedback,
one can see that the sum I + S + R is conserved by system (2), and the last equation
is redundant. Without loss of generality, we can interpret S, I , R as relative densities
assuming that I + S + R = 1

at all times. We denote δ = μ + γ and rewrite the system as

İ = β I S − δ I ,
Ṡ = −β I S − v(t)S − μS + μ.

(3)

Note that the domain

D = {(I , S) : I > 0, S > 0, S + I ≤ 1} (4)

is flow-invariant for this system. Indeed, in this region, İ ≤ (β − δ)I and

İ = 0 for I = 0, Ṡ = μ > 0 for S = 0,
İ + Ṡ = −δ I − v(t)S + μ(1 − S) ≤ −δ I + μ − μS < 0 for I + S = 1

(where we use δ > μ),
which implies the statement.
We will consider trajectories from the domain D only.
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2.1 Switchedmodel with one non-ideal relay operator

InChladná et al. (2020), the relationship between the density of the infected population,
I = I (t), and the vaccination rate was modeled by the simplest hysteretic operator
called the non-ideal relay, which is also known as a rectangular hysteresis loop or a lazy
switch (Visintin 1994). The relay operator is characterized by two scalar parameters
α1 and α2, the threshold values, with α1 < α2. We will use the notation α = (α1, α2).
The input of the relay is an arbitrary continuous function of time, I : R+ → R. The
state να(·) equals either 0 or 1 at any moment t ∈ R+. If the input value at some
instant is below the lower threshold value α1, then the state at this instant is 0 and it
remains equal to 0 as long as the input is below the upper threshold value α2. When
the input reaches the value α2, the state switches instantaneously to the value 1. Then,
the state remains equal to 1 as long as the input stays above the lower threshold value
α1. When the input reaches the value α1, the state switches back to 0. This dynamics
is captured by the input-state diagram shown in Fig. 1. In particular, the input-state
pair (I (t), να(t)) belongs to the union of the two horizontal rays shown in bold in Fig.
1 at all times.

The above description results in the following definition. Given any continuous
input I : R+ → R and an initial value of the state, να(0) = ν0α , satisfying the
constraints

ν0α ∈ {0, 1} if α1 < I (0) < α2; (5)

ν0α = 0 if I (0) ≤ α1; ν0α = 1 if I (0) ≥ α2, (6)

the state of the relay at the future moments t > 0 is defined by

να(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if there is t1 ∈ [0, t] such thatI (t1) ≤ α1
and I (τ ) < α2 for all τ ∈ (t1, t];

1 if there is t1 ∈ [0, t] such that I (t1) ≥ α2
and I (τ ) > α1 for all τ ∈ (t1, t];

να(0) if α1 < I (τ ) < α2 for all τ ∈ [0, t].

(7)

This time series of the state, which depends both on the input I (t) (t ≥ 0) and the
initial state να(0) = ν0α of the relay, will be denoted by

να(t) = (Rα[ν0α]I )(t), t ≥ 0. (8)

By definition, the state satisfies the constraints

να(t) = 1 whenever I (t) ≥ α2; να(t) = 0 whenever I (t) ≤ α1 (9)

at all times. Further, the function (7) has at most a finite number of jumps between the
values 0 and 1 on any finite time interval t0 ≤ t ≤ t1. If the input oscillates between
two values I1, I2, such that I1 < α1 < α2 < I2, then the point (I (t), να(t)) moves
counterclockwise along the rectangular hysteresis loop shown in Fig. 1.
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Fig. 1 The non-ideal relay operator defined by (7) maps the pair (I (t), να(0)), where I (t) (t ≥ 0) is the
input and να(0) is the initial state, to the time series of the state να(t) for t > 0. The input-state pair (I , να)

belongs to the union of the two bold (open) horizontal rays at all times. Initially, it belongs to the upper ray
if να(0) = 1 and to the lower ray if να(0) = 0. The point (I , να) moves horizontally left whenever İ < 0
and right whenever İ > 0. Further, when (I , να) reaches the end of either ray, it transits vertically to the
other ray. This transition is instantaneous

In Chladná et al. (2020), it was assumed that interventions of the health authority
change the vaccination rate according to the following rules. The vaccination rate is
switched from a lower rate vnat to a higher rate vint := vnat + q0, q0 > 0, when the
density of the infected population reaches a threshold value α2. The intervention stops
when the number of infected individuals drops below a lower threshold value α1, at
which point the vaccination rate returns to its lower value vnat . Using the definition
(7) of the non-ideal relay operator (8), this leads to the formula

v(t) = vnat + q0 · (Rα[ν0α]I )(t). (10)

Coupling of this operator equation with dynamic Eq. (3) results in a switched system.
As shown in Chladná et al. (2020), switched system (3), (10) exhibits different

dynamic scenarios depending on its parameters. In particular, it can have a globally
stable endemic equilibrium. Alternatively, a locally stable endemic equilibrium coex-
ists with a stable periodic orbit. Along this orbit, the vaccination rate (10) switches
between the values vnat and vnat + q0 twice per period.

2.2 Model with heterogeneous vaccination rate

Now, we consider a model, in which several vaccination laws of the form (10), with
different thresholds α, are combined either because the health authority employs mul-
tiple intervention strategies or because different individuals respond differently to the
advent of an epidemic.

Assume that the health authority has multiple intervention policies (numbered n =
1, . . . , N ) in place, each increasing the vaccination rate by a certain amount qn while
the intervention is implemented, in order to provide a response, which is adequate to
the severity of the epidemic. Further, assume that each intervention policy is guided
by the two-threshold start/stop rule, such as in (10), associated with a particular pair
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of thresholds αn = (αn
1 , α

n
2 ). Under these assumptions, the vaccination rate in system

(3) is given by

v(t) = vnat +
N−1∑

n=0

qn · (Rαn [ν0αn ]I )(t). (11)

This formula defines a mapping from the space of continuous inputs I : R+ → R to
the space of piecewise constant outputs v : R+ → R, which is known as the discrete
Preisach operator (Krasnosel’skii and Pokrovskii 1989), see Fig. 2. In particular, the
vaccination rate (11) is set to change at multiple thresholds αn

1 , α
n
2 .

On the other hand, individuals can respond differently to dynamics of the epidemic
and interventions of the health authority. In particular, the willingness to receive vacci-
nation can vary significantly from individual to individual for the same level of threat
of contracting the disease. In order to account for the heterogeneity of the individual
response, let us divide the susceptible population into non-intersecting subpopulations
parameterized by points α of a subset Π ⊂ {α = (α1, α2) : α1 < α2} of the α-plane.
Assuming that the vaccination rate for a subpopulation labeled α is given by (10) with
q = q(α), the total vaccination rate equals

v(t) = vnat +
∫∫

Π

q(α) (Rα[ν0α]I )(t) dF(α), (12)

where the probability measure F describes the distribution of the susceptible pop-
ulation over the index set Π (the set of threshold pairs). As a simplification, let us
assume that this measure is independent of time (in particular, the distribution does
not change with variations of I ). Then, the mapping of the space of continuous inputs
I : R+ → R to the space of outputs v : R+ → R defined by (12) is known as the
general Preisach operator, which includes the discrete Preisach operator (11) and a
continuous Preisach model (corresponding to an absolutely continuous measure F) as
particular cases. In either case, the Preisach operator is referred to as a superposition
(or parallel connection) of weighted non-ideal relays.

Fig. 2 Preisach model as the parallel connection of non-ideal relays with weights. Relays Rα with different
pairs of thresholds respond to a common input I (t). These relays function independently of each other and
contribute to the output v(t) of the model, which is defined as the weighted sum (integral) of the outputs of
the individual relays Rα
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2.3 Continuous Preisachmodel

Let us consider a rigorous definition of the Preisach operator (12) with an absolutely
continuous measure F (Krasnosel’skii and Pokrovskii 1989). It involves a collection
of non-ideal relays Rα , which respond to the same continuous input I = I (t) inde-
pendently. The relays contributing to the system have different pairs of thresholds
α = (α1, α2) ∈ Π , where we assume that Π is measurable and bounded; the α-
plane is called the Preisach plane. The output of the continuous Preisach model is the
scalar-valued function

v(t) = vnat +
∫∫

Π

q(α)
(Rα[ν0α]I )(t) dα1dα2, t ≥ 0, (13)

where q : Π → R is a positive bounded measurable function (measure density)
representing the weights of the relays; and, ν0α is the initial state of the relay Rα for
any given α ∈ Π . The function ν0 = ν0α : Π → {0, 1} of the variable α = (α1, α2) is
referred to as the initial state of the Preisach operator. It is assumed to be measurable
and satisfy the constraints (5), (6), in which case the initial state-input pair is called
compatible. These requirements ensure that the integral in (13) is well-defined for
each t ≥ 0 and, furthermore, the output v(·) of the Preisach model is continuous. The
input-output operator of the Preisach model defined by (13) will be denoted by

v(t) = (P[ν0]I )(t), t ≥ 0, (14)

where both the input I : R+ → R and the initial state ν0 = ν0α (which is compatible
with the input) are the arguments; the value of this operator is the output v : R+ → R.

Inwhat followswe consider system (3)with the vaccination rate defined by equation
(13).

3 Preliminaries

We begin by discussing some of the properties of the Preisach operator and system
(3), (13).

3.1 Global Lipschitz continuity

The Preisach operator (14) is globally Lipschitz continuous (Krasnosel’skii and
Pokrovskii 1989). More precisely, the relations

vk(t) = (P[ν0k ]Ik)(t), t ≥ 0, k = 1, 2,

imply

‖v1 − v2‖C([0,τ ];R) ≤ K
(
‖ν01 − ν02‖L1(Π;R) + ‖I1 − I2‖C([0,τ ];R)

)
(15)
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for any τ ≥ 0 with

K := max
0≤α1≤1

∫ 1

α1

q(α1, α2) dα2. (16)

Let us denote byU the set of all triplets (I0, S0, ν0), where (I0, S0) ∈ D (see (4)) and
the initial state ν0 of the Preisach operator is compatible with I0. The global Lipschitz
estimate (15) ensures (for example, using the Picard-Lindelöf type of argument) that
for given (I0, S0, ν0) ∈ U, system (3) with the Preisach operator (14) has a unique
local solution with the initial data I (0) = I0, S(0) = S0 and the initial state ν0 (see,
for example, the survey in Leonov et al. 2017). Further, the invariance of D implies
that each solution is extendable to the whole semi-axis t ≥ 0. These solutions induce
a semi-flow in the set U, which is considered to be the phase space of system (3) and
is endowed with a metric by the natural embedding into the space R2 × L1(Π;R).
This leads to the standard definition of local and global stability including stability
of equilibrium states and periodic solutions. In particular, an equilibrium is a triplet
(I0, S0, ν0) ∈ U and a periodic solution is a periodic function (I (·), S(·), ν(·)) :
R+ → U where the last component viewed as a function ν : R+ × Π → {0, 1} of
two variables t ∈ R+ and α ∈ Π is given by (8).

The vaccination rate (13) at an equilibrium is constant, while for a periodic solution
the vaccination rate is also periodic with the period of I and S.

3.2 Hysteresis loops

Wecall a periodic input I = I (t) simple if each localminimumof this input is its global
minimum and each local maximum is its global maximum. That is, the input increases
from its global minimum value to its global maximum value and then decreases back
to its global minimum value over one period. Let us consider inputs I : R+ → [0, 1].

The following property of the Preisach operator is called monocyclicity: for any
T -periodic input I (t), t ≥ 0, and any admissible initial state of the Preisach operator,
the corresponding output v(t) = (P[ν0]I )(t) satisfies v(t + T ) = v(t) for all t ≥ T .
Further, for a simple periodic input, the output is defined by

v(t) =
{

v̄(I (t)) as I (t) increases,
v̂(I (t)) as I (t) decreases

(17)

for t ≥ T , where the Lipschitz continuous functions v̄(·), v̂(·) increase and satisfy

v̄(I ) < v̂(I ) for I1 < I < I2; (18)

v̄(I1) = v̂(I1); v̄(I2) = v̂(I2) (19)

with

I1 := min
t≥0

I (t), I2 := max
t≥0

I (t). (20)

123



Dynamics of SIR model with vaccination and heterogeneous behavioral... Page 11 of 34 11

In other words, a simple periodic input produces a closed (hysteresis) loop formed by
the graphs of the functions v̄(·), v̂(·) on the input-output diagram (after the moment
T ), see Fig. 3a.

Importantly, these functions depend on the initial state of the Preisach operator.
However, their difference does not. Indeed, for a simple periodic input satisfying (20),
for all the threshold pairs α = (α1, α2) such that either α1 < I1 or α2 > I2 formula
(7) implies

να(t) = να(T ) for all t ≥ T .

Further, according to (7), on each time interval where I increases, the state of any
relay Rα with α = (α1, α2) from the triangle I1 < α1 < α2 < I2 is related to the
input value I = I (t) by the formula

ν̄α(I ) =
{
1 for I1 < α1 < α2 < I ,

0 for I1 < α1 < α2, I < α2 < I2.

Similarly, on each time interval where I decreases, the states of such relays are related
to the input value I = I (t) by

ν̂α(I ) =
{
1 for I1 < α1 < I , α1 < α2 < I2,

0 for I < α1 < α2 < I2.

Therefore, for each I ∈ [I1, I2],

ν̂α(I ) − ν̄α(I ) =
{
1 for I1 < α1 < I , I < α2 < I2,

0 otherwise.

Fig. 3 Hysteresis loops on the (I , v) diagram
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Multiplying this equation by the density function q(α) and integrating the product
with respect to α over the set Π (cf. (13)), we obtain

v̂(I ) − v̄(I ) =
∫ I2

I
dα2

∫ I

I1
q(α1, α2) dα1. (21)

Thus, for a simple periodic input, the differenceΔv = v̂ − v̄ is a nonnegative function
of three scalar variables, Δv = Δv(I , I1, I2), defined on the domain 0 ≤ I1 ≤ I ≤
I2 ≤ 1. Since q = q(α1, α2) is bounded, the following quantity is well-defined and
finite:

L := max
0≤I1<I2≤1

1

I2 − I1

(

max
I1≤I≤I2

(
v̂(I ) − v̄(I )

)
)

. (22)

The quantity (22) measures the maximal width of the hysteresis loops of the Preisach
operator relative to their length. Thus, L can be considered as a measure of the amount
of hysteresis in the adaptive response with larger values of L corresponding to wider
hysteresis loops. In particular, L is smaller if the excess vaccination rate (above the
base vaccination rate vnat ) defined by the hysteretic component of the response (13) is
smaller, and L → 0 as maxα∈Π q(α) → 0.More generally, L decreases as the propor-
tion of individuals with a wide separation of switching thresholds, α2 − α1, decreases
and the proportion of individuals with a small separation of switching thresholds
increases. The vaccination rate defined by any single-valued function v = v(I ) corre-
sponds to L = 0. This case is technically included with the general Preisach operator
(12) and corresponds to the absence of hysteresis in the response. In the particular
case when the vaccination rate is defined by the continuous Preisach operator (13), the
relation L = 0 is equivalent to v = vnat , i.e. simply a constant vaccination rate, hence
one recovers the classical model. In other words, L = 0 if and only if the density
function q = q(α) in (13) is identically zero. The results presented in the following
sections focus on system (3), (13) with L > 0, i.e. the case when q = q(α) is not iden-
tically zero, hence the response exhibits hysteresis. The limit q(α) → q0δ(α − α∗)
of the Dirac measure concentrated at a point α∗ = (α∗

1 , α
∗
2) with α∗

1 < α∗
2 corre-

sponds to system (3), (10) with one non-ideal relay operator. This system models a
perfectly homogeneous response of the population to a two-threshold hysteretic inter-
vention policy. A uniform density q(α) = q0 with a q0 > 0 corresponds to the most
heterogeneous response.

The value of the quantity L plays an important role for the following results. Note
that L ≤ K (cf. (16)). We will assume that

L < β. (23)

We will also need to consider the response to a wider class of inputs. Let 0 ≤ t0 <

t ′ < t ′′ and let an input I = I (t) increase on the interval [t0, t ′] and then decrease on the
interval [t ′, t ′′]. Such inputs will be also called simple on the interval [t0, t ′′]. Suppose
that the input values I0 = I (t0), I2 = I (t ′) and I1 = I (t ′′) satisfy I0 ≤ I1 < I2.
Then it follows from the definition of the Preisach operator that formula (17) is valid,
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where the increasing functions v̄(·), v̂(·) satisfy (18), but relations (19) and (21) do
not necessarily hold. Formulas (17) and (18) are also true if the input I = I (t) first
decreases on the interval [t0, t ′] and then increases on the interval [t ′, t ′′], and the
input values I0 = I (t0), I1 = I (t ′) and I2 = I (t ′′) satisfy I1 < I2 ≤ I0, see Fig. 3b.
Functions v̄ = v̄(I ), v̂ = v̂(I ) in (17) will be referred to as an ascending branch
and a descending branch of the Preisach operator. It is important to notice that these
functions depend on the states να(t0), α ∈ Π , of the relays at the moment t0 > 0,
which in turn depend on the initial states ν0α of the relays at the moment t = 0 and
the value of the input I on the interval [0, t0] (cf. (8)). As such, on any interval of
monotonicity of the input, the input-output pair (I , v) follows one of infinitely many
possible branches of the Preisach operator, and a particular branch followed by the
input-output pair is uniquely defined by the prior history of the input variations and
the initial states of the relays.

3.3 Equilibrium points

We will assume that

Π = {α = (α1, α2) : 0 ≤ α1 < α2 ≤ 1}. (24)

Due to this assumption and the compatibility constraint (9), the inclusion α ∈ Π

implies that all the relays are in state να = 0 when I = 0. Therefore, system (3), (13)
has a unique infection-free equilibrium

(I∗, S∗, ν0) =
(

0,
μ

μ + vnat
, 0

)

∈ U, (25)

in which the state ν0 = ν0α : Π → {0, 1} of the Preisach operator is the identical zero.
According to (13), the vaccination rate at this equilibrium is minimal and equals vnat .

In addition, if

R0 := βμ

δ(μ + vnat )
> 1, (26)

then system (3), (13) also has a family of endemic equilibrium states

(I ∗, S∗, ν0) =
(

μ

δ
− μ + v0

β
,

δ

β
, ν0

)

∈ U (27)

with (I ∗, S∗) ∈ D, where the vaccination rate v0 is related to the state ν0 = ν0α :
Π → {0, 1} of the Preisach operator by

v0 = vnat +
∫∫

Π

ν0α q(α) dα1dα2. (28)
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These equilibria form a connected set in U. Further, the set (27) includes equilibrium
states with different vaccination rates v0 and different proportions of the infected and
recovered populations, while the fraction of the susceptible individuals is the same at
all these states.

Remark 1 If Π is different from (24) and includes points (α1, α2) with α1 < 0, 0 ≤
α2 ≤ 1, then the set of infection-free equilibrium states is also infinite and connected.
Depending on the parameters, it can be either an attractor or repeller or include equi-
librium states with different stability properties (this is not unlike the classical SIR
model with zeromortality rate). Further, in this case, a solutionwhich starts from small
infected population and converges to an infection-free equilibrium is characterized by
higher vaccination rate at the end than at the beginning. This is because the relays with
α1 < 0 switch from state 0 to state 1 but never switch back due to the positivity of the
input I .

Trajectories of system (3), (13) lie in the infinite-dimensional phase space U of
triplets (I , S, ν0). Slightly abusing the notation, we will sometimes also refer to the
two-dimensional curve (I (t), S(t)) as to a trajectory, omitting the component (8) in
the state space of the Preisach operator.

Proposition 1 If

R0 = βμ

δ(μ + vnat )
≤ 1, (29)

then the infection-free equilibrium (25) is the global attractor of system (3), (13). If
the opposite inequality (26) holds, then any trajectory of system (3), (13), which has at
most finite number of intersections with the nullcline İ = 0 (the line S = S∗ = δ/β),

converges to an endemic equilibrium.

In particular, according to (29), if the base vaccination rate vnat is greater than or
equal to (β − δ)μ/δ, then the infection-free equilibrium is attained globally.

Proof If δ/β ≥ 1, then the first equation of (3) implies that İ < 0 in D.
Therefore, on any given trajectory of (3), (13), the vaccination rate is defined by

v(t) = v̂(I (t)) (cf. (17)), where the function v̂(I ) is a continuous descending branch
of the Preisach operator; this branch depends on the initial state ν0 = ν0α . Thus, a
trajectory of (3), (13) is simultaneously a trajectory of the ordinary differential system

İ = β I S − δ I ,
Ṡ = −β I S − ṽ(I )S − μS + μ

(30)

with ṽ(·) = v̂(·) depending on ν0 = ν0α . Since İ < 0, each trajectory of (30) converges
to the infection-free equilibrium (I∗, S∗) for any branch ṽ(·) = v̂(·), and the result
follows.

Now, assume that 1 > δ/β and (29) holds. Let us consider the intersection of the
region

123



Dynamics of SIR model with vaccination and heterogeneous behavioral... Page 15 of 34 11

S ≥ δ/β = S∗ and the domain D. In this region, the first equation of (3) implies
İ ≥ 0 and hence I (t) ≥ I (0) > 0. Therefore, the second equation of (3) implies

Ṡ = −S(β I + v + μ) + μ ≤ −S(β I (0) + vnat + μ) + μ

and due to (29),

Ṡ ≤ −S

(

β I (0) + βμ

δ

)

+ μ = −S
(
β I (0) + μ

S∗
)

+ μ ≤ −β I (0)S∗ if S ≥ S∗.

Since I (0) > 0,we conclude that all trajectories of (3), (13) enter the region {(I , S) ∈
D : S < S∗} and remain there for all sufficiently large t . Therefore, the same argument
as we used in the case δ/β ≥ 1 above shows that all the trajectories of system (3),
(13) converge to the infection-free equilibrium (25).

Finally, assume that (26) holds, and suppose that a trajectory of system (3), (13) has
atmost finite number of intersectionswith the line S = S∗ where İ = 0. Then, after the
last intersection, the I -component of the trajectory either strictly decreases or strictly
increases with t . In either case, the monotonicity of I (t) implies that the trajectory
of the (3), (13) (after its last intersection with the line S = S∗) is simultaneously a
trajectory of the ordinary differential system (30) where ṽ(·) is either a descending
or an ascending branch of the Preisach operator. Due to the fact that any branch ṽ(I )
increases, relation (26) implies that system (30) has a unique endemic equilibrium
(I ∗, S∗) given by

μ(1 − S∗) − βS∗ I ∗ = S∗ṽ(I ∗), S∗ = δ/β. (31)

Furthermore, system (30) has a global Lyapunov function (Korobeinikov and Wake
(2002); Korobeinikov and Maini (2004))

V (I , S) = S − S∗ ln S

S∗ + I − I ∗ ln I

I ∗ + 1

β

∫ I

I ∗
ṽ(i) − ṽ(I ∗)

i
di . (32)

Indeed,

V̇ = (
S − S∗) (

−β I − ṽ(I ) − μ + μ

S

)
+ (

I − I ∗) (βS − δ)

+ (ṽ(I ) − ṽ(I ∗))
(

S − δ

β

)

,

where we replace μ = −β I ∗ − ṽ(I ∗) + μ/S∗, δ = βS∗ to obtain

V̇ = (
S − S∗) (

−β(I − I ∗) − ṽ(I ) + ṽ(I ∗) − μ

S∗ + μ

S

)
+ β

(
I − I ∗) (S − S∗)

+(ṽ(I ) − ṽ(I ∗))
(
S − S∗) = −μ(S − S∗)2

S∗S
< 0. (33)

This implies convergence to the endemic equilibrium point. 
�
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4 Main results

4.1 Poincaré-Bendixson type alternative

Proposition 1 does not cover those trajectories that have infinitely many intersections
with the nullcline S = S∗ in the case when relation (26) holds.

Theorem 1 Let (26) hold. Any trajectory of system (3), (13) (starting from any initial
values from the region I > 0, S > 0, S+ I ≤ 1 and any admissible initial state of the
Preisach operator) converges either to an endemic equilibrium or to a simple periodic
orbit.

Proof Consider a trajectory (I (t), S(t)) which does not converge to an equilibrium
point. Due to Proposition 1, it has infinitely many intersections with the line S = S∗
at points I (tk) = Ik , k = 1, 2, ... with tk < tk+1 (where we can assume without loss
of generality that I1 > I2).

If for some k′ we have Ik′ < Ik′+2 < Ik′+1, then let us compare the arc Γk′+2 of
the trajectory (I (t), S(t)) connecting the points (Ik′+2, S∗) and (Ik′+3, S∗) with its
arc Γk′ connecting the points (Ik′ , S∗) and (Ik′+1, S∗). Note that on each arc Γk′ the
vaccination rate follows a particular branch of the Preisach operator, which we will
denote as v̄k′ (cf. (17)).

Both arcs Γk′+2 and Γk′ lie above the nullcline S = S∗, both go from left to right
(hence Ik′+3 > Ik′+2), and Γk′ starts to the left of Γk′+2. Since for the internal points
of these arcs,

dS

d I
= Ṡ

İ
= −β I S − v̄i (I )S − μS + μ

β I S − δ I
, (I , S) ∈ Γi , i = k′, k′ + 2,

and v̄k′+2(I ) > v̄k′(I ), we see that Γk′ and Γk′+2 cannot intersect except at the end
point, hence Ik′ < Ik′+2 < Ik′+3 ≤ Ik′+1 as required. Further, if Ik′+3 = Ik′+1, then
due to forward uniqueness the trajectory becomes periodic starting from the moment
t = tk′+1, i.e. Ik′+2 j+1 = Ik′+1, Ik′+2 j+2 = Ik′+2 for all j = 1, 2, . . .

Similarly, relations Ik′+1 > Ik′+3 > Ik′+2 imply Ik′+1 > Ik′+3 > Ik′+4 ≥ Ik′+2,
and if Ik′+4 = Ik′+2, then the trajectory becomes periodic after the moment t = tk′+2.

Combining the above two results, we see that if either Ik′ < Ik′+2 < Ik′+1 or
Ik′+1 > Ik′+3 > Ik′+2 for some k′, and the trajectory does not become periodic, then

Ik′ <Ik′+2 < Ik′+4 < Ik′+6 < · · · < Ik′+5 < Ik′+3 < Ik′+1.

Therefore, the trajectory converges to a periodic orbit oscillating between the points
(I ′, S∗) and (I ′′, S∗) with I ′ = lim j→∞ Ik′+2 j and I ′′ = lim j→∞ Ik′+2 j+1 (or an
equilibrium if the two limits coincide).

The only remaining alternative to this scenario is to have either

· · · > I5 > I3 > I1 > I2 > I4 > I6 > · · ·
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or

· · · < I5 < I3 < I1 < I2 < I4 < I6 < · · ·

for all Ik . In this case, again, the limit is a periodic trajectory oscillating between
the points (I ′, S∗) and (I ′′, S∗) unless inf Ik = 0. However, it is easy to see that
actually inf Ik ≥ ε > 0. Indeed, on each arc Γk which lies below the line S = S∗,
the component I (t) of the solution decreases, and the vaccination rate is given by
v(t) = v̂k(I (t)) for some descending branch v̂k(·) of the Preisach operator. Therefore,
the Lyapunov function Vk(I , S) given by (31), (32) with ṽ(·) = v̂k(·) decreases along
the segment Γk of the trajectory, hence the value of Vk(·, ·) at the left end of Γk is
less than at the right end. But the functions Vk(·, S∗) : (0, 1] → R are uniformly
bounded for I ∈ [δ∗, 1], δ∗ > 0, and satisfy Vk(I , S∗) ≥ −I ∗

k ln(I/I ∗
k ), where I ∗

k is
the solution of (31) for ṽ(·) = v̄k(·). Relation (26) ensures that inf I ∗

k ≥ ε0 > 0, hence
infk Vk(I , S∗) → ∞ as I → 0+, and consequently the fact that the set of values of
Vk(·, ·) at the right ends of the arcs Γk is bounded implies that the left ends satisfy
inf Ik ≥ ε > 0. 
�

4.2 Sufficient conditions for global stability of the set of endemic equilibrium
states.

In the rest of the paper, we derive sufficient conditions which ensure the global con-
vergence to endemic equilibrium states.

We make the following assumption:
(A) Each input-output loop of the Preisach operator corresponding to a simple

periodic input is convex. In other words, the function v̄(·) in (17) is convex and the
function v̂(·) in (17) is concave.

Assumption (A) is satisfied if the distribution of the population over the set of
threshold pairs is uniform or sufficiently close to uniform, i.e. the density q(α) in (13)
is sufficiently close to a constant. In other words, the adaptive response, which defines
the excess vaccination rate (over the base rate vnat ), is sufficiently heterogeneous.

Lemma 1 Let Ī ∗ > 0 and the function V̄ (I , S) be defined by formulas (31), (32) with
ṽ(i) = v̄(i), and let Î ∗, V̂ (I , S) be defined by the same formulas with ṽ(i) = v̂(i).
Assumption (A) guarantees that all the sets {(I , S) : V̄ (I , S) ≤ c} are convex and
the intersection of every such set with the half plane I ≤ Î ∗ is convex.

Proof The curvature of the level line of the function V (I , S) is given by

κ = −VSS(VI )
2 + VI I (VS)

2 − 2VI SVI VS

(V 2
S + V 2

I )3/2
,

where VI S = 0 by the definition of V . We need to show that κ < 0, i.e. VSS(VI )
2 +

VI I (VS)
2 > 0, which for the function (32) is equivalent to

0 <
S∗

S2
V 2
I + β I ∗ + I ṽ′(I ) − ṽ(I ) + ṽ(I ∗)

β I 2
V 2
S . (34)
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For ṽ(·) = v̄(·), the convexity of v̄ implies

(I − Ī ∗)v̄′(I ) ≥ v̄(I ) − v̄( Ī ∗),

hence

I v̄′(I ) ≥ v̄(I ) − v̄( Ī ∗)

(because v̄ increases) and (34) follows. For ṽ(·) = v̂(·), relation (34) holds in the
region I ≤ Î ∗ because v̂(·) is an increasing function. 
�

Theorem 2 Let assumptions (A) and (26) be satisfied. Let the quantity L defined by
(22) be sufficiently small. Then, system (3), (13) has no periodic solutions, and every
trajectory converges to an endemic equilibrium point.

In Theorem2, condition (A) ensures a sufficiently heterogeneous adaptive response,
and simultaneously we assume a sufficiently small overall amount of hysteresis in the
response, i.e. sufficiently narrow hysteresis loops as measured by the quantity L .
For example, both conditions are satisfied for the uniform distribution of individuals
over the set of switching threshold pairs corresponding to a constant density function
q(α) = q0 with a sufficiently small q0 > 0 in (13). Small perturbations of such
densities also satisfy the conditions of Theorem 2. On the other hand, system (3)
with the vaccination rate (10) corresponding to the perfectly homogeneous response
(modeled by a single non-ideal relay) can exhibit a periodic attractor, see Chladná
et al. (2020). Further, as shown in the next section, a periodic attractor is also possible
in the heterogeneous model (3), (13), if the density is concentrated near one point, in
which case the response is close to homogeneous and the hysteresis loops are non-
convex. Therefore, a sufficient heterogeneity degree of the hysteretic response might
be required for the global stability of the equilibrium set. However, assumption (A) is
not a necessary condition for the global stability. There might be other conditions that
ensure a heterogeneous response and the convergence of trajectories to the equilibrium
set.

Due to Theorem 1, to prove Theorem 2 it suffices to show that system (3), (13) has
no simple periodic solutions if the quantity L defined by (22) is sufficiently small. An
explicit estimate for L will be established in the proof.

Extensions of Theorem2 to system (3)with the response (12),which ismore general
than in (13), are beyond the scope of this paper. In particular, as mentioned above,
in the case L = 0 the vaccination rate in this system is a nonlinear single-valued
function v = v(I ). In other words, there is no hysteresis because the degenerate
hysteresis loops have zero width, i.e. v̂(I ) = v̄(I ) = v(I ). These degenerate loops
are generally non-convex (unless v is linear). On the other hand, the adaptive response
is heterogeneous (unless v is constant), and the set of equilibrium states is the global
attractor (Korobeinikov and Maini 2004). It would be interesting to find sufficient
conditions for the global stability when some hysteresis is present, i.e. L is positive,
but the hysteresis loops remain non-convex.
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4.3 Discussion

To explore how the heterogeneity of the response of the susceptible population to
the advent of an epidemic can affect dynamics of system (3), we first consider the
aggregate vaccination rate (13) with the Gaussian density

q(α1, α2) = Ae− (α1−αm1 )2+(α2−αm2 )2

2σ2 , (35)

where the normalizing parameter A = A(αm1 , αm2 , σ ) ensures that the integral of q
over the domain (24) equals 1. Due to this normalization condition, the quantity (22)
satisfies L = L(αm1 , αm2 , σ ) ≥ 1, i.e. the response is hysteretic for any parameter
values of the density (35). The limit σ → 0 corresponds to the perfectly homoge-
neous response (10), i.e. the vaccination rate switches from the value vnat = 0 to the
value vint = 1 at the switching threshold I = αm2 and switches backwards at the
threshold I = αm1 . In this limit, L → 1/(αm2 − αm1). Increasing the variance σ 2

of the (truncated) Gaussian distribution corresponds to increasing the heterogeneity
of the response within the susceptible population and, simultaneously, decreasing the
quantity L .

Figure 4 presents an example of the convergence to a periodic cyclic behavior for
small σ > 0. This scenario for system (3), (10) with one non-ideal relay was studied
in Chladná et al. (2020). Further, Fig. 4 shows that the periodic behavior replaces
the convergence to an endemic equilibrium state as σ decreases. This is in agreement
with Theorem 2 because the quantity (22) increases and the heterogeneity of the
response decreases with decreasing σ . The attracting periodic orbit bifurcates from
the continuumof equilibrium states indicating that the systemundergoes a supercritical
Hopf bifurcation as L increases and the heterogeneity decreases. This type of the Hopf
bifurcation in systems with the Preisach operator was studied in Appelbe et al. (2008),
Balanov et al. (2012).

The trajectory corresponding to a more heterogeneous response (σ = 0.01) in
Fig. 4 converges to an endemic equilibrium state with the densities I ∗ = 0.00063,
S∗ = 0.056 of the infected and susceptible populations, respectively. The vaccination
rate at this equilibrium is v∗ = 0.0041 (week−1). The trajectory corresponding to a
more homogeneous response and a larger L (σ = 0.0009) converges to the periodic
orbit and exhibits a lower initial peak of the infected population during the transient
than the trajectory of the heterogeneous system. The average density of the susceptible
population for the periodic trajectory, S̄ = 0.057, is close to S∗. The density of the
infected population along the periodic trajectory is much higher than I ∗ at its peaks,
but the average density Ī = 0.00016 is significantly lower than I ∗. This agrees with
the fact that the average vaccination rate v̄ = 0.023 (week−1) is significantly higher
than v∗.

Let us now consider a set of densities

q(α1, α2) =
{
q0 for 0 < α2 − α1 < c,

0 for c ≤ α2 − α1 ≤ 1,
(36)
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Fig. 4 A solution of system (3) with the vaccination rate defined by relations (10) and (35). The parameters
are μ = 0.0006, δ = 0.6, β = 10.8 (week−1), αm1 = 0.0002, αm2 = 0.0055. The corresponding
basic reproduction number is R0 = 18. (a) The green and blue trajectories correspond to σ = 0.0009
and σ = 0.01, respectively. The initial conditions for both trajectories, I (0) = 10−5, S(0) = 1 − I (0),
correspond to a small number of infected individuals in a fully susceptible population. (b) Zoom into the
region marked by the red box on panel (a). The green trajectory converges to a cycle; the blue trajectory
converges to an endemic equilibrium. (c) Hysteresis loops on the (I , v)-plane for both trajectories using
the same color code. (d, e) Time traces of the infected population and the vaccination rate. The time unit is
one week. (f) Zoom into one pulse of the infected population for the green trajectory
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where q0 > 0 and c ∈ [0, 1]. Here the parameter c defines the maximal separation of
thresholds for the non-ideal relays contributing to the integral (13), and the susceptible
population is assumed to be distributed uniformly over the set of threshold pairs
(α1, α2) with the difference α2 − α1 not exceeding c. Thus, the hysteresis effect
increases with c and q0. One can show that all the hysteresis loops of the Preisach
operator (13) with the density (36) are convex, i.e. assumption (A) is satisfied. Further,
the quantity (22) can be obtained explicitly, namely

L = q0c

(

1 − 1√
2

)

for c <
1√
2
; L = q0

(

c − c2

2
− 1

4

)

for c ≥ 1√
2
,

hence Theorem 2 can be easily applied to this setting. The parameters of the density
function (36) can be related to measurements of the infection rate I = I (t) and
vaccination rate v = v(t). In particular, if I starts at zero and monotonically increases,
then the excess vaccination rate first increases quadratically and then linearly:

v = vnat +
{

q0
2 I 2, 0 ≤ I ≤ c,

q0c(I − c
2 ), c ≤ I ≤ 1.

More generally, the density function q = q(α) can be estimated from simultaneous
observations of I = I (t) and v = v(t) using the Mayergoyz identification theorem
(Mayergoyz 2003). If I increases from zero to a value I1, then drops back to zero,
then increases to a value I2, then drops back to zero again, etc., and if the local
maximumvalues {I1, I2, . . . , IN } of I form an ε-net of the interval 0 ≤ I ≤ 1, then the
identification theorem provides an O(ε)-approximation of the density function from
measurements of I and v. In the epidemiological context, this scenario corresponds
to several waves of the epidemic. A number of practical identification algorithms can
deal with measurement noise and limited amount of data, see e.g. Hoffmann et al.
(1989); Cirrincione et al. (2002); Rachinskii et al. (2016). They include both non-
parametric and parametric identification methods, where the latter assume a particular
form of the density function such as in (35), (36) or that in Appelbe et al. 2009. The
quantity (22) can be evaluated either directly from the measurements of I and v along
the hysteresis loops or from an estimate of the density function q(α) using formula
(21). For this purpose, it is sufficient to use measurements of large hysteresis loops
(which correspond to larger values of the local maxima In of the infection I ), while
measurements along small loops can be ignored because L is the maximal relative
width of the loops, and the relative width of small loops increases linearly with their
length due to (21):

1

In
max

0≤I≤In

(
v̂(I ) − v̄(I )

) = O(In) as In → 0.
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5 Proof of theorem 2

The following inequalities will be systematically used:

ln(1 + x) ≥ x

1 + x
, x ≥ −1; (37)

x(2 + x)

2(1 + x)
≥ ln(1 + x), x ≥ 0; (38)

ln(1 + x) ≤ 2x

2 + x
, −1 < x ≤ 0. (39)

We prove the theorem by contradiction. Let us assume that there exists a simple
periodic solution (I (t), S(t)), for which I (t) increases from I1 to I2 and then decreases
from I2 to I1 on a periodwith I1 < I2. Let us denote by v̄(I ) and v̂(I ) the two branches
of the Preisach operator corresponding to the increasing I and decreasing I of this
solution, respectively, hence relations (17)– (20) hold. Then system (3), (13) has an
endemic equilibrium ( Ī ∗, S∗) defined by Eq. (31) with ṽ(·) = v̄(·) and an endemic
equilibrium ( Î ∗, S∗) defined by Eq. (31) with ṽ(·) = v̂(·). Further, since (I1, S∗) and
(I2, S∗) are the turning points of the periodic solution,

v̄(I1) = v̂(I1) < μ

(
β

δ
− 1

)

− β I1; μ

(
β

δ
− 1

)

− β I2 < v̄(I2) = v̂(I2).

Introducing the functions

f̄ (I ) = v̄(I ) + β I − μ

(
β

δ
− 1

)

, f̂ (I ) = v̂(I ) + β I − μ

(
β

δ
− 1

)

,

this means that

f̄ (I1) = f̂ (I1) < 0, f̄ (I2) = f̂ (I2) > 0. (40)

On the other hand, according to (31),

f̄ ( Ī ∗) = f̂ ( Î ∗) = 0. (41)

Also, according to (18),

f̄ (I ) < f̂ (I ), I1 < I < I2. (42)

Since the functions v̄ and v̂ increase, so do the functions f̂ and f̄ , hence combining
relations (40)– (42), we obtain

I1 < Î ∗ < Ī ∗ < I2. (43)
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Recall the definition of the functions V̄ (I , S) and V̂ (I , S), see Lemma 1. We now
consider the following trivial identity

(
V̄ (I1, S

∗) − V̄ (I2, S
∗)

) + (
V̂ (I2, S

∗) − V̂ (I1, S
∗)

)

= (
V̂ (I2, S

∗) − V̄ (I2, S
∗)

) + (
V̄ (I1, S

∗) − V̂ (I1, S
∗)

)

and estimate the differences participating in it to establish a lower bound for L .

5.1 Estimation of V̄(I1, S∗) − V̄(I2, S∗).

Dividing (33) by the first equation of (3), we obtain

dV̄

d I
= −μ

S − S∗

β I SS∗ = − μ

β I S∗

(

1 − S∗

S

)

(44)

along the trajectory. For the part Γ̄ of the periodic trajectory with increasing I and
S > S∗, this relation implies

dV̄

d I
< 0, I1 < I < I2, (I , S) ∈ Γ̄ . (45)

Therefore, this segment of the trajectory lies outside the set {(I , S) : V̄ (I , S) ≤
V̄ (I2, S∗)}. The top point (with the largest S) of the level line V̄ (I , S) = V̄ (I2, S∗) is
defined by ∂ V̄ /∂ I = 0, i.e. β I + v̄(I ) = β Ī ∗ + v̄( Ī ∗), which by monotonicity of v̄

implies I = Ī ∗. Denoting the S-component of this point as SM , we see that

V̄ (I2, S
∗) = V̄ ( Ī ∗, SM ) = SM − S∗ ln SM

S∗ + Ī ∗. (46)

Let us fix a positive h < SM − S∗. By Lemma 1, there is a unique point (Ib, Sb)
on the level line V̄ (I , S) = V̄ (I2, S∗) of the function V̄ with Sb = S∗ + h, Ib ≥ Ī ∗.
The convexity of the set {(I , S) : V̄ (I , S) ≤ V̄ (I2, S∗)} also implies that the point
(Ib, S∗ + h) lies above the line segment connecting the points ( Ī ∗, SM ) and (I2, S∗)
because all three points lie on the boundary of this set. Therefore,

Ib − Ī ∗ ≥
(

1 − h

SM − S∗

)

(I2 − Ī ∗). (47)

Since the part Γ̄ of the periodic trajectory lies outside the set {(I , S) : V̄ (I , S) ≤
V̄ (I2, S∗)} and the line segment S = S∗ +h, Ī ∗ ≤ I ≤ Ib belongs to this set, we have
S ≥ S∗ + h for (I , S) ∈ Γ̄ , Ī ∗ ≤ I ≤ Ib. Therefore, on the interval [ Ī ∗, Ib], relation
(44) implies

dV̄

d I
= − μ

β I S∗

(

1 − S∗

S

)

≤ − μ

β I S∗

(

1 − S∗

S∗ + h

)

= − μh

βS∗(S∗ + h)I
.
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We integrate this inequality along the trajectory over the interval I ∈ [ Ī ∗, Ib] and
using the monotonicity of V̄ which follows from (45), we obtain

V̄ (I2, S
∗) − V̄ (I1, S

∗) ≤ V̄ (Ib, S
∗) − V̄ ( Ī ∗, S∗) ≤ − μh

βS∗(S∗ + h)
ln

Ib
Ī ∗ ,

hence

V̄ (I1, S
∗) − V̄ (I2, S

∗) ≥ μ

βS∗ max
h≤SM−S∗

h

S∗ + h
ln

Ib
Ī ∗ . (48)

Using inequality (37) and relation (47), we estimate the right hand side of (48) as
follows:

μ

βS∗ max
h≤SM−S∗

h

S∗ + h
ln

Ib
Ī ∗ ≥ μ

βS∗ max
h≤SM−S∗

h

S∗ + h
· Ib − Ī ∗

Ib

≥ μ

βS∗ max
h≤SM−S∗

h

SM

(

1 − h

SM − S∗

)
I2 − Ī ∗

Ib

= μ

βS∗SM Ib
(I2 − Ī ∗)(SM − S∗) max

h≤SM−S∗
h

SM − S∗

(

1 − h

SM − S∗

)

= μ

4βS∗SM Ib
(I2 − Ī ∗)(SM − S∗).

Therefore,

V̄ (I1, S
∗) − V̄ (I2, S

∗) ≥ μ

4βS∗SM Ib
(I2 − Ī ∗)(SM − S∗). (49)

In order to estimate SM − S∗, we evaluate the function V̄ at the point (I2, S∗) using
(32) and substitute the result into (46) to obtain

SM − S∗ − S∗ ln SM
S∗ = I2 − Ī ∗ − Ī ∗ ln I2

Ī ∗ + 1

β

∫ I2

Ī ∗
v̄(i) − v̄( Ī ∗)

i
di . (50)

We estimate the left hand side of (50) from above using

SM − S∗ − S∗ ln SM
S∗ = S∗

[
SM
S∗ − 1 − ln

(

1 + SM
S∗ − 1

)]

≤ S∗
(
SM
S∗ − 1

)2

SM
S∗

= (SM − S∗)2

SM
.
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Further, we find a lower bound of the right hand side of (50) using estimate (38):

I2 − Ī ∗ − Ī ∗ ln I2
Ī ∗ + 1

β

∫ I2

Ī ∗
v̄(i) − v̄( Ī ∗)

i
di ≥ I2 − Ī ∗ − Ī ∗ ln I2

Ī ∗

= Ī ∗
[
I2
Ī ∗ − 1 − ln

(

1 + I2
Ī ∗ − 1

)]

≥ Ī ∗
(

I2
Ī ∗ − 1

)2

2 I2
Ī ∗

= (I2 − Ī ∗)2

2I2
.

Combining the last two inequalities with (50), we obtain

(SM − S∗)2

SM
≥ (I2 − Ī ∗)2

2I2
,

hence

SM − S∗ ≥
√

SM
2I2

(I2 − Ī ∗).

Substituting this relation into (49), we finally arrive at

V̄ (I1, S
∗) − V̄ (I2, S

∗) ≥ μ

4βS∗ Ib
√
2SM I2

(I2 − Ī ∗)2 ≥ μ

4
√
2 δ

(I2 − Ī ∗)2,

(51)

where the last inequality holds due to Ib ≤ I2 ≤ 1, SM ≤ 1 and S∗ = δ/β.

5.2 Estimation of V̂(I1, S∗) − V̂(I2, S∗).

Now we consider the lower part Γ̂ of the trajectory with decreasing I and S < S∗.
We slightly modify the above argument. The relation

dV̂

d I
= −μ

S − S∗

β I SS∗ = − μ

β I S∗

(

1 − S∗

S

)

, (52)

which is similar to (44), implies

dV̂

d I
> 0, I1 < I < I2, (I , S) ∈ Γ̂ . (53)

Hence, Γ̂ lies outside the set {(I , S) : V̂ (I , S) ≤ V̂ (I1, S∗)}. The bottom point (with
the smallest S) of the level line V̂ (I , S) = V̂ (I1, S∗) of the function V̂ is defined by
∂ V̂ /∂ I = 0, therefore I = Î ∗ at this point. Denoting its S-component by Sm , we
obtain

V̂ (I1, S
∗) = V̂ ( Î ∗, Sm) = Sm − S∗ ln Sm

S∗ + Î ∗, (54)
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which is similar to (46). We fix a positive h < S∗ − Sm . Using the convexity of the
intersection of the set {(I , S) : V̂ (I , S) ≤ V̂ (I1, S∗)} with the half-space I ≤ Î ∗ (see
Lemma 1), we establish the existence of a unique point on the level line V̂ (I , S) =
V̄ (I1, S∗) with the coordinates (Ic, Sc) satisfying Sc = S∗ − h, I ≤ Î ∗. Arguing as
before (cf. (47)), we obtain

Î ∗ − Ic ≥
(

1 − h

S∗ − Sm

)

( Î ∗ − I1). (55)

Since Γ̂ lies outside the set {(I , S) : V̂ (I , S) ≤ V̂ (I1, S∗)}, the S-coordinate of the
points (I , S) ∈ Γ̂ with I ∈ [Ic, Î ∗] satisfies S ≤ S∗ − h, hence (52) implies

dV̂

d I
≥ μh

βS∗ I (S∗ − h)
,

which after integration over [Ic, Î ∗], using also (53), gives

V̂ (I2, S
∗) − V̂ (I1, S

∗) ≥ V̂ ( Î ∗, S∗) − V̂ (Ic, S
∗) ≥ μh

βS∗(S∗ − h)
ln

Î ∗

Ic
.

Therefore,

V̂ (I2, S
∗) − V̂ (I1, S

∗) ≥ μ

βS∗ max
h≤S∗−Sm

h

S∗ − h
ln

Î ∗

Ic
. (56)

Using relation (37) and (55), the right hand side of Eq. (56) can be estimated as follows:

μ

βS∗ max
h≤S∗−Sm

h

S∗ − h
ln

Î ∗

Ic
≥ μ

βS∗ max
h≤S∗−Sm

h

S∗ ln

(

1 + Î ∗ − Ic
Ic

)

≥ μ

βS∗ max
h≤S∗−Sm

h( Î ∗ − Ic)

S∗ Î ∗ = μ

βS∗ max
h≤S∗−Sm

h

S∗ Î ∗

(

1 − h

S∗ − Sm

)

( Î ∗ − I1)

= μ

β(S∗)2 Î ∗ ( Î ∗ − I1)(S
∗ − Sm) max

h≤S∗−Sm

h

S∗ − Sm

(

1 − h

S∗ − Sm

)

= μ

4β(S∗)2 Î ∗ ( Î ∗ − I1)(S
∗ − Sm).

Hence,

V̂ (I2, S
∗) − V̂ (I1, S

∗) ≥ μ

4β(S∗)2 Î ∗ ( Î ∗ − I1)(S
∗ − Sm). (57)
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In order to estimate S∗ − Sm , we evaluate V̂ (I1, S∗) using (32) and rewrite (54)
equivalently as

S∗ − Sm + S∗ ln Sm
S∗ = Î ∗ − I1 + Î ∗ ln I1

Î ∗ − 1

β

∫ I1

Î ∗
v̂(i) − v̂( Î ∗)

i
di . (58)

A lower bound of the left hand side of (58) using (37) is

S∗ − Sm + S∗ ln Sm
S∗ ≥ S∗ − Sm + S∗ − (S∗)2

Sm
= − (S∗ − Sm)2

Sm
.

An upper estimate of the right hand side of (58) using (39) and the monotonicity of v̂

is

Î ∗ − I1 + Î ∗ ln I1

Î ∗ − 1

β

∫ I1

Î ∗
v̂(i) − v̂( Î ∗)

i
di ≤ Î ∗ − I1 + Î ∗ ln I1

Î ∗

≤ Î ∗ − I1 + Î ∗ 2
(

I1
Î ∗ − 1

)

1 + I1
Î ∗

= − ( Î ∗ − I1)2

I1 + Î ∗ .

Combining the previous two inequalities with (58), we obtain

(S∗ − Sm)2

Sm
≥ ( Î ∗ − I1)2

I1 + Î ∗ ,

hence

S∗ − Sm ≥ ( Î ∗ − I1)

√
Sm

I1 + Î ∗ ,

and (57) implies

V̂ (I2, S
∗) − V̂ (I1, S

∗) ≥ μ

4β(S∗)2 Î ∗

√
Sm

I1 + Î ∗ ( Î ∗ − I1)
2 ≥ μ

√
Sm

4
√
2 δ

( Î ∗ − I1)
2,

(59)

where we also use that I1 ≤ Î ∗ ≤ 1, S∗ ≤ 1 and βS∗ = δ.
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5.3 Estimation of V̄(I1, S∗) − V̄(I2, S∗) + V̂(I2, S∗) − V̂(I1, S∗).

Using the definition (32) of the Lyapunov function, we can write

V̄ (I1, S
∗) − V̄ (I2, S

∗) + V̂ (I2, S
∗) − V̂ (I1, S

∗) =

= − Ī ∗ ln I1
Ī ∗ + 1

β

∫ I1

Ī ∗
v̄(i) − v̄( Ī ∗)

i
di + Ī ∗ ln I2

Ī ∗ − 1

β

∫ I2

Ī ∗
v̄(i) − v̄( Ī ∗)

i
di

− Î ∗ ln I2

Î ∗ + 1

β

∫ I2

Î ∗
v̂(i) − v̂( Î ∗)

i
di + Î ∗ ln I1

Î ∗ − 1

β

∫ I1

Î ∗
v̂(i) − v̂( Î ∗)

i
di

= Ī ∗ ln I2
I1

− Î ∗ ln I2
I1

− 1

β

∫ I2

I1

v̄(i) − v̄( Ī ∗)
i

di + 1

β

∫ I2

I1

v̂(i) − v̂( Î ∗)
i

di

=
[

( Ī ∗ − Î ∗) + 1

β
v̄( Ī ∗) − 1

β
v̂( Î ∗)

]

ln
I2
I1

+ 1

β

∫ I2

I1

v̂(i) − v̄(i)

i
di =

= 1

β

∫ I2

I1

v̂(i) − v̄(i)

i
di, (60)

where we use the fact that

β( Ī ∗ − Î ∗) + v̄( Ī ∗) − v̂( Î ∗) = 0. (61)

Indeed, the fixed points ( Î ∗, S∗), ( Ī ∗, S∗) of (3), (13) (with v = v̂, v̄, respectively)
satisfy the equations

−βS∗ Î ∗ − v̂( Î ∗)S∗ + μ(1 − S∗) = 0,

−βS∗ Ī ∗ − v̄( Ī ∗)S∗ + μ(1 − S∗) = 0, (62)

and therefore taking their difference gives (61). Equations (60) imply

V̄ (I1, S
∗) − V̄ (I2, S

∗) + V̂ (I2, S
∗) − V̂ (I1, S

∗) ≤ I2 − I1
β I1

max
I1≤I≤I2

(v̂(I ) − v̄(I )).

Now, we combine this relation with (51) and (59) to obtain

0 ≤ − μ

4
√
2 δ

(I2 − Ī ∗)2 − μ
√
Sm

4
√
2 δ

( Î ∗ − I1)
2 + I2 − I1

β I1
max

I1≤I≤I2
(v̂(I ) − v̄(I ))

and further,

A(I2 − Ī ∗)2 + B( Î ∗ − I1)
2 ≤ L(I2 − I1)2

β I1
, (63)
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where L is defined by (22) and

A := μ

4
√
2 δ

, B := μ
√
Sm

4
√
2 δ

.

Relation (61) implies that

Ī ∗ − Î ∗ = 1

β
(v̂( Î ∗) − v̄( Ī ∗)),

and since the function v̂ increases, it follows from (43) that

Ī ∗ − Î ∗ ≤ 1

β
(v̂( Ī ∗) − v̄( Ī ∗)) ≤ 1

β
max

I1≤I≤I2
(v̂(I ) − v̄(I )) ≤ L

β
(I2 − I1),

i.e.

I2 − Ī ∗ ≥ 0, Î ∗ − I1 ≥ 0, I2 − Ī ∗ + Î ∗ − I1 ≥
(
1 − L

β

)
(I2 − I1),

(64)

where L/β < 1 according to (23).
Let us find the minimum value Fmin of the function F(x, y) = Ax2 + By2 under

the constraints x, y ≥ 0 and x + y ≥ (1− L/β)(I2 − I1). Clearly, the minimum value
is achieved for x + y = (1 − L/β)(I2 − I1) and equals

Fmin = AB

A + B

(

1 − L

β

)2

(I2 − I1)
2.

Hence, due to (64), the left hand side of (63) satisfies

A(I2 − Ī ∗)2 + B(I1 − Î ∗)2 ≥ Fmin

and (63) implies

AB

A + B

(

1 − L

β

)2

≤ L

β I1
.

Recalling the definition of A and B, this is equivalent to

I1
β

L

(

1 − L

β

)2

≤ 4
√
2 δ

μ

(

1 + 1√
Sm

)

. (65)
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5.4 Estimates of I1, Sm.

Denote

vmax :=
∫∫

0≤α1<α2≤1
q(α1, α2) dα1 dα2.

It follows from (53) that V̂ (I1, S∗) ≤ V̂ (I2, S∗). Using formula (32) for V̂ , this implies

I1 − Î ∗ ln I1

Î ∗ ≤ I2 − Î ∗ ln I2

Î ∗ + vmax

β
ln

I2

Î ∗ − v̂( Î ∗)
β

ln
I2

Î ∗ , (66)

where we use that

v̂(i) ≤ vmax

and the estimate

∫ I1

Î ∗
v̂(i) − v̂( Î ∗)

i
di ≥ 0,

which follows from the monotonicity of v̂. Since 0 < I1 < I2 ≤ 1, relation (66)
implies

− Î ∗ ln I1

Î ∗ ≤ 1 +
(

− Î ∗ + vmax

β
− v̂( Î ∗)

β

)

ln
I2

Î ∗ ,

where due to (62),

Î ∗ + v̂( Î ∗)
β

= μ(1 − S∗)
βS∗ ,

hence

− Î ∗ ln I1

Î ∗ ≤ 1 +
(

vmax

β
− μ(1 − S∗)

βS∗

)

ln
I2

Î ∗ .

Therefore,

I1 ≥ Î ∗ exp
(

− 1

Î ∗ − vmax S∗ − μ(1 − S∗)
βS∗ Î ∗ ln

I2

Î ∗

)

. (67)

From relations (62) and

v̄(I ) ≤ v̂(I ) ≤ vnat + K I (68)
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(where (68) follows from (15)) it follows that

μ(1 − S∗)
S∗ = β Î ∗ + v̂( Î ∗) ≤ β Î ∗ + K Î ∗ + vnat ,

hence

ρ0 := μ(1 − S∗) − vnat S∗

(β + K )S∗ ≤ Î ∗, (69)

where, due to assumption (26),

ρ0 > 0.

If vmax S∗ ≤ μ(1 − S∗), then relations (67), (69) imply

I1 ≥ Î ∗e− 1
Î∗ ≥ ρ0e

− 1
ρ0 .

On the other hand, if vmax S∗ > μ(1 − S∗), then

I1 ≥ Î ∗ exp
(

−
βS∗+(

vmax S∗ − μ(1 − S∗)
)
ln I2

Î ∗

βS∗ Î ∗

)

≥ ρ0 exp

(

−βS∗ + (
vmax S∗ − μ(1 − S∗)

)
ln 1

ρ0

βS∗ρ0

)

.

Combining the two cases,

I1 ≥ ρ1 := ρ0 exp

(

− 1

ρ 0
+ ln ρ0

βS∗ρ0
⌊
vmax S

∗ − μ(1 − S∗)
⌋

+

)

, (70)

where �a�+ = a for a > 0 and �a�+ = 0 for a ≤ 0.

Finally, we obtain a lower bound for Sm . From (58) and (62) it follows that

−S∗ ln Sm
S∗ ≤ S∗ − Sm + I1 − Î ∗ − Î ∗ ln I1

Î ∗ − v̂( Î ∗)
β

ln
I1

Î ∗

≤ S∗ − μ(1 − S∗)
βS∗ ln

I1

Î ∗ .

Therefore,

Sm ≥ S∗ exp
{

−1 + μ(1 − S∗)
β(S∗)2

ln
I1

Î ∗

}
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and using (70) we arrive at

Sm ≥ S∗ exp
{

−1 + μ(1 − S∗)
β(S∗)2

ln ρ1

}

. (71)

Thus, we have shown that the existence of a simple periodic orbit implies estimates
(65), (70) and (71), which establish a lower bound L ≥ L0 > 0 on the quantity (22).
This completes the proof.

6 Conclusions

We considered an SIR model with vaccination, where we assumed that the vaccina-
tion rate changes in response to dynamics of the epidemic. We modeled the adaptive
response of an individual to the varying number of active cases by a two-state two-
threshold switch; the individual response exhibits hysteresis. The aggregate response
of the susceptible population was modeled by the Preisach operator. This operator
relationship between the vaccination rate and the number of active cases accounts for
the heterogeneity of the response among the susceptible individuals.

Both hysteresis and some heterogeneity of the response can be expected. Hysteresis
effect arises as a feature of two-threshold (or multi-threshold) intervention policies
and two-threshold (multi-threshold) response of the public to such policies when
the thresholds are different. In a more general epidemiological context, hysteresis is
associated with permanent (or long-lasting) effects of temporary stimuli (Pimenov
et al. 2010). For example, one can expect that covid-19 epidemics will lead to some
permanent social changes, which will remain in effect after the epidemic ends. Such
changes may include annual seasonal vaccination coverage, maintaining a certain
number of hospital beds allocated for covid-19 patients, continued development of
tests, a wider use of face covering by general public in public places, a significant
permanent shift from face-to-face towards online business and education services,
wider use of web conferencing, etc.

If the basic reproduction number satisfies R0 < 1, then the infection-free equilib-
rium of the proposed heterogeneous SIRmodel is globally stable. On the other hand, if
R0 > 1, then the system has a connected infinite set of endemic equilibrium states. In
this case, we showed that each trajectory converges either to an endemic equilibrium
or to a periodic orbit. This is in agreement with Chladná et al. (2020) where a simpler
system with the homogeneous response modeled by a single two-state two-threshold
switch was considered. Further, we showed that the set of endemic equilibrium states
is the global attractor if two conditions are satisfied. The first condition limits the
magnitude of the hysteresis effect by requiring hysteresis loops of the Preisach oper-
ator to be sufficiently narrow (relative to their length). The second condition ensures
sufficient heterogeneity of the adaptive response by requiring hysteresis loops to be
convex. Based on these results, one can conclude that the heterogeneity of the hys-
teretic response promotes the convergence to an endemic equilibrium state, while the
homogeneous hysteretic response may result in recurrent periodic outbreaks of the
epidemic.
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