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The term “autosomal dominant (AD) Alport syndrome” is often used to describe the condition associated

with heterozygous pathogenic COL4A3 or COL4A4 variants and has largely replaced “thin basement

membrane nephropathy (TBMN).” AD Alport syndrome implies that affected individuals develop end-

stage kidney failure (ESKF) as well as the typical Alport hearing loss and ocular abnormalities, but

these features have been considered rare with TBMN.

Recent studies suggest that ESKF occurs in 14% to 30% of those with heterozygous pathogenic COL4A3 or

COL4A4 variants but confirm that the hearing loss and ocular defects occur uncommonly if at all. Un-

certainty over the risk of ESKF has persisted.

However all the cited studies of heterozygous pathogenic COL4A3 or COL4A4 variants and kidney failure

are from hospital-based patients and thus biased toward more severe disease. Multiple unselected cohorts

with ESKF have found heterozygous pathogenic variants in COL4A3 and COL4A4 occur about as often as

COL4A5 variants, which suggests that AD Alport syndrome causes ESKF as often as X-linked (XL) disease.

In the normal population, heterozygous pathogenic COL4A3 and COL4A4 variants are present 20 times

more often than COL4A5 variants. Therefore, AD Alport syndrome is complicated by ESKF 20 times less
often than XL disease and occurs in fewer than 3% of those with pathogenic COL4A3 or COL4A4 variants

by the age of 60.

Nevertheless, individuals with heterozygous pathogenic COL4A3 or COL4A4 variants referred to a hospital

are still more likely to develop impaired kidney function than those who remain at home undiagnosed.
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A
lport syndrome is an inherited disease character-
ized by hematuria, progressive kidney failure,

hearing loss, and ocular abnormalities.1 The use of the
term AD Alport syndrome has been widely adopted for
individuals with heterozygous pathogenic COL4A3 or
COL4A4 variants.2 However, it implies these in-
dividuals will develop ESKF, as well as the extra-renal
features of hearing loss and ocular abnormalities. These
risks have become a major concern for patients, clini-
cians, and genetic testing laboratories.
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The risk of ESKF is especially important because AD
Alport syndrome is very common. The new genetic
classification that categorizes all heterozygous COL4A3
or COL4A4 variants as AD Alport syndrome means that
this condition occurs in 1% of the population.2 The
previously-used diagnosis, TBMN was estimated to
affect 1%,3 and examination of gnomADhave confirmed
heterozygous pathogenic COL4A3 or COL4A4 variants
in 1% of otherwise normal individuals.4

Much more is known about the clinical features of
TBMN diagnosed on the basis of haematuria or a kid-
ney biopsy than is known for AD Alport syndrome.
ESKF was considered uncommon in many studies of
TBMN.5–10 The hearing loss did not occur11 and the
ocular abnormalities such as lenticonus and central
fleck retinopathy were not present.12 Temporal retinal
thinning also was not found.13,14 These observations
were however made before widespread genetic testing
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Table 1. Relative numbers of pathogenic COL4A5 and COL4A3/COL4A4 variants in sequenced cohorts with kidney failure

Cohort
Pathogenic variants

detected

Heterozygous
COL4A3/ COL4A4

variant

X-linked Alport
syndrome (COL4A5

variants)
COL4A3/

COL4A4:COL4A5 Reference

Transplant series, 1972–2014, excluding
32, where no variant found (n ¼ 73)

n ¼ 73 n ¼ 15 n ¼ 57 15:57 ¼ 0.3 Gillion et al.19

CKD, awaiting transplant not considered
genetic (n ¼ 57)

n ¼ 6 n ¼ 1 n ¼ 2 1:2 ¼ 0.5 Ottlewski, 201820

ESKF with glomerular disease
(Supplementary Table S3)

n ¼ 21 n ¼ 8 n ¼ 3 8:3 ¼ 2.7 Bullich et al.21

CKD including unknown cause,
known familial disease or
hypertension (n ¼ 92)

n ¼ 22 n ¼ 1 n ¼ 5 1:5 ¼ 0.2 Lata et al.22

CKD (n ¼ 3037 and 2144 with CKD) n ¼ 307 n ¼ 27 þ 21 ¼ 48 n ¼ 44 48:44 ¼ 1.1 Groopman et al.23

CKD in pediatric kidney transplant
recipients (n ¼ 104)

n ¼ 34 n ¼ 0 n ¼ 1 0:1 Mann et al.24

CKD in adults from families, or with
extra-renal features, or 20 with
neither (n ¼ 114)

n ¼ 42 n ¼ 2 n ¼ 5 2:5 ¼ 0.4 Connaughton et al.25

CKD, chronic kidney disease; ESKF, end-stage kidney failure.
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and where the causative pathogenic COL4A3 or
COL4A4 variant was not confirmed nor a COL4A5
variant excluded. These cohorts may have also
included some individuals with glomerular basement
membrane (GBM) thinning from other causes.3

Several recent studies have helped to clarify the risks
of hearing loss and ocular defects with pathogenic
heterozygous COL4A3 or COL4A4 variants. A system-
atic review of 777 affected individuals from 258 families
in 48 publications found a hearing loss in 101 (16%) and
ocular abnormalities in 16 (3%).15 Data from a further
single center cohort with 240 individuals from 78
families confirmed the typical hearing loss in 11 patients
(8%) and ocular features in 2 (1%).16 Therefore. both
the Alport-specific hearing loss and ocular abnormalities
are uncommon with heterozygous pathogenic COL4A3
or COL4A4 variants. They could result, in the case of
the hearing loss, from another cause and some of the
ocular abnormalities included cataracts which are not
typical of Alport syndrome and were probably coinci-
dental. These other features may have resulted from an
undetected second COL4A3 or COL4A4 variant, and a
likely diagnosis of autosomal recessive disease.

Nevertheless, these same studies further suggested
that 199 of 691 (29%) and 61 of 240 (24%) individuals
with AD Alport syndrome developed ESKF.15,16 There
are other reports of 14% to 20% of cohorts of COL4A3
and COL4A4 heterozygotes with kidney failure.16–18

However, it has become apparent that AD and even
XL Alport syndrome are underdiagnosed in the com-
munity4 and these same studies have all been hospital-
based series, which were likely to be biased toward
more severe disease.

We now have the ability to determine the risk of
ESKF in unbiased series of patients with AD Alport
1934
syndrome. This can be achieved by considering
whether the ratio of COL4A3/COL4A4 to COL4A5
variants is the same in hospital series of kidney failure
as in the normal population.

Many recently-published studies have examined the
relative frequency of pathogenic COL4A3/COL4A4 and
COL4A5 variants in hospital-based, mainly adult co-
horts with inherited or sporadic kidney failure who
have undergone massively parallel DNA sequencing.
Most studies have found that heterozygous pathogenic
COL4A3 and COL4A4 variants occur about as often as
pathogenic COL4A5 variants (median 0.4, range
0.1–2.7) (Table 119–25).

Is this consistent with the relative frequency of
COL4A3/COL4A4 and COL4A5 variants in the normal
population? We recently published the relative pro-
portions of predicted pathogenic COL4A3/ COL4A4
and COL4A5 variants in the gnomAD database, an
unselected dataset of participants without known ge-
netic kidney disease.4 Predicted pathogenic variants
were chosen to include truncating and splicing vari-
ants, and missense variants that affected critical amino
acids, typically position 1 glycine (Gly) residues, in
the collagen IV a chains. The accuracy of this
approach was confirmed in a normal control subset
(gnomAD), independent variant datasets (Exome
Variant Server and TOPMed), and by comparison with
the known frequency of TBMN in normal donor
kidney biopsies.5

This analysis predicted heterozygous pathogenic
COL4A3 or COL4A4 variants occurred in about 1 in
106 of the population and pathogenic COL4A5 vari-
ants in 1 in 2300.4 Thus, pathogenic COL4A3 and
COL4A4 variants were found about 20 times as often
as pathogenic COL4A5 variants in the normal
Kidney International Reports (2022) 7, 1933–1938
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population, and if each of these is disease-causing,
then AD Alport syndrome occurs about 20 times as
often as XL Alport syndrome.

If pathogenic COL4A3 and COL4A4 variants were
just as likely to cause ESKF as COL4A5 variants, they
would then be present 20 times as often in cohorts with
kidney failure. However, they occur approximately as
often, which means that heterozygous pathogenic
variants in COL4A3 and COL4A4 are 20 times less
likely to cause ESKF than COL4A5 variants.

How Often Pathogenic COL4A5 Variants Result

in ESKF in XL Alport Syndrome

Not everyone with a pathogenic COL4A5 variant de-
velops ESKF. Some males have hypomorphic variants
that are associated with late-onset disease or impaired
kidney function only. Such variants are recognized
increasingly.26 In addition, women have XL Alport
syndrome twice as often as men because of their 2 X-
chromosomes but are less likely to develop kidney
failure.27 Nevertheless, the strategy that we used to
determine the relative proportions of COL4A3 and
COL4A4 to COL4A5 variants only examined more se-
vere variants, namely truncating and splicing variants,
and position 1 Gly substitutions in the collagenous
domain.4 It did not consider non-Gly substitutions
which probably have milder consequences.4 This same
strategy was used for all the genes, COL4A3, COL4A4,
and COL4A5.

Our current understanding is that 90% of men
with pathogenic COL4A5 variants develop kidney
failure by the age of 40 years and that this is still
about 90% at the age of 60.28,29 However two-thirds
of the population with pathogenic COL4A5 variants
are female, and only 20% of women with a COL4A5
variant have kidney failure by 60 years.9 The risk of
a person with a pathogenic COL4A5 variant devel-
oping ESKF by 60 years of age can be calculated as
follows.

Because one-third of people with a pathogenic
COL4A5 variant are men with a 90% risk of kidney
failure by the age of 60, the overall contribution from
men to kidney failure risk is 1/3 � 90% (30%).
Similarly, the risk from women with a pathogenic
COL4A5 variant is 2/3 � 20% (13%). Therefore, the
risk of a person with a pathogenic COL4A5 variant
developing ESKF by the age of 60 is the sum of these
risks, or 43%.

The risk of kidney failure by 60 from pathogenic
COL4A3 or COL4A4 variants is about one-twentieth
that from a COL4A5 variant or 1/20 � 43%, which is
2%. Therefore, the risk of ESKF by the age of 60 years
from pathogenic COL4A3 or COL4A4 variants is <3%,
and slightly >3% by the age of 80.
Kidney International Reports (2022) 7, 1933–1938
Caveats

There are caveats to these estimates. Sometimes,
heterozygous pathogenic COL4A3 or COL4A4 vari-
ants result in ESKF. The cohorts with kidney failure
cited here probably included more individuals with
recognisably “typical” Alport features who were
more likely to have XL disease and undergo genetic
testing. This would have resulted in a relative in-
crease in the number of people with pathogenic
COL4A5 variants and fewer with heterozygous
COL4A3 or COL4A4 variants. Conversely, hypomor-
phic or milder COL4A5 variants are now recognized
more often and calculations based on 20-year-old data
may have overestimated the corresponding ESKF
risk.28,29 Recent analyses suggest that pathogenic
COL4A5 variants from the last 5 years are milder and
associated with a later kidney failure onset.

Risk of Impaired Kidney Function but Not

Kidney Failure

While these calculations may be correct for the likeli-
hood of heterozygous pathogenic COL4A3 or COL4A4
variants causing ESKF, they do not consider the risks of
lesser degrees of impaired kidney function and its
comorbidities.

About half of all the heterozygous variants in the
COL4A3 and COL4A4 genes are severe and have an
increased risk of proteinuria, which itself represents a
risk for impaired kidney function and kidney failure.28

Comorbidities include cardiovascular disease and hos-
pitalizations.30–32 Individuals with pathogenic hetero-
zygous COL4A3 or COL4A4 variants may develop
proteinuria, hypertension, and kidney impairment and
must still be identified and monitored.33 Indeed, in-
dividuals with a heterozygous COL4A3 or COL4A4
variant who are referred to the renal clinic for a
specialist medical opinion may be those at greatest risk
of ESKF.

Explanation of the Reduced Risk of ESKF and

Extra-renal Features With Pathogenic

Heterozygous COL4A3 and COL4A4 Variants

The COL4A3, COL4A4, and COL4A5 genes code for the
collagen IV a3, a4, and a5 chains that normally form
the collagen IV a3a4a5 heterotrimer and network, and
represent the major component of the basement mem-
branes in the glomerulus, cochlea, and eye.34

About half of all the pathogenic variants in
COL4A3 and COL4A4 are severe (truncating variants,
many splicing variants), which result in the loss of
the corresponding a chains by nonsense-mediated
decay.35,36 To date, 80% of reported missense vari-
ants are Gly substitutions and the other 20% are
substitutions of non-Gly residues. More disease-
1935
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causing non-Gly substitutions are likely but have
been more difficult to categorize as pathogenic
because they are often hypomorphic.

Heterozygous pathogenic COL4A3 or COL4A4 var-
iants usually result in about half the a3a4a5 hetero-
trimers being abnormal.37 This means that 50% of the
heterotrimers are absent from affected membranes
with severe variants, and 50% of heterotrimers are
defective with missense variants. Nevertheless,
immunohistochemistry has confirmed that there is less
of all the collagen IV a3, a4, and a5 chains, even
though only one gene is affected. Pathogenic hetero-
zygous variants of the COL4A3 or COL4A4 genes
result in a thinned GBM because of the reduced
amount of the collagen IV a3a4a5 network.38 There is
a compensatory increase in the collagen IV a1a1a2
heterotrimer, which is more susceptible to proteoly-
sis,39 and may not be sufficiently strong to prevent
disease.

The abnormal GBM in TBMN is associated with the
loss of the overlying podocytes40 and the development
of proteinuria. Podocyte loss may be the mechanism
underlying focal segmental glomerulosclerosis and
progressive kidney failure. In addition, a canine model
of AD Alport syndrome suggests that a reduction in
nephron number also contributes to impaired kidney
function.41

The median age of individuals with AD Alport
syndrome who developed ESKF was 67 years (95% CI,
range 58–73 years) in one cohort, and the mean age was
53 years (range 21–84 years) in a review of reported
cases.15,16 Seventy-five percent of pathogenic COL4A5
variants in men have a consistent age at kidney fail-
ure,28 which can largely be predicted from the geno-
type.28,36,42–44 This is also true for autosomal recessive
Alport syndrome.42 Women with pathogenic COL4A5
variants demonstrate a less consistent genotype-
phenotype correlation, which has been attributed to
lyonization.29 The variation in age at kidney failure for
pathogenic heterozygous COL4A3 or COL4A4 variants
suggests a smaller genotype effect and that other de-
terminants are important. Some evidence now reveals
that variant severity correlates with proteinuria, which
is itself a risk factor for disease progression and kidney
failure. Poorly controlled hypertension and coinci-
dental diabetes, obesity, or acute kidney injury from
another cause may contribute.45

While pathogenic heterozygous COL4A3 and
COL4A4 variants commonly predispose to kidney cysts
these are generally too few and too small to significantly
affect function.17,46,47 However pathogenic heterozy-
gous variants in COL4A3 or COL4A4 are also associated
with glomerular immune deposits, which may worsen
kidney function.48,49 IgA glomerulonephritis and
1936
heterozygous pathogenic variants occur together too
often to be coincidental and the thinned GBM may
facilitate glomerular immune complex deposition.50

Inappropriateness of “AD Alport Syndrome” as

a Diagnosis

These observations that pathogenic heterozygous
COL4A3 or COL4A4 variants are uncommonly associ-
ated with ESKF, hearing loss, and ocular abnormalities
suggest that the term “AD Alport syndrome” itself is
not appropriate since ‘syndrome’ implies the presence
of extra-renal features.

Why TBMN Is Also Not an Appropriate Name

For many years, TBMN was used for individuals with a
pathogenic heterozygous COL4A3 or COL4A4 variant.
This was a histologic diagnosis where the GBM width
was less than the normal range determined within an
individual laboratory. However not all individuals
with a heterozygous pathogenic COL4A3 or COL4A4
variant have had a kidney biopsy, and a genetic
diagnosis is more accurate and more consistent.

Renaming Alport Syndrome

Heterozygous pathogenic COL4A3 or COL4A4 variants
are the most common finding in individuals with fa-
milial hematuria, but affected individuals are unlikely
to develop ESKF, or have a hearing loss or ocular ab-
normalities. Therefore, there are efforts to rename the
diseases referred to as “Alport syndrome.” Renaming
requires consultation with patient groups, clinicians,
geneticists, and testing laboratories. The new name
must be accurate, informative, acceptable to patients,
as well as easy to pronounce and to remember,
including for those who use a language other than
English. The new name must also conform with any
proposed new naming system for genetic kidney dis-
eases, and preferably include the gene name and mode
of inheritance.

Population Frequencies of Different Modes of

Inheritance of Alport Syndrome

A further unrelated consequence of better under-
standing the population frequencies of COL4A5 and
COL4A3 or COL4A4 variants4 is that, it is no longer
correct that the XL disease occurs in 85% of families
with Alport syndrome, and autosomal recessive disease
in 15% of families.51 These frequencies were first re-
ported 40 years ago but are still often cited.51 Because
pathogenic COL4A5 variants affect 1 in 2300 in-
dividuals and AD Alport syndrome 1 in 100, the ratio
of XL to AD disease is about 1:20. Autosomal recessive
inheritance and digenic disease are much rarer so that
XL to AD disease affects the population in a ratio of
Kidney International Reports (2022) 7, 1933–1938



J Savige: AD Alport Syndrome and Kidney Failure REVIEW
5:95 with autosomal recessive and digenic Alport
syndrome each accounting for <1%.

Conclusion

Individuals with a heterozygous pathogenic COL4A3
or COL4A4 variant have only a slightly increased risk
of ESKF compared with the normal population, and do
not develop the typical Alport features of hearing loss
or ocular abnormalities. In these regards, the diagnosis
of AD Alport syndrome is widely used and understood
but incorrect because ESKF and the syndromic or
extra-renal features are rare. It remains nevertheless
important to identify COL4A3 or COL4A4 heterozy-
gotes and monitor them for the possible development of
proteinuria, hypertension, and kidney impairment.33
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