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A B S T R A C T   

We conducted a proteomic analysis using mass spectrometry to identify and validate protein biomarkers for 
accurately predicting recurrence risk in gastrointestinal stromal tumors (GIST) patients, focusing on differentially 
expressed proteins in metastatic versus primary GIST tissues. We selected five biomarkers—GPX4, RBM4, TPM3, 
PFKFB2, and PGAM5—and validated their expressions in primary tumors of recurrent and non-recurrent GIST 
patients via immunohistochemistry. Our analysis of the association between these biomarkers with recurrence- 
free survival (RFS) and overall survival (OS), along with their interrelationships, revealed that immunohisto
chemistry confirmed significantly higher expressions of these biomarkers in primary GIST tissues of recurrent 
patients. Kaplan-Meier survival analysis showed that high expressions of GPX4, RBM4, TPM3, PFKFB2, and 
PGAM5 correlated with lower RFS, and GPX4 and RBM4 with lower OS. All biomarker pairs showed positive 
associations, with high expressions correlating with increased recurrence rates, and GPX4 and RBM4 with higher 
mortality rates. In conclusion, the biomarkers GPX4, RBM4, TPM3, PFKFB2, and PGAM5 are clinically relevant 
for predicting GIST recurrence, with their high expressions in primary tumors linked to poorer RFS and OS. They 
serve as potential prognostic indicators, enabling early treatment and improved outcomes. The observed in
terrelationships among these biomarkers further validate their accuracy in predicting GIST recurrence.   

1. Introduction 

Gastrointestinal stromal tumors (GISTs) are the most common soft- 
tissue sarcomas, predominantly arising from the precursor cells of the 
interstitial cells of Cajal (ICC), which serve as the gastrointestinal tract’s 
pacemaker cells [1]. GISTs constitute a diverse group of tumors marked 
by distinct activating mutations in oncogenes, mainly KIT (80 %) or 
PDGFRA (15 %) [2]. The global annual incidence of GISTs varies, with 6 
to 22 cases per million individuals reported [3]. The median age of 
diagnosis is around 65 years [1], and initial symptoms often include 
bleeding, pain, weight loss, or obstruction. Approximately 60–65 % of 
GISTs originate in the stomach, and 20–25 % in the small intestine [1]. 
They are frequently discovered incidentally during CT scans or endo
scopic procedures and tend to develop in the submucosa [4], making 
preoperative pathological biopsy challenging. It’s crucial to consider the 
type, location, and extent of the tumor when deciding on the need for a 
biopsy [5,6]. 

The definitive diagnosis of GISTs relies on pathological morphology 
and immunohistochemical analysis [7]. For incidental small GISTs (<2 

cm) found during endoscopy, resection is not typically advised unless 
they are located in the rectum. However, larger localized GISTs (>2 cm) 
necessitate complete surgical removal as the primary treatment [1,8]. 
Despite surgical removal, 15–50 % of patients with GISTs have meta
static disease at diagnosis [9] and the risk of postoperative recurrence 
and metastasis critically affects prognosis for patients with localized or 
resectable GIST [10]. Consequently, several risk stratification systems, 
including the modified National Institutes of Health (NIH) classification 
[11], Armed Forces Institute of Pathology (AFIP) criteria [7], and Na
tional Comprehensive Cancer Network (NCCN) guidelines, have been 
developed to evaluate the risk of postoperative recurrence [10] based on 
factors like tumor size, location, mitotic rate, and rupture status [1]. 
Patients at high risk according to the modified NIH criteria, undergoing 
only surgical treatment, face a recurrence risk above 50 % [12]. How
ever, accurately assessing recurrence risk in GIST patients is challenging 
due to the tumor’s intrinsic variability and the limitations of biopsy 
samples [13,14]. Thus, there’s a pressing need to identify protein bio
markers that can accurately predict early-stage recurrence risk. 

In this study, we conducted proteomic analysis using mass 
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spectrometry to identify proteins with differential expression profiles 
between primary GIST tumors and their corresponding metastatic sites. 
We selected five markers for validation in recurrent and non-recurrent 
GIST patients and examined their association with recurrence-free sur
vival (RFS) and overall survival (OS). Additionally, we evaluated the 
correlation between these markers to assess their predictive accuracy for 
recurrence (Fig. 1). By identifying protein biomarkers that can more 
precisely and earlier predict GIST recurrence, our goal is to pinpoint 
high-risk patients for early intervention, potentially improving their RFS 
or OS. 

2. Methods and materials 

2.1. Tissue specimen collection 

For mass spectrometry analysis, we collected three pairs of primary 
and metastatic GIST tumor samples, which were diagnosed concur
rently. Additionally, 23 primary GIST samples from recurrent patients 
and 25 from non-recurrent patients were acquired for immunohisto
chemical (IHC) validation of selected proteins. All specimens were 
sourced from paraffin-embedded archives at Peking Union Medical 
College Hospital (PUMCH), with the collection approved by the insti
tutional review board (Reference number: K22C0484). 

2.2. LC-MS/MS (liquid chromatography tandem-mass spectrometry) 
proteomics and data processing 

Sliced tissues were dewaxed and proteins were extracted with lysis 
buffer (6 M urea and 2 M thiourea). Protein lysates were reduced with 
DTT at 95 ℃ for 5 min, then alkylated with IAM in the dark at room 
temperature for 45 min. Proteins were loaded onto 10KDa ultracentri
fuge tube for FASP digestion. Trypsin digestion was performed overnight 
at a protein-to-trypsin ratio (w/w) of 50:1. The digested peptides were 

desalted using a C18 Ziptip and vacuum-dried. Then, the peptides were 
resolved and spiked with irt peptide, then delivered to LC-MS/MS sys
tem. Peptide were separated by EASY-n LC1000 system (Thermo sci
entific). The analytical reverse phase column is 25 cm*50 µm ID 
(Shimadzu) at a flow rate of 800 nl/min for 45 min with a temperature 
of 60 ◦C. The elution gradient is from 4 % to 16 % for 24 min and from 
16 % to 24 % for 11 min (buffer A: 0.1 % formic acid, buffer B: 80 % 
acetonitrile, 0.1 % formic acid). Eluted peptides were analyzed with 
Orbitrap Fusion Lumos Tribrid instrument (Thermo scientific) with DIA 
(Data Independent Acquisition) mode. Peptides were ionized at a po
tential of 2.3 kV. Acquisition parameters included the full scan range of 
350 to 1300m/z, charge states of 2 to 5, and a resolution of 60,000 in the 
Orbitrap using an AGC target value of 1e6 and maximum injection time 
of 50 msec. The MS/MS were 40 scans after the full MS scan with res
olution of 3000. The collision energy was 32 %. 

Spectronaut (version 16, Biognosys) was used for protein identifi
cation and quantification. The raw files were searched against the 
Human database downloaded from Swissprot containing 20387 se
quences. Tolerance for MS and MS/MS were 10 ppm and 0.02 Da, 
respectively. The maximum two missed cleavages were allowed. Car
bamidomethylation (C) was set as fixed modifications. Oxidation (M) 
and deamidation were set as variable modifications. Decoy items were 
generated by inverse mode. False positive rate (FDR) was set as 1 % at 
the protein and peptide levels. The samples were quantitative evaluation 
basing on the library-free directDIA. Cross runs were normalized ac
cording to the global abundance area. The Fold Change > 2 and p-value 
< 0.05 were used to determine whether the expression differed signifi
cantly [15,16]. 

2.3. Immunohistochemistry (IHC) 

The paraffin-embedded tumor tissues were sectioned to a thickness 
of 4 µm and then the sections were deparaffinized using xylene and 
rehydrated through a series of graded alcohol solutions. To block 
endogenous peroxidase activity and minimize non-specific staining, the 
tissue sections were treated with 3 % H2O2 for 10 min at room tem
perature to ensure a clean background for subsequent staining. For 
protein visualization, the tissue sections were subjected to the strepta
vidin peroxidase-conjugated method. For protein visualization, the tis
sue sections were subjected to the streptavidin peroxidase-conjugated 
method. Sections were incubated with the primary antibodies to spe
cifically bind to target proteins within the tissue. The information of 
primary antibodies is listed as follows: GPX4 (Proteintech 67763–1-lg), 
RBM4 (Affinity DF12225), TPM3 (Affinity DF6338), PFKFB2 (Immu
noway YP1872), PGAM5 (Proteintech 28445–1-AP). The primary anti
bodies were utilized and diluted as per the recommended guidelines 
provided by the manufacturers. Five random fields were selected for 
analysis under a 40 × objective lens. Image-Pro Plus software was then 
employed to quantitatively assess the expression levels of the proteins of 
interest, enabling accurate calculations and providing reliable data for 
further analysis and interpretation. 

2.4. Statistical analysis 

Statistical analyses were conducted with Graphpad Prism 8.0 (CA, 
USA) and SPSS 27 (Chicago, USA). Continuous variables were analyzed 
by calculating the means ± standard deviations (SDs) and compared 
between groups using unpaired two-tailed t-tests. Categorical variables 
were summarized using counts and percentages, and group differences 
were examined using Pearson’s χ2 test. Patient data were censored at the 
last follow-up, with RFS and OS time-to-event endpoints for those not 
experiencing death or recurrence also censored at this time. RFS and OS 
were modeled using the Kaplan–Meier method with log-rank (Mantel- 
Cox) testing to compare patient groups. Pearson’s correlation analysis 
assessed the predictive interrelationships of five proteins for GIST 
recurrence. Differences between groups were considered significant at 

Fig. 1. Schematic workflow representation of our study based on LC-MS/MS in 
GIST tissues. 
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P-value of < 0.05. (*P < 0.05, **P < 0.01, ***P < 0.001). 

3. Results 

3.1. Differential expression analysis of proteins in primary tumor tissues 
and the corresponding metastatic tissues of GIST patients using LC-MS/ 
MS-based quantitative proteomics 

We collected and analyzed tissue specimens from three GIST pa
tients, covering both metastatic and primary GIST tissues, which were 
diagnosed concurrently. A total of 4542 proteins were identified, and 
quantitative analysis was performed on 3283 proteins with 2 peptides. 
Missing values were imputed using half of the minimum protein value. 
Differentially expressed proteins were selected based on a log2 (Fold 
Change) > 2 and a p-value < 0.05. Ultimately, we identified 36 proteins 
with significantly higher expression in metastatic tissues (Supplemen
tary Material). We excluded the gene GGT from further analysis because 
all metastatic GIST tissues originated from the liver and GGT is associ
ated with liver function. Then we selected the top three genes (GPX4, 
TPM3, PGAM5) for validation. To align with literature and enhance 
validation, we selected two genes, RBM4 and PFKFB2, for further study 
due to their high log2 (Fold Change) and low p-values (Fig. 2). The 
detected peptide sequences of them were: GPX4: ILAFPCNQFGK, YGP
MEEPLVIEK; TPM3: KLVIIEGDLER; PGAM5: AIETTDIISR, REPLSLINVR; 
RBM4: VLECDIIK, ATAPVPTVGEGYGYGHESELSQASAAAR; PFKFB2: 
LEPVIMELER, HGESEFNLLGK. 

3.2. Classification of differentially expressed proteins 

Using the PANTHER (Protein Analysis Through Evolutionary Re
lationships) Classification System, we systematically categorized 36 
differentially expressed proteins, enhancing our understanding of their 
molecular and functional characteristics. After removing unclassified 
proteins, we classified the remaining proteins into seven molecular 
functions, two cellular components, and ten biological processes 
(Fig. 3). Binding (53.4 %) and catalytic activity (23.3 %) emerged as the 
top molecular function categories. Two cellular components were 
identified: cellular anatomical entity (77.8 %) and protein-containing 
complex (22.2 %). The biological process analysis predominantly 
involved upregulated proteins in cellular processes (32.9 %), localiza
tion (17.2 %), metabolic processes (15.5 %), and biological regulation 
(13.8 %). Among the five selected proteins, TPM3, RBM4, and PFKFB2 
were associated with specific Gene Ontology terms, while GPX4 and 

PGAM5 were not classified by PANTHER. Specifically, TPM3, RBM4, 
and PFKFB2 were linked to the GO:0110165 cellular anatomical entity 
and GO:0009987 cellular processes. For molecular function, TPM3 and 
RBM4 were classified under GO:0005488 (binding), and PFKFB2 under 
GO:0003824 (catalytic activity). Utilizing this classification system 
provided valuable insights into the complex roles of these proteins in 
cellular processes. 

3.3. Validation of expression of 5 proteins in primary tumor tissues of 
recurrent and non-recurrent GIST patients 

To explore the roles of selected five proteins in GIST recurrence, we 
analyzed primary tissue specimens from 23 recurrent and 25 non- 
recurrent GIST patients. The clinical and pathological characteristics 
of these 48 patients are summarized in Table 1. RFS was significantly 
lower in the recurrent group than in the non-recurrent group. Further
more, the recurrent group exhibited a higher mortality rate. Higher IOD 
levels in GPX4, RBM4, TPM3, PFKFB2, and PGAM5 were linked to 
increased recurrence rates. Baseline factors including age, BMI, inpa
tient days, sex, surgery method, tumor size, tumor site, mitotic index, 
and recurrence risk showed no significant differences between the two 
groups. Immunohistochemical staining revealed significantly higher 
expression of the five proteins in primary GIST tissues of recurrent pa
tients than in non-recurrent patients (Fig. 4). This suggests the proteins 
are crucial in GIST recurrence, potentially serving as biomarkers for 
prediction. 

3.4. Association of differentially expressed proteins with recurrence-free 
survival and overall survival in GIST patients 

To validate the clinical impact of five proteins on GIST recurrence, 
we conducted a follow-up study with 48 patients to assess their RFS and 
OS. We used Kaplan-Meier survival analysis to evaluate the association 
of the five proteins with patient survival outcomes. Results showed a 
significant decrease in RFS for GIST patients with high levels of GPX4, 
RBM4, TPM3, PFKFB2, and PGAM5. However, only high expression 
levels of GPX4 and RBM4 were significantly associated with reduced OS, 
with no significant associations observed for the other proteins (Fig. 5). 
These findings underscore the clinical significance of these five proteins 
in predicting GIST recurrence, linked to poorer RFS at high expression 
levels. Their predictive accuracy for OS, however, is inconsistent. 

3.5. Interrelationships of 5 Proteins in Predicting GIST Recurrence 

The results clearly show that the five biomarkers are significantly 
relevant for predicting GIST recurrence, with consistent outcomes. 
Consequently, we analyzed the correlation of IOD levels for the five 
proteins among the 48 patients. Pearson correlation analysis showed a 
moderate positive correlation between each protein pair (Fig. 6). 
Furthermore, we statistically analyzed the clinical and pathological data 
of the 48 patients based on the expression levels of GPX4, RBM4, TPM3, 
PFKFB2, and PGAM5, as illustrated in Table 2. Patients with high 
expression levels of all five proteins showed significantly higher GIST 
recurrence rates than those with low expression levels. However, only 
GPX4 and RBM4 exhibited statistically significant differences in mor
tality rates. The chi-square test, applied after grouping protein expres
sions, revealed statistical differences in the correlations among GPX4 
and RBM4, RBM4 and PFKFB2, RBM4 and PGAM5, and TPM3 and 
PGAM5. 

4. Discussion 

GIST recurrence significantly impacts patient survival, and accurate 
prediction remains a critical challenge in clinical practice. Our study 
reveals that GPX4, RBM4, TPM3, PFKFB2, and PGAM5 are significantly 
relevant in predicting GIST recurrence. Higher expression levels of these 

Fig. 2. Volcano plot of differentially expressed proteins (DEPs) between three 
pairs of primary and metastatic GIST tumor samples. Black dots indicate the 
upregulated DEPs with a log2FC > 2 and p < 0.05. Among the total of 36 
upregulated DEPs, five proteins (marked as red dots) were selected for 
further analysis. 
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proteins in primary GIST tissues of recurrent patients suggest their po
tential as biomarkers for predicting recurrence. Furthermore, all pro
teins are significantly associated with decreased RFS, with only GPX4 
and RBM4 significantly affecting OS. Additionally, correlation analysis 
reveals a positive correlation among these proteins. These findings un
derscore the clinical value of these biomarkers in predicting GIST 
recurrence and lay the groundwork for further research into personal
ized treatment and prognosis in GIST patients. 

GISTs, characterized by KIT and/or PDGFRA mutations, have seen 
median survival times increase from 18 months to over 5 years with the 

introduction of tyrosine kinase inhibitors (TKIs) targeting these muta
tions [6,8]. Despite 3 years of effective adjuvant therapy with imatinib, 
high-risk patients often relapse within 1–3 years post-treatment, 
whereas low-risk patients may experience delayed recurrence [8]. 
Current ESMO guidelines recommend 3 years of adjuvant imatinib 
therapy for patients with a high relapse risk, emphasizing a shared 
decision-making process for those with intermediate risk [8,17]. GIST 
recurrence risk assessment relies mainly on tumor size, mitotic index, 
location, and the presence of tumor rupture [1]. Recent analysis by 
Trinh et al. of 19,030 GIST patients from the U.S. National Cancer 

Fig. 3. Classification of the 36 identified proteins by the GO database. (A) Molecular function (B) Cellular component (C) Biological process.  
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Database suggests the current thresholds for tumor size and mitotic 
index may be suboptimal. They propose reevaluating these thresholds, 
suggesting 7 cm for tumor size and a mitotic rate of > 10 per 5 mm2 for 
accurate risk stratification [18]. Additionally, a retrospective analysis of 
542 gastric GIST patients showed that tumor size, location, and surface 
ulceration are closely linked to malignant potential [19]. Given these 
limitations and the variability in risk assessment, identifying protein 
biomarkers for GIST recurrence prediction is promising. Our study’s 
identified protein biomarkers, with higher expression in recurrent GIST 
patients’ primary tumors, correlate with poorer RFS and OS. Positive 
correlations among all biomarker pairs further support their predictive 
accuracy for GIST recurrence. These findings highlight the clinical 
relevance and prognostic potential of these biomarkers for GIST recur
rence. Integrating these biomarkers into current risk assessment models 
could enhance GIST recurrence risk stratification accuracy and support 
personalized treatment. 

GPX4 (Glutathione Peroxidase 4) is crucial for cellular protection 
against oxidative damage. It reduces hydrogen peroxide and lipid hy
droperoxides, preventing harmful reactive oxygen species (ROS) 
buildup [20]. GPX4 is involved in cellular processes including ferrop
tosis, a regulated cell death form dependent on iron and lipid peroxi
dation [21]. Given that oxidative stress and ROS can influence the tumor 

microenvironment, affecting processes like invasion, migration, and 
angiogenesis, GPX4 has been linked to tumor progression [22,23]. For 
example, Lu et al. demonstrated that GPX4 inhibition suppresses cell 
migration and invasion in renal cell carcinoma [24]. Regarding GIST, 
Ishida et al.’s study showed the GPX4 inhibitor RSL3 induces ferroptotic 
cell death in both imatinib-sensitive and -resistant GIST cells [25]. 
Additionally, Delvaux et al. revealed a strong link between GIST risk 
stratification and transferrin receptor 1 (TFRC) expression levels, 
essential for iron internalization via receptor-mediated endocytosis 
[26]. However, research on the relationship between GPX4 and GIST 
recurrence is still limited. 

RBM4 (RNA-Binding Motif Protein 4) is an RNA-binding protein 
involved in alternative splicing, translation regulation, and RNA sta
bility [27]. Cancer cells can evade senescence and re-enter the cell cycle, 
promoting malignant spread [28,29]. This process is linked to an active 
anabolic metabolism that utilizes glucose and glutamine for energy and 
biosynthesis [30,31]. Chen et al.’s study showed that RBM4 helps 
esophageal squamous cell carcinoma (ESCC) cells bypass senescence 
and sustain proliferation by activating glutamine metabolism. They also 
found that ESCC patients with high RBM4 levels had significantly worse 
overall survival compared to those with low RBM4 [32]. Furthermore, 
Han et al.’s study revealed that RBM4 stabilizes RelA/p65 mRNA, 
enhancing NF-kB signaling and upregulating VEGF-A expression, 
accelerating angiogenesis in hepatocellular carcinoma (HCC) [33]. 
RBM4 has also been implicated in the promotion of breast cancer [34]. 
However, a conflicting report suggests RBM4 may act as a tumor sup
pressor in lung cancer [35], while another study associates reduced 
RBM4 levels with poor prognosis in HCC patients undergoing hepatec
tomy [36]. The variability in these findings may due to the genetic 
background and tumor heterogeneity [33], and the understanding of the 
relationship between RBM4 and GIST remains limited, necessitating 
further investigations. 

TPM3 (Tropomyosin 3), a component of the cytoskeleton, is a thin 
filament protein that supports cell structure and facilitates cell motility 
[37]. The precise role of TPM3 in tumor biology remains enigmatic. 
Previous research has shown TPM3 impacts sarcomeric function by 
reducing Ca2+ sensitivity and affecting length-dependent Ca2+ activa
tion [37]. Other studies have found TPM3 involved in thyroid papillary 
carcinoma and chronic eosinophilic granulocyte leukemia development 
through fusion with neurotrophic receptor tyrosine kinase 1 and 
Platelet-derived growth factor receptor β, respectively [38,39]. Yu et al. 
reported significantly higher TPM3 expression in stage III ESCC tissues 
than in stage I [40] and Choi et al. demonstrated TPM3 overexpression 
alters liver cancer cell invasion and metastasis via influencing EMT [41]. 
Another study showed suppressing TPM3 expression with TPM3-siRNA 
reduced cellular invasion and migration and decreased MMP-9 and 
SNAI1 levels in glioma cells [42]. However, research on TPM3’s role in 
GIST is limited, with some exceptions like reported TPM3-NTRK1 fusion 
cases in mesenchymal spindle-cell neoplasms, distinct from GIST [43, 
44]. 

PFKFB2 (6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 2) 
is an enzyme that regulates glycolysis in eukaryotes [45]. The presence 
of PFKFB2 expression, linked to cancer’s metabolic changes like 
increased glycolysis for growth advantage, is closely associated with 
cancer progression [46–48]. For example, Qu et al. demonstrated that 
circFLNA, upregulated in gastric cancer, promotes cancer proliferation, 
metastasis, and glycolysis, and inhibits apoptosis by regulating the 
miR-646/PFKFB2 axis [49]. In HCC, Ji et al. found high MACC1 and 
PFKFB2 levels associated with TNM stage, Edmondson-Steier classifi
cation, and overall survival [50]. Zhao et al. discovered significant 
PFKFB2 overexpression in metastatic ovarian cancer compared to 
normal and non-metastatic ovarian cancer [51]. However, the rela
tionship between GIST and PFKFB2 remains unexplored. 

PGAM5 (Phosphoglycerate Mutase Family Member 5), an enzyme 
crucial for cellular energy metabolism, regulates mitochondrial func
tion, cell death pathways, and oxidative stress response [52]. It has been 

Table 1 
The clinical and pathological characteristics of patients with and without 
recurrence.   

Recurrent Non-recurrent P value 

No. 23 25  
Age (years) 57.52 ± 11.21 58.68 ± 11.81 0.730 
BMI (kg/m2) 22.85 ± 2.74 24.02 ± 3.58 0.214 
Inpatient days 14.57 ± 5.55 13.04 ± 4.09 0.281 
RFS (month) 34.83 ± 24.97 78.00 ± 23.03 < 0.001*** 

OS (month) 60.78 ± 32.56 74.80 ± 25.56 0.102 
Sex   0.613 

Males 15 (65.22 %) 18 (72.00 %)  
Females 8 (34.78 %) 7 (28.00 %)  

Surgery way   0.838 
Laparotomy 15 (65.22 %) 17 (68.00 %)  
Laparoscopy 8 (34.78 %) 8 (32.00 %)  

Tumor size (cm)   0.668 
> 2, ≤ 5 6 (26.09 %) 4 (16.00 %)  
> 5, ≤ 10 9 (39.13 %) 12 (48.00 %)  
> 10 8 (34.78 %) 9 (36.00 %)  

Tumor site   0.597 
Gastric 10 (43.48 %) 9 (36.00 %)  
Non-gastric 13 (56.52 %) 16 (64.00 %)  

Mitotic index (/50 FP)   0.130 
≤ 5 7 (30.43 %) 13 (52.00 %)  
> 5 16 (69.57 %) 12 (48.00 %)  

Recurrence risk   0.958 
High 18 (78.26 %) 19 (76.00 %)  
Medium 3 (13.04 %) 4 (16.00 %)  
Low 2 (8.70 %) 2 (8.00 %)  

Death   0.003** 

Yes 9 (39.13 %) 1 (4.00 %)  
No 14 (60.87 %) 24 (96.00 %)  

IOD of GPX4   0.009** 

High 16 (69.57 %) 8 (32.00 %)  
Low 7 (30.43 %) 17 (68.00 %)  

IOD of RBM4   < 0.001*** 

High 19 (82.61 %) 5 (20.00 %)  
Low 4 (17.39 %) 20 (80.00 %)  

IOD of TPM3   0.009** 

High 16 (69.57 %) 8 (32.00 %)  
Low 7 (30.43 %) 17 (68.00 %)  

IOD of PFKFB2   < 0.001*** 

High 18 (78.26 %) 6 (24.00 %)  
Low 5 (21.74 %) 19 (76.00 %)  

IOD of PGAM5   0.009** 

High 16 (69.57 %) 8 (32.00 %)  
Low 7 (30.43 %) 17 (68.00 %)  

Statistical significance was determined by t-test and chi-square test. (*P < 0.05, 
**P < 0.01, ***P < 0.001). 
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Fig. 4. Expressions of GPX4, RBM4, TPM3, PFKFB2, PGAM5 in primary GIST tissues from 23 recurrent and 25 non-recurrent patients. Representative IHC staining 
(100X and 400X) and quantification of five random fields by mean of integrated optical density (IOD) using Image-Pro Plus in different markers and groups. 
(*P < 0.05, **P < 0.01, ***P < 0.001). 
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Fig. 5. The prognostic value of GPX4, RBM4, TPM3, PFKFB2, PGAM5 in 48 patients with GIST. Comparison of Recurrence-free survival (RFS) and overall survival 
(OS) between patients with high expressions of these five proteins and low expressing cases in GIST via Kaplan–Meier analysis. (*P < 0.05, 
**P < 0.01, ***P < 0.001). 
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Fig. 6. Interrelationships of 5 Proteins in Predicting GIST Recurrence. Pearson regression analysis was performed to assess the correlation between the integrated 
optical density (IOD) levels of the five proteins among the 48 included GIST patients. 
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Table 2 
Correlations between GPX4/RBM4/TPM3/PFKFB2/PGAM5 expressions and clinical features.   

GPX4 RBM4 TPM3 PFKFB2 PGAM5  

High Low High Low High Low High Low High Low 

No. 24 24 24 24 24 24 24 24 24 24 
Age (years) 57.67 

± 11.18 
58.58 
± 11.88 

58.71 
± 11.06 

57.54 ± 11.98 57.29 
± 12.05 

58.96 
± 10.95 

59.21 
± 11.27 

57.04 
± 11.71 

57.33 
± 10.64 

58.92 
± 12.33 

BMI (kg/m2) 23.24 
± 2.76 

23.68 
± 3.68 

23.28 
± 2.78 

23.64 ± 3.67 23.83 
± 3.58 

23.09 
± 2.85 

23.36 
± 3.14 

23.56 ± 3.37 24.07 
± 3.31 

22.85 
± 3.08 

Inpatient 
days 

13.83 
± 5.13 

13.71 
± 4.67 

15.04 
± 5.10 

12.50 ± 4.32 14.71 
± 5.70 

12.83 
± 3.71 

14.33 
± 5.00 

13.21 ± 4.74 13.79 
± 4.49 

13.75 
± 5.29 

RFS (month) 48.04 
± 29.70 

66.58 
± 32.54 
* 

41.67 
± 31.08 

72.96 
± 25.37*** 

52.67 
± 33.90 

61.96 
± 30.44 

43.83 
± 31.42 

70.79 
± 27.47** 

47.33 
± 28.73 

67.29 
± 32.97 
* 

OS (month) 59.67 
± 28.79 

76.50 
± 28.65 
* 

61.38 
± 32.39 

74.79 ± 25.59 66.83 
± 32.50 

69.33 
± 27.17 

61.42 
± 31.94 

74.75 
± 26.17 

66.08 
± 26.56 

70.08 
± 32.92 

Sex 
Males 15 (62.50 

%) 
18 (75.00 
%) 

13 (54.17 
%) 

20 (83.33 %) 16 (66.67 
%) 

17 (70.83 
%) 

17 (70.83 
%) 

16 (66.67 %) 14 (58.33 
%) 

19 (79.17 %) 

Females 9 (37.50 %) 6 (25.00 %) 11 (45.83 
%) 

4 (16.67 %)* 8 (33.33 %) 7 (29.17 %) 7 (29.17 %) 8 (33.33 %) 10 (41.67 
%) 

5 (20.83 %) 

Surgery way 
Laparotomy 18 (75.00 

%) 
14 (58.33 
%) 

16 (66.67 
%) 

16 (66.67 %) 16 (66.67 
%) 

16 (66.67 
%) 

14 (58.33 
%) 

18 (75.00 %) 17 (70.83 
%) 

15 (62.50 %) 

Laparoscopy 6 (25.00 %) 10 (41.67 
%) 

8 (33.33 %) 8 (33.33 %) 8 (33.33 %) 8 (33.33 %) 10 (41.67 
%) 

6 (25.00 %) 7 (29.17 %) 9 (37.50 %) 

Tumor size (cm) 
> 2, ≤ 5 4 (16.67 %) 6 (25.00 %) 4 (16.67 %) 6 (25.00 %) 7 (29.17 %) 3 (12.50 %) 6 (25.00 %) 4 (16.67 %) 4 (16.67 %) 6 (25.00 %) 
> 5, ≤ 10 10 (41.67 

%) 
11 (45.83 
%) 

11 (45.83 
%) 

10 (41.67 %) 8 (33.33 %) 13 (54.17 
%) 

11 (45.83 
%) 

10 (41.67 %) 12 (50.00 
%) 

9 (37.50 %) 

> 10 10 (41.67 
%) 

7 (29.17 %) 9 (37.50 %) 8 (33.33 %) 9 (37.50 %) 8 (33.33 %) 7 (29.17 %) 10 (41.67 %) 8 (33.33 %) 9 (37.50 %) 

Tumor site 
Gastric 10 (41.67 

%) 
9 (37.50 %) 11 (45.83 

%) 
8 (33.33 %) 9 (37.50 %) 10 (41.67 

%) 
11 (45.83 
%) 

8 (33.33 %) 8 (33.33 %) 11 (45.83 %) 

Non-gastric 14 (58.33 
%) 

15 (62.50 
%) 

13 (54.17 
%) 

16 (66.67 %) 15 (62.50 
%) 

14 (58.33 
%) 

13 (54.17 
%) 

16 (66.67 %) 16 (66.67 
%) 

13 (54.17 %) 

Mitotic index (/50 FP) 
≤ 5 8 (33.33 %) 12 (50.00 

%) 
8 (33.33 %) 12 (50.00 %) 9 (37.50 %) 11 (45.83 

%) 
9 (37.50 %) 11 (45.83 %) 10 (41.67 

%) 
10 (41.67 %) 

> 5 16 (66.67 
%) 

12 (50.00 
%) 

16 (66.67 
%) 

12 (50.00 %) 15 (62.50 
%) 

13 (54.17 
%) 

15 (62.50 
%) 

13 (54.17 %) 14 (58.33 
%) 

14 (58.33 %) 

Recurrence risk 
High 19 (79.17 

%) 
18 (75.00 
%) 

19 (79.17 
%) 

18 (75.00 %) 19 (79.17 
%) 

18 (75.00 
%) 

19 (79.17 
%) 

18 (75.00 %) 20 (83.33 
%) 

17 (70.83 %) 

Medium 4 (16.67 %) 3 (12.50 %) 4 (16.67 %) 3 (12.50 %) 3 (12.50 %) 4 (16.67 %) 3 (12.50 %) 4 (16.67 %) 3 (12.50 %) 4 (16.67 %) 
Low 1 (4.17 %) 3 (12.50 %) 1 (4.17 %) 3 (12.50 %) 2 (8.33 %) 2 (8.33 %) 2 (8.33 %) 2 (8.33 %) 1 (4.17 %) 3 (12.50 %) 
Death 
Yes 16 (66.67 

%) 
22 (91.67 
%) 

15 (62.50 
%) 

23 (95.83 %) 18 (75.00 
%) 

20 (83.33 
%) 

17 (70.83 
%) 

21 (87.50 %) 19 (79.17 
%) 

19 (79.17 %) 

No 8 (33.33 %) 2 (8.33 %) 
* 

9 (37.50 %) 1 (4.17 %)** 6 (25.00 %) 4 (16.67 %) 7 (29.17 %) 3 (12.50 %) 5 (20.83 %) 5 (20.83 %) 

Recurrence 
Yes 16 (66.67 

%) 
7 (29.17 %) 19 (79.17 

%) 
4 (16.67 %) 16 (66.67 

%) 
7 (29.17 %) 18 (75.00 

%) 
5 (20.83 %) 16 (66.67 

%) 
7 (29.17 %) 

No 8 (33.33 %) 17 (70.83 
%)** 

5 (20.83 %) 20 (83.33 
%)*** 

8 (33.33 
%) 

17 (70.83 
%)** 

6 (25.00 %) 19 (79.17 
%)*** 

8 (33.33 %) 17 (70.83 
%)** 

IOD of GPX4 
High - - 17 (70.83 

%) 
7 (29.17 %) 15 (62.50 

%) 
9 (37.50 %) 14 (58.33 

%) 
10 (41.67 %) 15 (62.50 

%) 
9 (37.50 %) 

Low - - 7 (29.17 %) 17 (70.83 
%)** 

9 (37.50 %) 15 (62.50 
%) 

10 (41.67 
%) 

14 (58.33 %) 9 (37.50 %) 15 (62.50 %) 

IOD of RBM4 
High 17 (70.83 

%) 
7 (29.17 %) - - 15 (62.50 

%) 
9 (37.50 %) 17 (70.83 

%) 
7 (29.17 %) 18 (75.00 

%) 
6 (25.00 %) 

Low 7 (29.17 %) 17 (70.83 
%** 

- - 9 (37.50 %) 15 (62.50 
%) 

7 (29.17 %) 17 (70.83 
%)** 

6 (25.00 %) 18 (75.00 
%)*** 

IOD of TPM3 
High 15 (62.50 

%) 
9 (37.50 %) 15 (62.50 

%) 
9 (37.50 %) - - 14 (58.33 

%) 
10 (41.67 %) 18 (75.00 

%) 
6 (25.00 %) 

Low 9 (37.50 %) 15 (62.50 
%) 

9 (37.50 %) 15 (62.50 %) - - 10 (41.67 
%) 

14 (58.33 %) 6 (25.00 %) 18 (75.00 
%)*** 

IOD of PFKFB2 
High 14 (58.33 

%) 
10 (41.67 
%) 

17 (70.83 
%) 

7 (29.17 %) 14 (58.33 
%) 

10 (41.67 
%) 

- - 14 (58.33 
%) 

10 (41.67 %) 

(continued on next page) 
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established that PGAM5 expression is associated with necroptosis [53, 
54] and mitophagy [55,56]. In cancers, PGAM5 levels are significantly 
higher in lung cancer tissues than in normal tissues [57] and its deple
tion inhibits cell growth and promotes apoptosis in HCC [58]. What’s 
more, Zhong et al. showed significant PGAM5 upregulation in tumor 
versus normal liver tissues, with HCC patients having higher PGAM5 
levels facing worse OS and RFS [59], paralleling our findings on PGAM5 
and GIST. However, other studies have not identified a direct relation
ship between PGAM5 and GIST. 

Overall, identifying high-risk patients for timely treatment and 
rigorous follow-up using these five biomarkers could significantly 
extend GIST patients’ survival. However, the limitations of this study are 
also worth mentioning: targeted MS approaches, like selected reaction 
monitoring proteomics analysis, should follow as a distinct verification 
phase after identifying differentially expressed proteins; Larger pro
spective studies are needed to validate these biomarkers’ clinical utility 
and integration into current risk assessment models. Additionally, un
derstanding how these biomarkers contribute to GIST recurrence could 
reveal new therapeutic targets and personalized strategies for GIST 
management. Exploring these biomarkers in GIST patients’ blood and 
urine is crucial for developing non-invasive detection and monitoring 
methods. 

5. Conclusion 

Our study identified five biomarkers—GPX4, RBM4, TPM3, PFKFB2, 
and PGAM5—that are clinically significant in predicting GIST recur
rence. Elevated expressions of these biomarkers in GIST tissues correlate 
with poorer RFS and OS. These biomarkers show great potential as 
prognostic indicators for GIST recurrence, facilitating early intervention 
and enhancing patient outcomes. 
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