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Stenotrophomonas maltophilia is an environmental Gram-negative bacterium that has 
rapidly emerged as an important nosocomial pathogen in hospitalized patients. Treatment 
of S. maltophilia infections is difficult due to increasing resistance to multiple antibacterial 
agents. The purpose of this study was to determine the phenotypic and genotypic 
characterization of S. maltophilia isolates recovered from patients referred to several 
hospitals. A total of 164 clinical isolates of S. maltophilia were collected from hospitals in 
various regions in Iran between 2016 and 2017. Antibiotic susceptibility testing was 
performed by disc diffusion method and E-test assay according to the Clinical and 
Laboratory Standards Institute (CLSI) guideline. The ability of biofilm formation was 
assessed with crystal violet staining and then, biofilm-associated genes were investigated 
by PCR-sequencing method. The presence of L1 (a metallo-β-lactamase), L2 (a clavulanic 
acid-sensitive cephalosporinase), sul1 and sul2 (resistance to Trimethoprim/
Sulfamethoxazole), Smqnr (intrinsic resistance to quinolones), and dfrA genes (dihydrofolate 
reductase enzyme that contributes to trimethoprim resistance) was also examined by 
PCR-sequencing. Relative gene expression of smeDEF efflux pump was assessed by 
real-time PCR. Genotyping was performed using the multi-locus sequencing typing (MLST) 
and repetitive extragenic palindromic-PCR (Rep-PCR). Isolates were resistant to imipenem 
(100%), meropenem (96%), doripenem (96%), and ceftazidime (36.58%). Notably, 5 
(3.04%) isolates showed resistant to trimethoprim-sulfamethoxazole (TMP-SMX), an 
alarming trend of decreased susceptibility to TMP-SMX in Iran. Minocycline and levofloxacin 
exhibited the highest susceptibility of 91.46 and 99.39%, respectively. Using the crystal 
violet staining, 157 (95.73%) isolates had biofilm phenotype: 49 (29.87%), 63 (38.41%), 
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INTRODUCTION

The genus Stenotrophomonas, together with Xanthomonas, belongs 
to the γ-β subclass of proteobacteria (Anzai et  al., 2000). 
S. maltophilia isolated in 1943 from pleural effusion of patients 
was first named as Bacterium bookeri. Later, it was reclassified 
as a member of the genera Pseudomonas and Xanthomonas in 
1961 and 1983, respectively, until it was classified as a new 
genus, Stenotrophomonas, in 1993 (Al-Anazi and Al-Jasser, 2014).

S. maltophilia is a Gram-negative, non-fermentative, aerobic, 
motile bacillus that is abundant in the ubiquitous environment 
with a broad geographical distribution. This organism has emerged 
as an important opportunistic pathogen in humans worldwide. 
Although it is considered to have limited pathogenicity (Di 
Bonaventura et  al., 2010), S. maltophilia causes various types 
of hospital- and community-acquired infections, especially in 
debilitated or immunocompromised patients, with the mortality 
rate of 37.5% (Falagas et  al., 2009). The bacterium has been 
increasingly recognized as responsible for a number of clinical 
syndromes, such as pneumonia, sepsis, bacteremia, endocarditis, 
septic arthritis, meningitis, endophthalmitis, and urinary infections 
(Looney et  al., 2009; Sumida et  al., 2015; Hu et  al., 2016).

During the last decade, S. maltophilia has been considered 
as one of the leading multi-drug resistant (MDR) organisms 
in hospital settings due to exhibiting high levels of intrinsic 
and acquired resistance to a broad array of antibacterial agents, 
including fluoroquinolones, aminoglycosides, and the most 
common of β-lactam antibiotics (Brooke, 2014). Different types 
of antimicrobial resistance mechanisms, such as expression of 
antibiotic hydrolyzing or modifying enzymes, membrane 
permeability alteration (Hu et  al., 2008), and multi-drug efflux 
systems (Huang et al., 2014) have been identified in S. maltophilia.

This bacterium produces two chromosomal-mediated 
inducible β-lactamases, known as L1 and L2. The L1 belongs 
to molecular class B Zn2+-dependent metallo-β-lactamase (MBL), 
is resistant to clavulanic acid and hydrolyses carbapenems, 

cephalosporins, and penicillins (Brooke, 2012; Chang et  al., 
2015). The L2 serine-β-lactamase, an Ambler class A enzyme, 
is an inducible cephalosporinase that hydrolyses cephalosporins, 
penicillins, and aztreonam (Flores-Trevino et  al., 2014; Mojica 
et  al., 2016). Two mechanisms are associated with resistance 
to quinolones among S. maltophilia strains, including smeDEF, 
smeIJK, smeABC, and smeVWX efflux pumps and a novel 
chromosomal quinolone resistance gene, Smqnr, encoding the 
pentapeptide repeat protein that protects both topoisomerase 
IV and gyrase from the quinolones (Sanchez et  al., 2009; 
Chang et  al., 2015; Kanamori et  al., 2015).

Trimethoprim-sulfamethoxazole (TMP-SMX) is recommended 
as the first choice for S. maltophilia infections (Abbott et al., 2011; 
Chong et  al., 2017). However, the increasing reports of resistance 
to TMP-SMX are a matter of concern and have complicated the 
treatment strategies (Brooke, 2014; Hu et  al., 2016; Madi et  al., 
2016). Resistance to this antibiotic has been recognized due to 
the presence of sul1 and sul2 genes that are found in class 1 
integrons and insertion sequence common region (ISCR) elements, 
respectively. dfrA gene cassettes are observed in class 1 integrons 
and encode for the dihydrofolate reductase enzyme, and TolCsm, 
smeDEF, smeYZ efflux pumps (Hu et  al., 2011, 2016; Huang 
et  al., 2013; Lin et  al., 2015; Sánchez and Martínez, 2015).

Biofilms are multicellular communities usually held together 
by extracellular matrix molecules. These extracellular polysaccharides 
(EPS) produced by the bacteria usually function as highly 
organized multicellular communities of microorganisms (Bjarnsholt 
et  al., 2009; Irie et  al., 2017), appear to be  preferred survival 
strategy of microbes, and confer tolerance to high doses of 
antimicrobial agents than non-biofilm forming bacteria 
(Bjarnsholt et  al., 2009). In addition, they are increasingly 
recognized as a contributing factor in the pathogenesis of 
disease in respiratory diseases often caused by chronic bacterial 
infections. S. maltophilia strains are well-known biofilm-
producing organisms with ability to adhere to biotic and 
abiotic surfaces (Pompilio et  al., 2008). Few genes associated 

and 45 (27.43%) isolates were categorized as strong-, moderate- and weak-biofilm 
producer while 7 isolates (4.26%) were identified a non-biofilm producer. Biofilm genes 
had an overall prevalence of 145 (88.41%), 137 (83.53%), and 164 (100%) of rmlA, rpfF, 
and spgM, respectively. L1, L2, Smqnr, sul1, and sul2 resistance genes were detected 
in 145 (88.41%), 156 (96.12%), 103 (62.80%), 89 (54.26%), and 92 (56.09%) isolates, 
respectively. None of the S. maltophilia isolates were positive for dfrA12, dfrA17, and 
dfrA27 genes. Gene expression analysis showed that smeD efflux system was 
overexpressed in two out of the five clinical isolates (40%) that showed resistance to 
TMP-SMX. Most of the isolates were genetically unrelated. Two new sequence types 
(ST139 and ST259) were determined. Our results showed that TMP-SMX was still an 
effective antibiotic against S. maltophilia. The findings of the current study revealed an 
increasing prevalence of antibiotic resistance and biofilm genes in clinical S. maltophilia 
isolates in Iran.

Keywords: antibiotic resistance genes, biofilm, efflux pump, sequence type, Stenotrophomonas maltophilia, 
trimethoprim-sulfamethoxazole
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with biofilm formation in S. maltophilia have been experimentally 
studied (Liu et al., 2017). More recently, the correlation between 
mutations in rpfF and rmlA genes, encoding enoyl-CoA 
hydratase and glucose-1-phosphate thymidyltransferase, respectively, 
and the less extensive biofilm formation have been reported 
(Huang et  al., 2006; Fouhy et  al., 2007). In addition, the 
spgM gene, responsible for the production of phosphoglucomutase 
(PGM) and phosphomannomutase, could be  involved in 
biofilm-forming ability (McKay et al., 2003; Zhuo et al., 2014).

High genetic diversity was identified among S. maltophilia 
strains through the use of a variety of molecular biology 
techniques. Several genotypic profile methods have been used 
to compare and link clinical isolates to environmental sources, 
including whole genome sequencing analyses, amplified fragment 
length polymorphism (AFLP) fingerprinting, PCR-restriction 
fragment length polymorphism (PCR-RFLP), analysis of the 
gyrase B gene, PCR-based fingerprinting methods, such as BOX 
and repetitive extragenic palindromic (rep)-PCR, enterobacterial 
repetitive intergenic consensus (ERIC)-PCR, pulsed-field gel 
electrophoresis (PFGE) analysis of XbaI genomic digests, and 
multi-locus sequence typing (MLST) (Gherardi et  al., 2015). 
Rep-PCR technique is based on the fact that microbial genomes 
contain a variety of repetitive sequences. Although their function 
has mostly not been elucidated so far, most rep-PCR-based 
DNA fingerprinting studies have used short polytrinucleotides, 
such as (GTG)5 35–40  bp repetitive sequences, and 154  bp 
BOX element as priming sites for PCR, resulting in amplification 
of DNA sequences between the repetitive parts (Ishii and 
Sadowsky, 2009). MLST technique was developed for tracking 
the source of infections and the distribution of pathogens 
isolated from hospitalized patients, providing reliable 
epidemiological data. In addition, because of its accessible 
related international databases, the results from different 
laboratories by MLST can be  compared (Cho et  al., 2012).

The main purpose of this study was to evaluate the 
antimicrobial resistance patterns and different resistance 
mechanisms of the clinical S. maltophilia isolated from 
different regions of Iran. In addition, the ability of biofilm 
production as well as clonal and genetic diversity of isolates 
were examined.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of Shahid 
Beheshti University of Medical Sciences “IR.SBMU. MSP.
REC.1397.579.” In order to maintain patients confidentiality 
participants were anonymous and no personal information was 
collected or included in the study.

Bacterial Isolation and Species 
Identification
S. maltophilia isolates were collected from different hospitalized 
patients in selected hospitals in Iran over a 12-months period 
from May 2016 to May 2017. Laboratory identification of isolates 
was carried out using the standard biochemical methods, such 

as oxidase and catalase tests, and reactions in media, including 
deoxyribonuclease test agar (Merck Cat. No.1.10449.0500), triple 
sugar iron agar (Merck Cat. No 1.03915.0500), and SIM (Merck 
Cat. No1.05470.0500). Consequently, isolates were confirmed 
as S. maltophilia by using the 16S rRNA sequencing with 
specific primers (Table 1; Kettleson et  al., 2013). All isolates 
were stored in LB with 20% glycerol at −70°C. Escherichia 
coli ATCC 35218, Pseudomonas aeruginosa ATCC 27853,  
E. coli ATCC 25922, and S. maltophilia ATCC 13637 were 
used as the quality control strains.

Antimicrobial Susceptibility Testing
Susceptibility of isolates to different antibiotics was evaluated 
according to the criteria of the Clinical and Laboratory Standard 
Institute (Clinical and Laboratory Standards Institute (CLSI) 
(2016)). Kirby-Bauer disc diffusion method was used for 
susceptibility testing to imipenem (10 μg), meropenem (10 μg), 
doripenem (10  μg), levofloxacin (5  μg), minocycline (30  μg), 
trimethoprim-sulfamethoxazole (1.25/23.75  μg), ceftazidime 
(30  μg), and tetracycline (30  μg) (Mast, Company). Minimal 
inhibitory concentration (MIC) was determined by MIC-Test 
Strip (Liofilchem; Roseto degli Abruzzi, Italy) for four 
selected  antibiotics, including trimethoprim-sulfamethoxazole, 
chloramphenicol, ceftazidime, and ticarcillin-clavulanate. Quality 
control was performed using E. coli ATCC 35218 and E. coli 
ATCC 25922.

DNA Extraction
S. maltophilia isolates were grown on LB for 24  h at 37°C, 
and genomic DNA was extracted using the high pure PCR 
Template Preparation Kit (Roche, Germany, and Lot.
No.10362400) according to the manufacturer’s guidelines. The 
total DNA concentration was determined using the Nanodrop 
instrument (WPA Biowave II Nanospectrophotometer, USA).

PCR-Sequencing Technique
The presence of β-lactamase genes L1 and L2 as well as dfrA12, 
dfrA17, dfrA27, sul1, sul2, and Smqnr genes were examined 
using the primers shown in Table 1 (Levesque et  al., 1995; 
Hu et  al., 2011, 2016; Liu et  al., 2012; Kanamori et  al., 2015). 
As described previously (Hu et  al., 2011), PCR was conducted 
in a final volume of 25  μl containing 1  μl (20  ng) of DNA 
template and 12.5  μl of 2× Master Mix (SinaClon-Iran, CAT. 
No., PR901638), including 1× PCR buffer, 0.4  mmol/L dNTPs, 
3  mmol/L MgCl2, and 0.08  IU Taq DNA polymerase, 1  μl of 
10  pmol of each primer and 9.5  μl of sterile distilled water. 
Amplification reactions were performed on a thermal cycler 
(Eppendorf, Master Cycler Gradient, Germany). PCR was 
initiated by denaturation for 5 min 94°C, followed by 36 cycles 
of 45 s at 94°C, annealing at 50–59°C, according to the primers 
for each gene for 45  s, and extension at 72°C for 45  s. PCR 
products were electrophoresed by 1–1.5% agarose gel, visualized 
by DNA Safe staining and photographed under UV light. The 
PCR products were purified using a PCR purification Kit 
(Bioneer Co., Korea) and then, nucleotide sequencing of 
amplicons was performed by an ABI PRISM 3700 sequencer 
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(Macrogen Co., Korea). The sequenced data obtained was viewed 
in Chromas version 1.45 software. In addition, sequence 
alignment was conducted using the Nucleotide BLAST program1.

Phenotypic and Genotypic Detection of 
Biofilm Formation
Biofilm formation was examined by crystal violet staining as 
previously described by Stepanović et al. (2007). All experiments 
were performed in triplicate. An overnight culture of S. 
maltophilia was adjusted to match the turbidity of a 1.0 
McFarland standard. The cultures were then diluted 1:100  in 
200  ml tryptic soy broth (TSB) and were transferred into the 
wells of a flat-bottom polystyrene plate (SPL, Korea). After 
24  h incubation at 37°C, plates were washed three times with 
sterile phosphate buffered saline (PBS with pH 7.3). Adherent 
biofilms were fixed for 60  min at 65°C, stained for 10  min 
at room temperature with 250  ml modified crystal violet and 
then, rinsed with water and allowed to dry. Biofilm samples 
were destained by treatment with 250  ml 33% glacial acetic 
acid for 20  min and the optical density (OD) was read  
at 492  nm (OD492). Grouping of isolates was carried out 
according to the following criteria: strong-biofilm producer 

1 http://www.ncbi.nlm.nih.gov/nucleotide/

(4 × ODc < OD), moderate-biofilm producer (2 × ODc < OD 
_ 4 × ODc), weak-biofilm producer (ODc  <  OD _2 × ODc), 
and non-biofilm producer (OD _ ODc). In addition, the 
presence of rpfF, spgM, and rmlA genes was investigated by 
PCR with specific primers described in Table 1 (Pompilio 
et  al., 2011). Amplicons representing each studied gene was 
confirmed by sequencing analysis (Macrogen Korea). Obtained 
sequences were aligned in the NCBI database using BLAST 
program2.

RNA Preparation and qRT-PCR
TMP-SMX-resistant isolates were assessed for expression of 
SmeDEF efflux pump. Cell suspensions were prepared and 
inoculated on LB broth (Cho et  al., 2012). After an overnight 
growth, total RNA was extracted from the cell suspensions by 
using the RNX-Plus Kit (Cat. No., RN7713C, Sinaclon, Iran) 
according to the manufacturer’s instructions. The contaminating 
DNA was removed by RNase-free DNase I  (Fermentas, USA). 
The total RNA concentration was determined using the Nanodrop 
(WPA Biowave II Nanospectrophotometer, USA). DNase-treated 
RNA was reverse-transcribed into cDNA using the Takara Kit 
(Japan). The primers used for real-time PCR are shown in Table 2. 

2 http://www.ncbi.nlm.nih.gov/nucleotide/

TABLE 1 | Oligonucleotide primers used in this study.

Primers Sequences(5′_3′) Target References

16srRNA-F

16srRNA-R

AGTTCGCATCGTTTAGGG

ACGGCAGCACAGAAGAGC

16 s RNA (Di Bonaventura et al., 2010)

L1-F

L1-R

AGCCGTTAAAATTAAGCCC

CTTGATTGAAGGGTTGGGCG

L1 (Flores-Trevino et al., 2014)

L2-F

L2-R

CGACAATGCCGCAGCTAACC

CAGAAGCAATTAATAACGCCC

L2 (Flores-Trevino et al., 2014)

Smqnr-F

Smqnr-R

ACACAGAACGGCTGGACTGC

TTCAACGACGTGGAGCTGT

Smqnr (Kanamori et al., 2015)

sul1-F

sul1-R

ATGGTGACGGTGTTCGGCATTCTGA

CTAGGCATGATCTAACCCTCGGTC

sul1 (Hu et al., 2008)

sul2-F

sul2-R

GAAGCGCAGCCGCAATTCAT

CCTGTTTCGTCCGACACAGA

sul2 (Hu et al., 2008)

spgM-F

spgM-R

ATACCGGGGTGCGTTGAC

CATCTGCATGTGGATCTCGT

spgM (Madi et al., 2016)

rpfF-F

rpfF-R

CACGACAGTACAGGGGACC

GGCAGGAATGCGTTGG

rpfF (Madi et al., 2016)

rmlA-F

rmlA-R

CGGAAAAGCAGAACATCG

GCAACTTGGTTTCAATCACTT

rmlA (Madi et al., 2016)

dfrA12-F

dfrA12-R

TTAGCCGTTTCGACGCGCAT

ATGAACTCGGAATCAGTACGC

dfrA12 (Hu et al., 2008)

dfrA17-F

dfrA17-R

GTTAGCCTTTTTTCCAAATCTGGTATG

TTGAAAATATTATTGATTTCTGCAGTG

dfrA17 (Hu et al., 2008)

DfrA27-F

DfrA27-R

AAGAGTCTGATCGCCCATGCCG

TAAAGCAATAACTTACAATC

dfrA27 (Hu et al., 2008)

SmeD-F

SmeD-R

CGGTCAGCATCCTGATGGA

TCAACGCTGACTTCGGAGAACT

smeDEF (Cho et al., 2012)

rDNA-F

rDNA-R

TGACACTGAGGCACGAAAGC

CATCGTTTAGGGCGTGGACTA

smeDEF (Cho et al., 2012)
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Real-time PCR assay was performed on synthesized cDNA 
using the Power SYBR Green PCR Master Mix (Bioneer, Korea) 
on a Corbett Rotor-Gene 6000 real-time rotary analyzer (Corbett 
Life Science, Australia). Each amplification protocol included 
a first denaturation step of 10 min at 94°C, followed by 40 cycles 
of 20 s at 94°C and 45 s at 59°C. Samples were run in triplicate. 
Controls run without reverse transcriptase confirmed the absence 
of contaminating cDNA in any of the samples. The expression 
level of smeD gene was normalized using the rDNA housekeeping 
gene, and was calculated based on 2−ΔΔCT method. Results were 
obtained as the relative expression of the mRNA compared 
to that of S. maltophilia ATCC 13637. The parameter Ct was 
defined as the threshold cycle number at which the first 
detectable fluorescence generated by the binding of SYBR Green 
I  dye to the minor groove of double-stranded DNA began to 
increase exponentially. Final results, expressed as n-fold 
differences in expression of smeD genes, were determined 
as follows:

n
smeD

rDNA
- =fold differences in gene expression

Ct sample

Ct sammple
Ct calibrator

calibrator

/

smeD

Ct rDNA

Values of n  <  1 were considered to indicate overexpression 
of the Sme efflux system.

Molecular Typing by Multi-Locus 
Sequence Typing
Multi-Locus Sequence Typing (MLST) technique was performed 
as the same as described by Kaiser et  al. (2009). Briefly, PCR 
for seven housekeeping genes, including atpD, guaA, gapA, 
nuoD, ppsA, mutM, and recA was carried out. Amplicons were 
sequenced according to the PubMLST website recommendations3. 
Unique sequence (allele) number for each gene was assigned 
on the basis of the information in the S. maltophilia MLST 
database4 to determine specific sequence type (ST). A combination 

3 http://pubmlst.org/smaltophilia/
4 http://pubmlst.org/smaltophilia/

of the allelic sequences of the seven genes yielded the allelic 
profile for each isolate.

Molecular Typing by Repetitive Extragenic 
Palindromic-Pcr
Rep-PCR analyses were conducted with the single primer 
BoxA1R (5′-CTA CGG CAA GGC GAC GCT GAC G-3′) 
according to Versalovic et  al. (1994). The PCR reaction mix 
consisted of 25  μl total volume with 12.5  μl of 2× Master 
Mix (Genet Bio Cat.No:G-5000) containing 1 unit of Taq 
polymerase in 2× reaction buffer, 10% dimethyl sulfoxide 
(DMSO), enzyme stabilizer, sediment, loading dye, 4  mM 
MgCl2, pH 9.0 and 0.5  mM of each dNTP, 5  μM of primer, 
and 1  μl of cell extract. Thermal cycling was conducted with 
an initial denaturation at 94°C for 10  min, followed by 
25  cycles of 94°C for 45  s, 50°C for 1.5  min, 65°C for 
8  min each, and concluded by a final extension of 65°C for 
16  min. To determine phylogenetic relationships, rep-PCR 
profiles were analyzed by GelCompar II software (Applied 
Maths, Belgium) using the Pearson’s correlation coefficient 
with unweighted paired group method using arithmetic 
averages  (UPGMA) as well as at the 80% similarity level 
(Adamek  et  al.,  2011).

Statistical Analysis
Chi-squared test was performed on the association of TMP-SMX 
resistance phenotype and resistance genes using SPSS software, 
20.0 (SPSS Inc., Chicago, IL, USA). The Pearson’s correlation 
coefficient was calculated to determine the association between 
two variables. A significant level of p = 0.05 was considered 
statistically significant.

RESULTS

Patients and Bacterial Isolates
During 1-year period of study, 164  S. maltophilia isolates were 
collected from several hospitals in different regions of Iran 
(Figure 1).

Among the 164 isolates obtained, 88 were from males  
and 76 were from females (male:female ratio  =  1.15).  

TABLE 2 | Antibiotic susceptibility of the S. maltophilia clinical isolates (n = 164).

Antimicrobial agents
MIC (μg/ml) Disc diffusion Number (%)

Range MIC50 MIC90 Susceptible Intermediate Resistant

Imipenem – – – – – 164 (100%)
Meropenem – – – 6 (3/65%) – 158 (96%)
Doripenem – – – 6 (3/65%) – 158 (96%)
Ceftazidime 0.5–64 16 32 34 (20/73%) 16 (9/75%) 114 (69/51%)
Tetracycline – – – 131 (79%) – 33 (20%)
Minocycline – – – 150 (91/46%) 14 (8/53%) 0 (0%)
Levofloxacin – – – 163 (99/39%) 1 (0/6%) 0 (0%)
TMP/SMX 0.64– ≥ 32 0.5 ≤2.38 155 (94/51%) 4 (2/43%) 5 (3/04%)
Chloramphenicol 0.5–128 16 ≥32 – – –
Ticarcillin-clavulanate 0.5–128 16 64 – – –
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The age range of patients was from 1  month to 85  years. The 
majority of the isolates were originated from blood (83.53%), 
followed by nose/throat secretions (5.48%), cough swabs (9.75%), 
sputum (0.6%), and CSF (0.6%).

Antibiotic Susceptibility Profile
Based on CLSI interpretive criteria (Clinical and Laboratory 
Standards Institute (CLSI) (2016)), isolates were resistant to 

imipenem (100%), meropenem (96%), doripenem (96%), and 
ceftazidime (36.58%). Interestingly, 5 (3.04%) isolates showed 
resistance to TMP-SMX. Minocycline and levofloxacin exhibited 
the highest susceptibility of 91.46 and 99.39%, respectively. 
The MIC ranges, MIC50, MIC90, and the percentages of isolates 
resistant, intermediate, or susceptible isolates to the six 
antimicrobial agents are shown in Table 2.

Biofilm Phenotypes and Genotypes
Biofilm phenotypes accounted for 157 out of 164 isolates (95.73%): 
49 isolates (29.87%) produced strong biofilm, 63 isolates (38.41%) 
produced moderate biofilm, and 45 isolates (27.43%) produced 
weak biofilm; whereas, 7 isolates (4.26%) did not form biofilm 
(Figure 2). PCR-based typing of biofilm-related genes revealed 
an overall prevalence of 145 (88.41%), 137 (83.53%), and 164 
(100%) of rmlA, rpfF, and spgM, respectively. In addition, the 
presence of rmlA, rpfF, and spgM had a close relationship with 
biofilm formation but did not significantly affect the mean amount 
of biofilm (p  ≤  0.05). Some strong- and weak biofilm-producer 
phenotypes had mutations within the sequence of each rpfF, 
spgM, and rmlA genes.

Prevalence of Resistance Genes
Prevalence of resistance genes among 164 S. maltophilia isolates 
are shown in Table 3.

Of the 145 isolates that were positive for L1, all 145(100%) 
and 139(92.3%) showed resistance to imipenem and meropenem, 
respectively. Amongst 156 isolates carrying the L2 gene, all 
(100%) were imipenem resistant and 150 (91.1%) were 

FIGURE 1 | S. maltophilia strains isolated from Iran.  4 isolates from Birjand.  87 isolates from Tehran: Capital of Iran.  32 isolates from Ahwaz.  20 isolates from 
Shiraz.  14 isolates from Bandar Abbas.  4 isolates from Zahedan.  1 isolate from Kerman.  1 isolate from Gorgan.  1 isolate from Qom.

FIGURE 2 | Distribution of S. maltophilia isolates based on the biofilm 
formation in crystal violet staining assay.
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meropenem-resistant (p ≤ 0.001). In addition, 54.19% (89/155) 
and 58.70% (91/155) TMP-SMX-susceptible isolates and 100% 
(5/5) and 20% (1/5) TMP-SMX-resistant isolates were detected 
to contain the sul1, and sul2 genes, respectively.

Gene Expression Analysis of smeDEF
Real-time PCR analysis was used to assess the expression of 
SmeDEF efflux system in TMP-SMX-resistant S. maltophilia 
isolates (MIC > 4/76  μg/ml). Results showed that smeD gene 
was overexpressed (5.47–7.87 fold) in two out of five isolates 
(40%) in comparison to the S. maltophilia ATCC 13637 
standard strain.

MLST Analysis
As shown in Table 4, five TMP-SMX-resistant S. maltophilia 
isolates belonged to two different STs, ST139 and ST259. 
This is the first report on the detection of ST139 and ST259 
from Iran. In addition, ST259 (n  =  2) with allelic profile 
(26, 14, 140, 103, 3, 8, 11) was not previously reported. New 
allele sequences were deposited at the MLST Database hosted 
by  the Shahid Beheshti University of Medical Science, 
Tehran,  Iran5.

Rep-PCR Fingerprinting
To evaluate the genetic diversity, all 164  S. maltophilia isolates 
were subjected to rep-PCR fingerprinting. As shown in Figure 3, 
isolates were divided into 16 common types (CT) containing 
2–5 isolates and 114 single types (ST). Among these numerous 
clones, a dominant one was isolated from Ahwaz and from 
blood samples. The genotypic pattern of the dominant clone 
revealed that all isolates harbored sul1 gene.

Nucleotide Sequence Accession Numbers
The nucleotide sequence data reported in this study were 
submitted to the GenBank sequence database and assigned 
under the accession numbers: MF458984, MF497329, MG601517, 
MG640120, MG648332, MG597493, MF805867, MG640120, 
MG560825, MG597494, MG640119, and MG601518 for the 

5 http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_smaltophilia_isolates&page= 
query

L1, L2, sul1, sul2, smqnR, atpD, gapA, guaA, mutM, nuoD, 
ppsA, and recA genes, respectively.

DISCUSSION

The emergence of S. maltophilia as a nosocomial pathogen in 
hospitals with intrinsic resistance to multiple antibacterial agents, 
including carbapenems, aminoglycosides, β-lactams, and 
quinolones have caused great concern (Farrell et  al., 2010). 
Additionally, some strains have acquired resistance, leading to 
limited antimicrobial options (Wang et  al., 2013; 
Gholipourmalekabadi et  al., 2016). In Iran, decades of misuse 
of antibiotics resulted in high prevalence of antibiotic resistance 
in bacteria (Habibzadeh, 2013; Saniee et  al., 2018).

Global infectious disease surveillance stipulated that resistance 
rates for trimethoprim–sulfamethoxazole, ticarcillin-clavulanic 
acid, levofloxacin, and minocycline in S. maltophilia isolates 
are less than 4.7, 16.1, 6.5 and 5%, respectively (Sader and 
Jones, 2005). Among the 164 clinical isolates of S. maltophilia 
studied in the present study, a significant percentage was 
resistant to carbapenems (p ≤ 0.001). Resistance to carbapenems 
in S. maltophilia occurs through several mechanisms, including 
intrinsic β-lactamase expression. In this study, 145 (88.41%) 
and 156 (96.12%) isolates harbored L1-and L2- β-lactamase 
genes, respectively. Also, the results indicate that the susceptibility 
rate of S. maltophilia isolates against ceftazidime was 20.73%, 
with the MIC50 and MIC90 of 8 and 32  μg/ml, a figure that 
was in agreement with previous findings (Nicodemo and Paez, 
2007). A study by Jamali et  al. showed that susceptibility of 
S. maltophilia against ceftazidime was 82% with the MIC50 
and MIC90 values of 2 and 32 μg/ml, respectively (Jamali et al., 
2011). Shahla et  al. indicated that among 11 isolate of S. 
maltophilia, 91.4% were susceptible to ceftazidime (Shahla et al., 
2012). In a study by Pfaller, the susceptibility in Canada, United 
States, and Latin America was respectively 27, 64.7, and 93.3% 
and Tatmanin Turkey showed the susceptibility of 67% for 
this drug (Pfaller et  al., 1999; Tatman-Otkun et  al., 2005). A 
study by Farrell et  al. conducted in North America, Latin 
America, Europe, and Asian-Pacific reported a susceptibility 
rate of 27.0–46.1% to ticarcillin-clavulanate among S. maltophilia 
isolates (Farrell et  al., 2010). The present study showed 

TABLE 3 | Prevalence of resistance genes among 164 S. maltophilia strains isolated from Iran.

Resistance Genes, No. (%)

L1 L2 Smqnr sul1 sul2 dfrA12 dfrA17 dfrA27

145 (88.41%) 156 (96.12%) 103 (62.80%) 89 (54.26%) 92 (56.09%) 0 (0%) 0 (0%) 0 (0%)

TABLE 4 | Sequence type (ST) of TMP-SMX-resistant S. maltophilia clinical isolates recovered in the present study.

Number of 
isolates

atpD gapA guaA mutM nuoD ppsA recA ST

3 allele 3 allele 4 allele 110 allele 46 allele 6 allele 38 allele 58 139
2 allele 26 allele 14 allele 140 allele 103 allele 3 allele 8 allele 11 259
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FIGURE 3 | Continued
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susceptibility rate of 57.92% to ticarcillin-clavulanate. MIC50 
and MIC90 for ticarcillin-clavulanate was 12 and 128  μg/ml. 
A study in a Brazilian hospital showed the susceptibility pattern 
of S. maltophilia against chloramphenicol differs from 11.5 to 
81.4% (Nicodemo and Paez, 2007). In our study, 7.31% of 
isolates were found to be  susceptible to this antibiotic with 
MIC50 and MIC90 of 24 and 64  μg/ml. This variety in results 
designate that the susceptibility of S. maltophilia is variable 
in different countries and even in different hospitals. Other 
therapeutic alternatives, such as levofloxacin and minocycline, 
which have been reported as effective agents for treatment of 
invasive S. maltophilia infections (Wu et  al., 2012, 2013; Cho 
et  al., 2014), showed susceptibility rates of 99.39 and 96.41% 
in our study. Although the prevalence of minocycline and 
levofloxacin-resistant S. maltophilia is low worldwide, continued 
surveillance of resistance to such antimicrobials ensures 
their activity.

Historically, TMP-SMX is considered the first line of defense 
in S. maltophilia infections (Chung et  al., 2015; Kaur et  al., 
2015). Results from the SENTRY Antimicrobial Surveillance 
Program in 2004 indicated that 3.8% of S. maltophilia isolates 
were resistant to TMP-SMX (Fedler et  al., 2006). Moreover, 
the resistance rate reported for Latin America, Argentina, and 
Malaysia were approximately less than 4.5 and 1% (Barbolla 
et  al., 2004; Farrell et  al., 2010; Neela et  al., 2012). Resistance 
rates vary geographically but are commonly less than 10% 
reported in several studies (Kaur et  al., 2015). However, high 
and different rates of resistance have been reported in patients 
with cancer and cystic fibrosis (Valenza et al., 2008). In different 
studies by Shahla et al. (2012), Hu et al. (2016), Tatman-Otkun 
et  al. (2005), Wang et  al. (2004), Nicodemo et  al. (2004), and 
Kaur et  al. (2015), the susceptibility rates were reported 47.3, 
61.3, 95.8, 60, 98.6, and 22.6%, respectively. Jamali et al. showed 
about 60% susceptibility rate for TMP-SMX and the MIC50 
and MIC90 values were 0.5 and 2  μg/ml (Jamali et  al., 2011). 
In our study, based on the CLSI recommended dose of TMP-SMX, 
the resistance rate of 3.04% and the MIC50% and MIC90% values 
of 2.38 and 4.76 were found, respectively. We  believe that this 
resistance rate for TMP-SMX, as the treatment of choice for 
S. maltophilia infection, is sustainable, making necessary the 
future successive reevaluation of susceptibility to this antibiotic 
in Iranian hospitals.

The well-known mechanism responsible for TMP-SMX 
resistance is harboring the sul1, sul2, and/ordfrA resistance 
genes located either on a chromosome or plasmid (Hu et  al., 
2011). In this study, sul1 and sul2 genes were detected  
in both TMP-SMX-resistant and TMP-SMX-susceptible 
S. maltophilia clinical isolates. Additionally, antimicrobial efflux 
pump mechanisms have been increasingly recognized as sources 
of intrinsic and acquired resistance (Song et  al., 2010; Hu 
et al., 2011; Gholami et al., 2015). As reported in other studies, 
the frequency of sul2 gene in S. maltophilia strains is less 
than that of sul1 gene (Song et  al., 2010; Hu et  al., 2011). 

These reports are contrary to the results of our study, where 
a higher percentage of sul2 and sul1 (56.9 and 54.26%, 
respectively) was observed. Furthermore, both sul1 and sul2 
genes were found in TMP-SMX -susceptible and –resistant 
isolates. Similar to our study, Kaur et  al. indicated that the 
percentage of sul1 and sul2 were 50 and 58.3%, respectively 
(Kaur et  al., 2015). In addition, none of the isolates tested 
were positive for dfrA12, dfrA17, and dfrA27. In contrast, a 
study showed that 49.1% of TMP-SMX-resistant isolates and 
10.3% of TMP-SMX-susceptible isolates were positive for dfrA 
genes, among them dfrA12 and dfrA17 genes were more 
prevalent (Hu et  al., 2016). Previous reports indicated that 
overexpression of the SmeDEF efflux system in S. maltophilia 
plays a significant role in resistance to several antibacterials, 
including aminoglycosides, β-lactams, and quinolones (Chang 
et al., 2004; Cho et al., 2012). The results showed overexpression 
of smeD in 2 (40%) of the 5 TMP-SMX-resistant clinical 
isolates. Sanchez et  al. showed that overexpression of the 
SmeDEF efflux pump decreases the susceptibility to TMP-SMX 
(Sánchez and Martínez, 2015).

An important feature of S. maltophilia is its ability to form 
biofilms on hospital surfaces as well as on human tissues; 
biofilms have been related to 65% of hospital-acquired infections 
(Zhuo et  al., 2014). In this study, the majority of isolates 
were biofilm-producer as well as biofilm-related gene (rpfF, 
rmlA and spgM) carrier. In a study by Flores-Trevino et  al., 
they showed that all S. maltophilia isolates were able to form 
biofilm and 47.9, 38.7, and 13.4% of the isolates were weak-, 
moderate-, and strong-biofilm producers, respectively (Flores-
Trevino et  al., 2014). Zhou et  al. showed that the results of 
a biofilm formation assay on polystyrene was strong in 49 
(29.87%) strains, moderate in 63 strains (38.41%), and weak 
in 45 (27.43%) strains, while nine strains (4.26%) were 
non-biofilm former. Furthermore, the presence of rpfF and 
spgM was significantly correlated to biofilm formation. Pompilio 
et  al. reported that spgM gene played a significant role in 
formation of strong biofilm among S. maltophilia isolates (Zhuo 
et  al., 2014). Similarly, the presence of rmlA, rpfF, and spgM 
genes in the present study improved significantly biofilm 
formation by S. maltophilia isolates tested (p  ≤  0.05). Indeed, 
the isolates with rpfF+/spgM+/rmlA+ genotype were associated 
with production of moderate or strong biofilm. In addition, 
amino acid substitution in genes encoding SpgM, RpfF and 
RmlA were found among some strains (Corlouer et  al., 2017). 
However, it is still unclear which gene mutation results to 
change in biofilm formation.

High genetic diversity among S. maltophilia isolates has been 
described worldwide. Although occurrences of outbreaks within 
hospital settings have also been reported (Flores-Trevino et  al., 
2014). Recently, molecular epidemiologic studies, like MLST is 
developed for S. maltophilia strain-typing that focuses on conserved 
housekeeping genes (Corlouer et al., 2017). In the present study, 
MLST analysis was performed for determining genetic diversity 

FIGURE 3 | Dendrogram based on Dice’s coefficient of similarity using UPGMA method applied by the GelComparII program showing relationships between  
S. maltophilia strains according to BOX-PCR genotyping.
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of five TMP-SMX-resistant isolates. The results revealed two 
STs (ST139 and ST259), of which ST259 was identified for the 
first time in this study. Similarly, studies in Spain in 2004, and 
Korea in 2010, a high rate of genetic diversity among S. maltophilia 
isolates despite their source in a single hospital (Valdezate et al., 
2004; Cho et  al., 2012; Corlouer et  al., 2017). These findings 
indicate that S. maltophilia has a high potential for environmental 
distribution, although database analysis shows that there are 
noticeably fewer STs for S. maltophilia isolates than other bacterial 
isolates. Rep-PCR fingerprinting is a method with lower cost 
and the best time efficiency. According to the cluster analysis 
of S. maltophilia strains, this study detected high clonal diversity 
among the isolates. The only exception is the dominant common 
type including strains isolated from blood culture of patients 
hospitalized in Ahwaz. In addition, all these isolates harbored 
sul1 gene. As a result, the presence and spread of these strains 
with resistance gene could be  a significant threat.

CONCLUSIONS

This multi-institutional study revealed that S. maltophilia is an 
emerging MDR opportunistic pathogen in hospital settings, 
especially among immunocompromised patients. TMP-SMX 
remains the most effective antibacterial agent against S. maltophilia. 
So, a significant effort is required to maintain antibacterial 
properties of this antibiotic. Due to the low prevalence of resistance 
to two antibiotics levofloxacin and minocycline, clinical usage 
of these agents can be  continued. The findings of this study 

showed an increasing presence of antibacterial resistance-and 
biofilm genes among the clinical isolates of S. maltophilia strains 
in Iran. Clinicians must consider that S. maltophilia as a co-pathogen 
or co-colonizer in polymicrobial infections can have negative 
effect on the success rate of antibacterial treatment and clinical 
outcome. In our opinion, this is significant medical problem, 
which should be  of great concern.
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