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Abstract: This paper studies the leader-following consensus problem in continuous-time multi-agent
networks with communications/updates occurring only at random times. The time between two
consecutive controller updates is exponentially distributed. Some sufficient conditions are derived
to design the control law that ensures the leader-following consensus is asymptotically reached (in
the sense of the expected value of a stochastic process). The numerical examples are worked out to
demonstrate the effectiveness of our theoretical results.
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1. Introduction

In recent years, we witnessed increasing attention on the distributed cooperative control of
dynamic multi-agent systems due to their vast applications in various fields. In many situations,
groups of dynamic agents need to interact with each other and their goal is to reach an agreement
(consensus) on a certain task. For example, it can be flocking of birds during migration [1,2] to
eventually reach their destinations; or robot teams synchronized in order to accomplish their collective
tasks [3,4]. The main challenge for distributed cooperative control of multi-agent systems is that
interaction between agents is only based on local information. There already exists a vast literature
concerning first-order [3,5], second-order [6,7], and fractional-order [8–10] networks. For a survey of
the recent results, we refer the reader to [11]. Within different approaches to the consensus problem in
multi-agent networks, one can find continuous-time agents’ state evolving (the state trajectory is a
continuous curve) [3,5,12,13], discrete-time agents’ state evolving (the state trajectory is a sequence of
values) [14–19], and both continuous and discrete-time agents’ state evolving (the domain of the state
trajectory is any time scale) [20–23]. An important question connected with the consensus problem is
whether the communication topology is fixed over time or is time-varying; that is, communications
channels are allowed to change over time [24]. The latter case seems to be more realistic; therefore,
scientists mostly focus on it. Going farther, in real-word situations, it may happen that agents’ states
are continuous but an exchange of information between agents occurs only at discrete time instants
(update times). This issue was already addressed in the literature [25]. In this paper we also investigate
such a situation. However, our approach is new and more challenging: we consider the case when
agents exchange information between each other at random instants of times. Another question to
be answered is whether the consensus problem is considered with or without the leader. Based on
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the existence of a leader, there are two kinds of consensus problems: leaderless consensus and
leader-following consensus. This last-mentioned problem relies on establishing conditions under
which, through local interactions, all the agents reach an agreement upon a common state (consensus),
which is defined by the dynamic leader. A great number of works have been already devoted to the
consensus problem with the leader (see, e.g., [24,26–28] and the references given there).

In the present paper, we investigate a leader-following consensus for multi-agent systems. It is
assumed that the agents’ state variables are continuous but exchange information between them occurs
only at discrete time instants (update times) appearing randomly. In other words, the consensus
control law is applied at those update times. We analyze the case when a sequence of update times is a
sequence of random variables and the waiting time between two consecutive updates is exponentially
distributed. To avoid unnecessary complexity, we assume that the update times are the same for all
agents. Combining of continuity of state variables with discrete random times of communications
requires the introduction of an artificial state variable for each agent that evolves in continuous-time
and is allowed to have discontinuities; the primary state variable is continuous for all time. Between
update times, both the original state and the artificial variable evolve continuously according to some
specified dynamics. At randomly occurring update times, the state variable keeps its current value,
while the artificial variable is updated by the state values received from other agents, including the
leader. It is worth noting that, in the case of deterministic update times, known initially, the idea of
artificial state variables is applied in [15,16,25]. The presence of randomly occurring update times in
the model leads to a total change of the behavior of the solutions. They are changed from deterministic
real valued functions to stochastic processes. This requires combining of results from the probability
theory with the ones of the theory of ordinary differential equations with impulses. In order to
analyze the leader-following consensus problem, we define the state error system and a sample path
solution of this system. Since solutions to the studied model of a multi-agent system with discrete-time
updates at random times are stochastic processes, asymptotically reaching leader-following consensus
is understood in the sense of the expected value.

The paper is organized in the following manner. In Section 2, we describe the multi-agent system
of our interest in detail. Some necessary definitions, lemmas, and propositions from probability theory
are given in Section 3. Section 4 contains our main results. First, we describe a stochastic process that
is a solution to the continuous-time system with communications at random times. Next, sufficient
conditions for the global asymptotic leader-following consensus in a continuous-time multi-agent
system with discrete-time updates occurring at random times are proven. In Section 5, an illustrative
example with numerical simulations is presented to verify theoretical discussion. Some concluding
remarks are drawn in Section 6.

Notation: For a given vector x ∈ Rn, ‖x‖ stands for its Euclidean norm ‖x‖ =
√

xTx. For a given
square n× n matrix, A = [aij], ‖A‖ stands for its spectral norm ‖A‖ =

√
maxi{λi}, where λi are the

eigenvalues of A.AT . We have ‖A‖ ≤ n maxi,j |aij| and ‖eA‖ ≤ e‖A‖.

2. Statement of the Model

We consider a multi-agent system consisting of N agents and one leader. The state of agent i is
denoted by yi : [t0, ∞)→ R, i = 1, . . . , N, and the state of the leader by yr : [t0, ∞)→ R, where t0 ≥ 0
is a given initial time. Without information exchange between agents, the leader has no influence on
the other agents (see Example 1, Case 1.1, and Example 2, Case 2.1). In order to analyze the influence
of the leader on the behavior of the other agents, we assume that there is information exchange
between agents but it occurs only at random update times. In other words, the model is set up as the
continuous-time multi-agent system with discrete-time communications/updates occurring only at
random times.

Let us denote by (Ω,F , P) a probability space, where Ω is the sample space, F is a σ-algebra on Ω,
and P is the probability on F . Consider a sequence of independent, exponentially-distributed random
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variables {τk}∞
k=1 with parameter λ > 0 and such that ∑∞

k=1 τk = ∞ with a probability 1. Define the
sequence of random variables {ξk}∞

k=0 by

ξ0 = t0, ξk = t0 +
k

∑
i=1

τi, k = 1, 2, . . . , (1)

where t0 is a given initial time. The random variable τk measures the waiting time of the k-th event
time after the (k− 1)-st controller update occurs and the random variable ξk is connected with the
random event time and it denotes the length of time until k controller updates occur for t ≥ t0. At each
time ξk agent i updates its state variable according to the following equation:

∆yi(ξk) = ui(ξk) , i = 1, ..., N , k = 1, 2, . . . ,

where ui : R → R is the control input function for the i-th agent. Here, ∆yi(ξk) is the difference
between the value of the state variable of the i-th agent after the update yi(ξk + 0) and before it yi(ξk);
i.e., ∆yi(ξk) = yi(ξk + 0)− yi(ξk). The state of the leader remains unchanged; that is,

∆yr(ξk) = 0.

For each agent i we consider the control law, at the random times ξk, k = 1, 2, . . . , based on the
information it receives from its neighboring agents and the leader:

ui(ξk) = −
[

N

∑
j=1

aij(τk)
(
yi(ξk)− yj(ξk)

)
+ ωi(τk) (yi(ξk)− yr(ξk))

]
, k = 1, 2, . . . ,

where weights aii(t) ≡ 0, i = 1, 2 . . . , N, and aij(t) ≥ 0, t ≥ t0, i, j = 1, 2, . . . , N, are entries of the
weighted connectivity matrix A(t) at time t:

A(t) =


0 a12(t) a13(t) . . . a1N(t)

a21(t) 0 a23(t) . . . a2N(t)
. . . . . . . . . . . . . . .

aN1(t) aN2(t) aN3(t) . . . 0

 ,

and ωi(t) > 0 if the virtual leader is available to agent i at time t, while ωi(t) = 0 otherwise. Between
two update times ξk−1 and ξk, any agent i has information only about his own state. More precisely,
the dynamics of agent i are described by

y′i(t) = −(bi(τk)− ci(τk))yi(t), for t ∈ (ξk−1, ξk], i = 1, 2, . . . , N, k = 1, 2, . . . ,

where bi ∈ C([t0, ∞), (0, ∞)), ci ∈ C([t0, ∞), [0, ∞)), i = 1, ..., N.
The leader for the multi-agent system is an isolated agent with constant reference state

y′r(t) = 0.
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Observe that the model described above can be written as a system of differential equations with
impulses at random times ξk, k = 1, 2, . . . , and waiting time between two consecutive updates τk
as follows:

y′r(t) = 0 for t ∈ (ξk−1, ξk],

y′i(t) = −(bi(τk)− ci(τk))yi(t) for t ∈ (ξk−1, ξk],

∆yr(ξk) = 0,

∆yi(ξk) = −
[

N

∑
j=1

aij(τk)
(
yi(ξk)− yj(ξk)

)
+ ωi(τk) (yi(ξk)− yr(ξk))

]
,

k = 1, 2, . . . , i = 1, . . . , N,

(2)

with initial conditions
yr(t0) = y0

r , yi(t0) = y0
i , i = 1, 2, . . . , N. (3)

We introduce an additional (artificial) variable Yi for each state yi, i = 1, 2, . . . , N, such that it has
discontinuities at random times ξk and Yr = yr. These variables allow us to keep the state of each
agent yi, i = 1, 2, . . . , N, as a continuous function of time. Between two update times ξk−1 and ξk the
evolution of Yi and Yr are given by

Y′i (t) = (bi(τk)− ci(τk))Yi(t), i = 1, 2, . . . , N, Y′r(t) = 0. (4)

Then, by Equations (2) and (4), we obtain

y′i(t) + Y′i (t) = −(bi(τk)− ci(τk))yi(t) + (bi(τk)− ci(τk))Yi(t)

= −bi(τk)(yi(t)−Yi(t)) + ci(τk)(yi(t)−Yi(t)), i = 1, . . . , N.

Consequently, we get the following system:

y′i(t) = −bi(τk)(yi(t)−Yi(t)), i = 1, . . . , N,

Y′i (t) = ci(τk)(yi(t)−Yi(t)), i = 1, . . . , N,

y′r(t) = 0, Y′r(t) = 0 for t ∈ (ξk−1, ξk], k = 1, 2 . . . .

(5)

At each update time we set:

yi(ξk + 0) = yi(ξk), i = 1, . . . , N, k = 1, 2, . . . ,

Yi(ξk + 0) = −
[

N

∑
j=1

aij(τk)
(
Yi(ξk)− yj(ξk)

)
+ ωi(τk) (Yi(ξk)− yr(ξk))

]
+ Yi(ξk),

i = 1, . . . , N, k = 1, 2, · · · ,

yr(ξk + 0) = yr(ξk), Yr(ξk + 0) = Yr(ξk), k = 1, 2, . . . .

(6)

The initial conditions for (5) and (6) are:

yr(t0) = y0
r , yi(t0) = y0

i , i = 1, 2, . . . , N, Yi(t0) = y0
r , i = 1, 2, . . . , N, Yr(t0) = y0

r . (7)

Observe that dynamics described by (5) lead to a decrease of the absolute difference between a state
variable yi and an artificial variable Yi, i = 1, 2, . . . , N. Whereas by (6), the value of Yi is updated using
the information received, while yi remains unchanged. Therefore, Equations (5) and (6) provide a
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formal description of the multi-agent system with continuous-time states of agents and information
exchange between agents occurring at discrete-time instants.

Let xi(t) := yi(t)− yr(t), Xi(t) := Yi(t)− yr(t), i = 1, 2, . . . , N, be errors between any state yi or
Yi, and the leader state yr, at time t. Then, by (5)–(7), one gets the following error system:

x′i(t) = −bi(τk)(xi(t)− Xi(t)), i = 1, . . . , N,

X′i(t) = ci(τk)(xi(t)− Xi(t)), i = 1, . . . , N, for t ∈ (ξk−1, ξk],

xi(ξk + 0) = xi(ξk), i = 1, 2, . . . , N,

Xi(ξk + 0) = dii(τk)Xi(ξk) +
N

∑
j=1

dij(τk)xj(ξk) + Xi(ξk),

i = 1, 2, . . . , N, k = 1, 2, . . . ,

xi(t0) = y0
i − y0

r , i = 1, 2, . . . , N, Xi(t0) = 0, i = 1, 2, . . . , N,

(8)

where coefficients dij are the entries of the matrix

D̃(t) =


−∑N

j=1 a1j(t)−ω1(t) a12(t) . . . a1N(t)
a21(t) −∑N

j=1 a2j(t)−ω2(t) . . . a2N(t)
. . . . . . . . . . . .

aN1(t) aN2(t) . . . −∑N
j=1 aNj(t)−ωN(t)

 ,

i.e.,

dij(t) = aij(t), i 6= j, i, j = 1, 2, . . . , N,

dii(t) = −
N

∑
j=1

aij(t)−ωi(t), i = 1, 2, . . . , N.

Now let us introduce the 2N × 2N-dimensional matrices

C(t) =



−b1(t) b1(t) 0 0 . . . 0 0
c1(t) −c1(t) 0 0 . . . 0 0

0 0 −b2(t) b2(t) . . . 0 0
0 0 c2(t) −c2(t) . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 −bN(t) bN(t)
0 0 . . . 0 0 cN(t) −cN(t)


,

and

D(t) =



0 0 0 0 0 0 . . . 0 0
0 d1,1(t) + 1 d1,2(t) 0 d1,3(t) 0 . . . d1,N(t) 0
0 0 0 0 0 0 . . . 0 0

d2,1(t) 0 0 d2,2(t) + 1 d2,3(t) 0 . . . d2,N(t) 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 . . . 0 0

dN,1(t) 0 dN,2(t) 0 dN,2(t) 0 . . . 0 dN,N(t) + 1


.
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Then, denoting Z = (x1, X1, x2, X2 . . . , xN , XN)
T , we can write error system (8) in the following

matrix form:

Z′(t) = C(τk)Z(t), for t ∈ (ξk−1, ξk], k = 1, 2, . . . ,

Z(ξk + 0) = D(τk)Z(ξk), k = 1, 2, . . . ,

Z(t0) = Z0,

(9)

where Z0 = (x0
1, 0, x0

2, 0, . . . , x0
N , 0)T ∈ R2N , x0

i = y0
i − y0

r , i = 1, 2, . . . , N.

3. Some Preliminary Results from Probability Theory

In this section, having in mind the definitions of random variables {τk}∞
k=1 and {ξk}∞

k=1, given in
Section 2, we list some facts from probability theory that will be used in the proofs of our main results.

Proposition 1 ([29]). The random variable Ξ = ∑k
i=1 τi is Erlang distributed with a probability density

function fΞ(t) = λe−λt (λt)k−1

(k−1)! and cumulative distribution function F(t) = P(Ξ < t) = 1− e−λt ∑k−1
j=0

(λt)j

j! .

Let t ≥ t0 be a fixed point. Consider the events

Sk(t) = {ω ∈ Ω : ξk−1(ω) < t < ξk(ω)}, k = 1, 2, . . .

and define the stochastic processes ∆k(t), k = 1, 2, . . . , by

∆k(t) =

{
1 for ω ∈ Sk(t)
0 for ω /∈ Sk(t)

.

Note that, for any fixed point t and any element ω ∈ Ω, there exists a natural number k such that
ω ∈ Sk(t) and ω /∈ Sj(t) for j 6= k, or for any fixed point t there exists a natural number k such that
∆k(t) = 1 and ∆j(t) = 0 for j 6= k.

Lemma 1 ([30] Lemma 2.1). Let {τk}∞
k=1 be independent, exponentially-distributed random variables with a

parameter λ and ξk = t0 + ∑k
i=1 τi. Then,

E
(
∆k(t)

)
=

λk(t− t0)
k

k!
e−λ(t−t0), for t ≥ t0 and k = 1, 2, . . . ,

where E{.} denotes the mathematical expectation.

Corollary 1 ([30]). The probability that there will occur exactly k controller updates of each agent until the
time t, t ≥ t0, is given by the equality

P(Sk(t)) =
λk(t− t0)

k

k!
e−λ(t−t0).

Definition 1 ([29]). We say that the stochastic processes m and n satisfy the inequality m(t) ≤ n(t),
for t ∈ J ⊂ R, if the state space of the stochastic processes v(t) = m(t)− n(t) is (−∞, 0].

Proposition 2 ([29]). If the stochastic processes y and u satisfy the inequality m(t) ≤ n(t) for t ∈ J ⊂ R,
then E(m(t)) ≤ E(n(t)) for t ∈ J.

Proposition 3 ([29]). Let a > 0 be a real constant and τ be an exponentially-distributed random variable with
parameter λ > a. Then, E(eaτ) = λ

λ−a .
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4. Leader-Following Consensus

Consider the sequence of points {tk}∞
k=1, where the point tk is an arbitrary value of the

corresponding random variable τk, k = 1, 2, . . . . Define the increasing sequence of points {Tk}∞
k=0 by

T0 = t0 and Tk = T0 + ∑k
j=1 tj for k = 1, 2, . . . .

Remark 1. Note that if tk is a value of the random variable τk, k = 1, 2, . . . , then Tk is a value of the random
variable ξk, k = 1, 2, . . . , correspondingly.

Since the multi-agent system with the leader described by system (2)–(3) is equivalent to
system (9), we focus on initial value problem (9).

Let us consider the following system of impulsive differential equations with fixed points of
impulses and fixed length of action of the impulses:

x′i(t) = −bi(tk)(xi(t)− Xi(t)), for t ∈ (Tk−1, Tk],

X′i(t) = ci(tk)(xi(t)− Xi(t)), for t ∈ (Tk−1, Tk],

xi(Tk + 0) = xi(Tk),

Xi(Tk + 0) = (1 + dii(tk))Xi(Tk) +
N

∑
j=1

dij(tk)xj(Tk),

xi(t0) = x0
i , Xi(t0) = 0, k = 1, 2, . . . , i = 1, 2, . . . , N

(10)

or its equivalent matrix form

Z′(t) = C(tk)Z(t), for t ∈ (Tk−1, Tk],

Z(Tk + 0) = D(tk)Z(Tk), k = 1, 2, . . . ,

Z(t0) = Z0 .

(11)

Note that system (11) is a system of impulsive differential equations with impulses at deterministic
time moments {Tk}∞

k=0. For a deeper discussion of impulsive differential equations we refer the reader
to [31] and the references given there. The solution to (11) depends not only on the initial condition
(t0, Z0) but also on the moments of impulses Tk, k = 1, 2, . . . , i.e., on the arbitrary chosen values tk of
the random variables τk, k = 1, 2, . . . , and is given by

Z(t; t0, Z0, {Tk}) = eC(tk)(t−Tk−1)Z0

k−1

∏
i=1

(
D(tk−i)eC(tk−i)tk−i

)
, t ∈ (Tk−1, Tk], k = 1, 2, . . . .

The set of all solutions Z(t; t0, Z0, {Tk}) of the initial value problems of type (11) for any values tk of
the random variables τk, k = 1, 2, . . . , generates a stochastic process with state space R2N . We denote
it by Z(t; t0, Z0, {τk}) and call it a solution to initial value problem (9). Following the ideas of a sample
path of a stochastic process [29,32] we define a sample path solution of studied system (9).

Definition 2. For any given values tk of the random variables τk, k = 1, 2, 3, . . . , respectively, the solution
Z(t; t0, Z0, {Tk}) of the corresponding initial value problem (10) is called a sample path solution of initial value
problem (9).

Definition 3. A stochastic process Z(t; t0, Z0, {τk}) with an uncountable state space R2N is said to be
a solution of initial value problem (9) if, for any values tk of the random variables τk, k = 1, 2, . . . ,
the corresponding function Z(t; t0, Z0, {Tk}) is a sample path solution of initial value problem (9).

Let the stochastic process Z(t; t0, Z0, {τk}), Z = (x1, X1, x2, X2, . . . , xN , XN)
T , with an

uncountable state space R2N be a solution of initial value problem with random impulses (9).
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Definition 4. We say that the leader-following consensus is reached asymptotically in multi-agent system (2)
if, for any t0 ≥ 0 and any y0 ∈ RN ,

lim
t→∞

E|yi(t; t0, y0, {τk})− yr(t; t0, y0, {τk})| = 0, for i = 1, 2, . . . , N, (12)

where y0 = (y0
1, y0

2, . . . , y0
N , y0

r )
T .

Remark 2. Observe that since xi(t) = yi(t) − yr(t), i = 1, ..., N, and initial value problem (2)–(3) is
equivalent to initial value problem (9), equality (12) means that
limt→∞ E‖x(t; t0, x0, {τk})‖ = 0, where x0 = (x0

1, ..., x0
N)

T .

Now we prove the main results of the paper, which are sufficient conditions for the
leader-following consensus in a continuous-time multi-agent system with discrete-time updates
occurring at random times.

Theorem 1. Assume that:

(A1) The inequalities

0 < bi(t) < 1, 0 ≤ ci(t) ≤ 1, for t ≥ t0, i = 1, 2 . . . , N, (13)

hold, and there exists a real α ∈ (0, 1) such that

|1−
N

∑
j=1

aij(t)−ωi(t)| <
α

2N
for t ≥ t0, i = 1, 2 . . . , N, (14)

and
0 ≤ aij(t) <

α

2N
for t ≥ t0, i, j = 1, 2 . . . , N, i 6= j. (15)

(A2) The random variables τk, k = 1, 2, . . . , are independently exponentially distributed with the parameter λ

such that λ > 2N
1−α .

Then, for any initial point t0 ≥ 0 the solution Z(t; t0, Z0, {τk}) of the initial value problem with random
moments of impulses (9) is given by the formula

Z(t; t0, Z0, {τk}) = eC(tk)(t−ξk)
( k−1

∏
i=1

(
D(τk−i)eC(τk−i)τk−i

))
Z0

for t ∈ (ξk−1, ξk], k = 1, 2, . . . ,

(16)

and the expected value of the solution satisfies the inequality

E(‖Z(t; t0, Z0, {τk})‖) ≤ ‖Z0‖e(2N+αλ−λ)(t−t0).

Proof. Let t0 ≥ 0 be an arbitrary given initial time. According to (A1), we have

‖C(t)‖ ≤ 2N max
i=1,2,...,N

{bi(t), ci(t)} ≤ 2N,

‖D(t)‖ ≤ 2N max
{
|1 + dii(t)|, max

i,j=1,2,...,N, i 6=j
{|di,j(t)|}

}
< α,

and ‖eC(t)‖ ≤ e2N for t ≥ t0. For any k = 1, 2, . . . , we choose an arbitrary value tk of the random
variable τk and define the increasing sequence of points T0 = t0, Tk = t0 + ∑k

j=1 tj, k = 1, 2, 3, . . . . By
Remark 1, for any natural k, Tk is a value of the random variable ξk. Consider the initial value problem
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of impulsive differential equations with fixed points of impulses (11). The solution of initial value
problem (11) is given by the formula

Z(t; t0, Z0, {Tk}) = eC(tk)(t−Tk−1)
( k−1

∏
i=1

(
D(tk−i)eC(tk−i)tk−i

))
Z0, t ∈ (Tk−1, Tk], k = 1, 2, . . . .

Then, for t ∈ (Tk−1, Tk], we get the following estimation

‖Z(t; t0, Z0, {Tk})‖ ≤ ‖Z0‖
k−1

∏
i=1

(
‖D(tk−i)‖‖eC(tk−i)tk−i‖

)
‖eC(tk)(t−Tk−1)‖

≤ ‖Z0‖
k−1

∏
i=1

(
αe||C(tk−i)||2tk−i

)
e||C(tk)||(t−Tk−1)

≤ ‖Z0‖
k−1

∏
i=1

(
αe2Ntk−i

)
e2N(t−Tk−1)

≤ ‖Z0‖αke2N
(

∑k−1
i=1 tk−i+(t−Tk−1)

)
= ‖Y0‖αke2N(t−t0).

(17)

The solutions Z(t; t0, Z0, {Tk}) generate continuous stochastic process Z(t; t0, Z0, {τk}) that is defined
by (16). It is a solution to initial value problem of impulsive differential equation with random moments
of impulses (9). According to Proposition 2, Proposition 3, and inequality (17), we get

E(‖Z(t; t0, Z0, {τk})‖
∣∣∣Sk(t)) ≤ ‖Z0‖αke2N(t−t0).

Therefore, applying Corollary 1, we obtain

E‖Z(t; t0, Z0, {τk})‖ =
∞

∑
k=0

E
(
‖Z(t; t0, Z0, {τk})‖

∣∣∣Sk(t)
)

P(Sk(t))

≤
∞

∑
k=0
‖Z0‖αke2N(t−t0)e−λ(t−t0)

λk(t− t0)
k

k!

≤ ‖Z0‖e(2N−λ)(t−t0)
∞

∑
k=0

(αλ(t− t0))
k

k!
= ‖Z0‖e(2N+αλ−λ)(t−t0).

Remark 3. The inequalities (14) and (15) are satisfied only for ωi(t), i = 1, 2, . . . , N, such that ωi(t) 6= 0 for
all i = 1, 2. . . . , N and t ≥ t0. Indeed, assume that there exist i = 1, 2 . . . , N and t∗ ≥ t0, such that ωi(t∗) = 0.
Then inequality (14) reduces to |1− ∑N

j=1 aij(t∗)| < α
2N . If 1 < ∑N

j=1 aij(t∗), then from (14) it follows that

1 ≤ α(N−1)
2N , i.e, 2 N

N−1 < α, which is not possible since α ∈ (0, 1). Therefore, assume that 1 ≥ ∑N
j=1 aij(t∗) and

1−∑N
j=1 aij(t∗) < α

2N . Hence 1 < α
2N + ∑N

j=1 aij(t∗) < α
2N + α(N−1)

2N = α
2 which is again a contradiction

with assumption that α ∈ (0, 1).

Theorem 2. If the assumptions of Theorem 1 are satisfied, then the leader-following consensus for multi-agent
system (2) is reached asymptotically.

Proof. The claim follows from Theorem 1, Remark 1, the equality ‖Z0‖ = ‖x0‖, and the inequalities

E‖x(t; t0, Z0, {τk})‖ ≤ E‖Z(t; t0, Z0, {τk})‖ ≤ ‖Z0‖e(2N+αλ−λ)(t−t0),

for i = 1, 2, . . . , N.
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According to Remark 3, condition (A1) is satisfied only in the case when a leader is available
to each agent at any update random time. An interpretation of this situation can be the following.
A leader can be viewed as the root node for the communication network; if there exists a directed
path from the root to each agent (device), then all the agents can track the objective successfully.
Since the leader can perceive more information in order to guide the whole group to complete the task
(consensus), it seems to be reasonable to demand that he is available to each follower at any update
random time.

5. Illustrative Examples

In this section, the numerical examples are given to verify the effectiveness of the proposed
sufficient conditions for a multi-agent system to achieve asymptotically the leader-following consensus.
In all examples, we set t0 = 0 and consider a sequence of independent exponentially distributed
random variables {τk}∞

k=1 with parameter λ > 0 (it will be defined later in each example) and the
sequence of random variables {ξk}∞

k=0 defined by (1).

Example 1. Let us consider a system of three agents and the leader. In order to illustrate the meaningfulness of
the studied model and the obtained results, we consider three cases.

Case 1.1. There is no information exchange between agents and the leader is not available.
The dynamics of agents are given by

y′r(t) = 0,

y′1(t) = −0.1(1 + | sin(t)|)y1(t),

y′2(t) = −
(

0.9
t + 1

− 0.8 cos2(t)
)

y2(t),

y′3(t) = −(0.4| cos(t)| − 0.1)y3(t), t ≥ 0.

(18)

Figure 1 shows the solution to system (18) with the initial values: y0
1 = 1, y0

2 = 2, y0
3 = 3, y0

r = 3
2 . From the

graphs in Figure 1 it can be seen that the leader-following consensus is not reached.

Figure 1. Example 1. Case 1.1. Graphs of the state trajectories yi(t), i = 1, 2, 3, of the agents and the
leader yr.

Case 1.2. There is information exchange between agents (including the leader) occurring at random
update times.
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The dynamics between two update times of each agent and of the leader are given by (compare with (18)):

y′r(t) = 0,

y′1(t) = −0.1(1 + | sin(τk)|)y1(t),

y′2(t) = −
(

0.9
τk + 1

− 0.8 cos2(τk)

)
y2(t),

y′3(t) = −(0.4| cos(τk)| − 0.1)y3(t) t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . .

(19)

The consensus control law at any update time ξk, k = 1, 2, . . . , is given by

u1(ξk) = −
0.1τk
τk + 1

(y1(ξk)− y2(ξk))− (1− 0.05 cos2 τk) (y1(ξk)− yr(ξk)) ,

u2(ξk) = −(1− 0.09 cos2 τk)(y2(ξk)− yr(ξk)),

u3(ξk) = −0.1 sin2(τk)(y3(ξk)− y2(ξk))− (1− 0.01 cos(τk)) (y3(ξk)− yr(ξk)) ,

(20)

Hence,

C(t) =



−0.1(1 + | sin(t)|) 0.1(1 + | sin(t)|) 0 0 0 0
0 0 0 0 0 0
0 0 − 0.9

t+1
0.9
t+1 0 0

0 0 0.8 cos2(t) −0.8 cos2(t) 0 0
0 0 0 0 −0.4(1 + | cos(t)|) 0.4(1 + | cos(t)|)
0 0 0 0 0.5 −0.5



and

D(t) =



0 0 0 0 0 0
0 − 0.1t

t+1 + 0.05 cos2 t 0.1t
t+1 0 0 0

0 0 0 0 0 0
0 0 0 0.09 cos2 t 0 0
0 0 0 0 0 0
0 0 0.1 sin2(t) 0 0 −0.1 sin2(t) + 0.01 cos t


.

Observe that, for α ∈ (0.6, 1), Assumption (A1) of Theorem 1 is fulfilled. Let λ = 45. Then, for α = 0.7,
Assumption (A2) of Theorem 1 holds. Therefore, by Theorem 2, the leader-following consensus for multi-agent
system (19) with the consensus control law (20) at any update time is reached asymptotically.

To illustrate the behavior of the solutions of the model with impulses occurring at random times, we consider
several sample path solutions. For t0 = 0 we fix the initial values as follows: y0

1 = 1, y0
2 = 2, y0

3 = 3,y0
r = 3

2 ,
and choose different values of each random variable τk, k = 1, 2, . . . , 12, in the following way:

(i) t1 = 10, t2 = 2, t3 = 8, t4 = 10, t5 = 15, t6 = 2, t7 = 8, t8 = 7, t9 = 6, t10 = 12, t11 = 2, t12 = 8;
(ii) t1 = 2, t2 = 12, t3 = 10, t4 = 6, t5 = 5, t6 = 2, t7 = 7, t8 = 6, t9 = 5, t10 = 10, t11 = 7, t12 = 18;

(iii) t1 = 3, t2 = 9, t3 = 11, t4 = 7, t5 = 5, t6 = 9, t7 = 6, t8 = 7, t9 = 2, t10 = 6, t11 = 15, t12 = 10;
(iv) t1 = 7, t2 = 5, t3 = 8, t4 = 10, t5 = 5, t6 = 7, t7 = 4, t8 = 11, t9 = 8, t10 = 6, t11 = 9, t12 = 10.

Clearly, the leader state is yr(t) ≡ 1.5. For each value of the random variables (i)-(iv) we get the system
of impulsive differential equations with fixed points of impulses of type (11) with N = 3 and matrices C(t),
D(t) given above. Figures 2–4 present the state trajectories of the leader yr(t) and agent y1(t), y2(t) and y3(t),
respectively. Apparently, it is visible that the leader-following consensus is reached for all considered sample
path solutions.
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Figure 2. Example 1. Case 1.2. Graphs of the state trajectory y1(t) of the first agent for various values
of random variables τk.

Figure 3. Example 1. Case 1.2. Graphs of the state trajectory y2(t) of the second agent for various
values of random variables τk.
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Figure 4. Example 1. Case 1.2. Graphs of the state trajectory y3(t) of the third agent for various values
of random variables τk.

Case 1.3. At any update random time, only the leader is available to each agent and there is no information
exchange between agents.

The dynamics between two update times of each agent are given by (19), and at update time ξk, k = 1, 2, . . . ,
the following control law is applied:

u1(ξk) = −(1− 0.09 cos2(τk)) (y1(ξk)− yr(ξk)) ,

u2(ξk) = −(1 + 0.09 sin(τk))(y2(ξk)− yr(ξk)),

u3(ξk) = −
(

1− 0.1τk
τk + 1

)
(y3(ξk)− yr(ξk)) .

(21)

Therefore,

D(t) =



0 0 0 0 0 0
0 0.09 cos2 t 0 0 0 0
0 0 0 0 0 0
0 0 0 −0.09 sin t 0 0
0 0 0 0 0 0
0 0 0 0 0 0.1t

t+1


and C(t) is the same as in Case 1.2. It is easy to check that, for α = 0.7 and λ = 45, assumptions (A1) and
(A2) are fulfilled. According to Theorem 2, the leader-following consensus for multi-agent system (19) with the
consensus control law (21) at any update time is reached asymptotically.

To illustrate the behavior of the solutions of the model with impulses occurring at random times, we consider
sample path solutions with the same data as in Case 1.2. Figures 5–7 present the state trajectories of the leader
yr(t) and agent y1(t), y2(t) and y3(t), respectively. Apparently, it is visible that the leader-following consensus
is reached in all considered sample path solutions.
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Figure 5. Example 1. Case 1.3. Graphs of the state trajectory y1(t) of the first agent for various values
of random variables τk.

Figure 6. Example 1. Case 1.3. Graphs of the state trajectory y2(t) of the second agent for various
values of random variables τk.
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Figure 7. Example 1. Case 1.3. Graphs of the state trajectory y3(t) of the third agent for various values
of random variables τk.

Example 2. Let the system consist of four agents and the leader. In order to illustrate the meaningfulness of the
studied model and the obtained results, we consider four cases.

Case 2.1. There is no information exchange between agents and the leader is not available.
The dynamics of agents are given by

y′r(t) = 0,

y′1(t) = −(0.4− 0.1 sin2(t))y1(t),

y′2(t) = −(0.3(1.01)−t − 0.1 cos2(t))y2(t),

y′3(t) =
−0.5
t + 1

y3(t),

y′4(t) = −
(

0.3
t + 1

− 0.1 cos2(t)
)

y4(t),

(22)

Figure 8 shows the solution to system (22) with the initial values: y0
1 = 1, y0

2 = 2, y0
3 = 3, y0

4 = 4, y0
r = 3

2 . It
is visible that the leader-following consensus is not reached.

Case 2.2. There is information exchange between agents occurring at random update times and the leader
is available for agents.

The dynamics between two update times of each agent and of the leader are given by

y′r(t) = 0,

y′1(t) = −(0.4− 0.1 sin2(τk))y1(t),

y′2(t) = −(0.3(1.01)−τk − 0.9 cos2(τk))y2(t),

y′3(t) =
−0.5

τk + 1
y3(t),

y′4(t) = −
(

0.3
τk + 1

− 0.1 cos2(τk)

)
y4(t), t ∈ (ξk, ξk+1], k = 0, 1, 2, . . . .

(23)
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At update time ξk, k = 1, 2, . . . , the following control law is applied:

u1(ξk) = −0.1 sin2(τk)(y1(ξk)− y2(ξk))− 0.9 (y1(ξk)− yr(ξk)) ,

u2(ξk) = −0.1e−τ2
k (y2(ξk)− y1(ξk))− (y2(ξk)− yr(ξk)),

u3(ξk) = −(y3(ξk)− yr(ξk)),

u4(ξk) = −0.06| sin(τk)|(y4(ξk)− y1(ξk))− 0.06| cos(τk)|(y4(ξk)− y2(ξk))

− (y4(ξk)− yr(ξk)) , k = 1, 2, . . . .

(24)

In this case, we have

D(t) =



0 0 0 0 0 0 0 0
0 −0.1 sin2(t) + 0.1 0.1 sin2(t) 0 0 0 0 0
0 0 0 0 0 0 0 0

0.1e−t2 0 0 −0.1e−t2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.06| sin(t)| 0 0.06| cos(t)| 0 0 0 0 −0.06(| sin(t)|+ | cos(t)|)



and

C(t) =



−0.4 0.4 0 0 0 0 0 0
0.1 sin2(t) −0.1 sin2(t) 0 0 0 0 0 0

0 0 −0.3(1.01)−t 0.3(1.01)−t 0 0 0 0
0 0 0.1 cos2(t) −0.1 cos2(t) 0 0 0 0
0 0 0 0 − 0.5

t+1
0.5
t+1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 0.3

t+1
0.3
t+1

0 0 0 0 0 0 0.1 cos2(t) −0.1 cos2(t)


.

Hence, for α ∈ (0.8, 1), Assumption (A1) of Theorem 1 is fulfilled. Let λ = 55. Then, for α = 0.85, Assumption
(A2) of Theorem 1 holds. Therefore, by Theorem 2, the leader-following consensus for multi-agent system (23)
with the consensus control law (24) at any update time is reached asymptotically.

Figure 8. Example 2. Case 2.1. Graphs of the state trajectories yi(t), i = 1, 2, 3 of the agents and the
leader yr.
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To illustrate the behavior of the solutions of the model with impulses occurring at random times, we consider
several sample path solutions. For t0 = 0 we fix the initial values as follows: y0

1 = 1, y0
2 = 2, y0

3 = 3, y0
4 = 4

y0
r = 3

2 ; and choose different values of each random variable τk, k = 1, 2, . . . , 12, in the following way:

(i) t1 = 10, t2 = 2, t3 = 8, t4 = 10, t5 = 15, t6 = 2, t7 = 8, t8 = 7, t9 = 6, t10 = 12, t11 = 2, t12 = 8;
(ii) t1 = 2, t2 = 12, t3 = 10, t4 = 6, t5 = 5, t6 = 2, t7 = 7, t8 = 6, t9 = 5, t10 = 10, t11 = 7, t12 = 18;

(iii) t1 = 3, t2 = 9, t3 = 11, t4 = 7, t5 = 5, t6 = 9, t7 = 6, t8 = 7, t9 = 2, t10 = 6, t11 = 15, t12 = 10;
(iv) t1 = 7, t2 = π, t3 = 8, t4 = π/2, t5 = 5, t6 = 2π, t7 = 4, t8 = 11, t9 = 3π/2, t10 = 4π, t11 =

17, t12 = 10.

Clearly, the leader state is yr(t) ≡ 1.5.
Figures 9–12 present the state trajectories of the leader yr(t) and agent y1(t), y2(t), y3(t), and y4(t),

respectively. Apparently, it is visible that the leader-following consensus is reached for all considered sample
path solutions.

Figure 9. Example 2. Case 2.2. Graphs of the state trajectory y1(t) of the first agent for various values
of random variables τk.

Figure 10. Example 2. Case 2.2. Graphs of the state trajectory y2(t) of the second agent for various
values of random variables τk.
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Figure 11. Example 2. Case 2.2. Graphs of the state trajectory y3(t) of the third agent for various values
of random variables τk.

Figure 12. Example 2. Case 2.2. Graphs of the state trajectory y4(t) of the fourth agent for various
values of random variables τk.

Case 2.3. There is information exchange between agents occurring at random update times but the leader
is not available for agents.

The dynamics between two update times of each agent are given by (23), and at update time ξk, k = 1, 2, . . . ,
the following control law is applied:

u1(ξk) = −0.1 sin2(τk)(y1(ξk)− y2(ξk)),

u2(ξk) = −0.1e−τ2
k (y2(ξk)− y1(ξk)),

u3(ξk) = 0,

u3(ξk) = −0.06| sin(τk)|(y4(ξk)− y1(ξk))− 0.06| cos(τk)|(y4(ξk)− y2(ξk)).

In this case, ωi(t) ≡ 0, t ≥ 0, i = 1, 2, 3, 4, and inequalities (13) and (15) are satisfied. According to
observation in Remark 3, Assumption (A1) is not fulfilled.



Entropy 2020, 22, 650 19 of 24

To illustrate the behavior of the solutions of the model with impulses occurring at random times, we fix
λ = 55 and consider sample path solutions with the same data as in Case 2.2. Figures 13–16 present the
state trajectories of the leader yr(t) and agent y1(t), y2(t), y3(t) and y4(t), respectively. Observe that the
leader-following consensus is not reached in all considered sample path solutions.

Figure 13. Example 2. Case 2.3. Graphs of the state trajectory y1(t) of the first agent for various values
of random variables τk.

Figure 14. Example 2. Case 2.3. Graphs of the state trajectory y2(t) of the second agent for various
values of random variables τk.

Figure 15. Example 2. Case 2.3. Graphs of the state trajectory y3(t) of the third agent for various values
of random variables τk.
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Figure 16. Example 2. Case 2.3. Graphs of the state trajectory y4(t) of the fourth agent for various
values of random variables τk.

Case 2.4. The leader is not available to one agent at all update times.
The dynamics between two update times of each agent are given by (23), and at update time ξk, k = 1, 2, . . . ,

the control law is applied:

u1(ξk) = −0.1 sin2(τk)(y1(ξk)− y2(ξk))− 0.9 (y1(ξk)− yr(ξk)) ,

u2(ξk) = −0.1e−τ2
k (y2(ξk)− y1(ξk)),

u3(ξk) = −(y3(ξk)− yr(ξk)),

u4(ξk) = −0.06| sin(τk)|(y4(ξk)− y1(ξk))− 0.06| cos(τk)|(y4(ξk)− y2(ξk))

− (y4(ξk)− yr(ξk)) , k = 1, 2, . . . .

Since ω2(t) ≡ 0, by Remark 3, Assumption (A1) is not fulfilled.
To illustrate the behavior of the solutions of the model with impulses occurring at random times, we consider

sample path solutions with the same data as in Case 2.2.
Figures 17–20 present the state trajectories of 4 agents and the leader, respectively. Observe that the

leader-following consensus is not reached in all considered sample path solutions. It is visible in Figure 18
where the graphs of the state trajectory of the second agent for various values of random variables are presented.
This shows the importance of Assumption (A1). However, we emphasize that in the model considered in this
paper the information exchange between agents is possible only at discrete random update times and the waiting
time between two consecutive updates is exponentially distributed (similarly to queuing theory). Of course, in
general, it is obvious that if the leader is continuously available for agents, then the leader-following consensus is
reached. But in this paper, we consider the situation when the leader is available just from time to time at random
times (so he is not available continuously). We deliver conditions under which, in spite of lack of this continuous
information flow from the leader to agents, the leader-following consensus is still reached.
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Figure 17. Example 2. Case 2.4. Graphs of the state trajectory y1(t) of the first agent for various values
of random variables τk.

Figure 18. Example 2. Case 2.4. Graphs of the state trajectory y2(t) of the second agent for various
values of random variables τk.

Figure 19. Example 2. Case 2.4. Graphs of the state trajectory y3(t) of the third agent for various values
of random variables τk.
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Figure 20. Example 2. Case 2.4. Graphs of the state trajectory y4(t) of the fourth agent for various
values of random variables τk.

Both examples illustrate that the interaction between the leader and the other agents only at
random update times changes significantly the behavior of the agents. If conditions (A1) and (A2) are
satisfied, then the leader-following consensus is reached in multi-system (2).

6. Conclusions

The leader-following consensus problem is a key point in the analysis of dynamic multi-agent
networks. In this paper, we considered the situation when agents exchanged information only at
discrete-time instants that occurred randomly. The proposed control law was distributed, in the sense
that only information from neighboring agents was included, which implied that the control law was
applied only at update times that occurred randomly. In the cases wherein the random update times
were equal to the initially given times, our model was reduced to a continuous-time multi-agent system
with discrete-time communications studied in [25]. The main difference between our model and the
previous approaches was that we considered a sequence of update times as a sequence of random
variables. Besides, unlike in other investigations, the waiting time between two consecutive updates
was exponentially distributed. This was motivated by the most useful distribution in queuing theory.
The presence of randomly occurring update times required using results from the probability theory
and the theory of differential equations with impulses in order to describe our proposed solution to the
considered multi-agent system. We provided conditions on the control law that ensured asymptotic
leader-following consensus in the sense of the expected value of a stochastic process. This work may
be treated as the first step towards the analysis of consensus problems of multi-agents with discrete
updates at random times. For example, one of the possible problems to be investigated in the future is
to deliver conditions under which the consensus is achieved in the multi-agent system with discrete
updates at random times in spite of denial-of-service attacks or for systems with double-integrator
dynamics. Another important and interesting issue is to work out a model of a real-world system
of agents and to apply our theoretical results. For this purpose, we have to develop or adapt the
existing numerical procedures for simulating the evolution of a system with a greater number of agents.
This problem is currently under investigation.
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