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Abstract: The horse industry has grown rapidly as a leisure industry in the Republic of Korea (ROK)
in parallel with an increased demand for equestrian activities. As a result, there has been an increase
in horse breeding and equestrian population and potential exposure to ticks and their associated
pathogens. To provide a better understanding of the potential disease risks of veterinary and medical
importance, a study was conducted to determine the geographical distribution and diversity of ticks
collected from horses and vegetation associated with horse racetracks/ranches throughout the ROK.
This included a survey of five associated common pathogens, Anaplasma phagocytophilum, Ehrlichia
chaffeensis, Borrelia spp., Babesia caballi, and Theileria equi. A total 9220 ticks were collected from horses
and associated pastures. Ticks were identified to species, stage of development, and sex. Two species
of ticks, Haemaphysalis longicornis (99.9%) and Ixodes nipponensis (0.1%) were identified. Two of the
target pathogens, A. phagocytophilum and Borrelia spp., were detected in 5/1409 tick pools (0.35%)
and 4/1409 pools (0.28%) of H. longicornis, respectively, both of which are zoonotic pathogens of
medical importance. The results of 16S rRNA phylogenetic analysis of A. phagocytophilum showed a
close relationship to strains distributed in China, USA, Germany, Italy, Turkey, and Poland. Borrelia
spp. showed a close relationship, based on 16S rRNA gene, to the strains reported from the USA
(B. burgdorferi and B. americana) and Japan (B. tanukii and B. garinii). These results provide information
about the potential risks of veterinary and medical importance and the development of mitigation
strategies for disease prevention.

Keywords: horse ticks; tick-borne pathogens; Anaplasma phagocytophilum; Borrelia spp.; Haemaphysalis
longicornis; Ixodes nipponensis

1. Introduction

The number of horses has grown rapidly following the enactment of the Horse In-
dustry Promotion Act by the Republic of Korea (ROK) government in 2011. The Korean
government invested 600 billion won (USD 543,133,883) from 2011–2018 to foster the
horse industry [1,2]. By 2019, there were 27,246 horses, 459 horseback riding facilities,
and 919,556 riders in the ROK, with increases of 11.4%, 38.7% and 18.1%, respectively,
compared to 2013 data [1]. The higher numbers of horses, associated horse facilities, and
riders have increased the potential for exposure to ticks and transmission of tick-borne
pathogens to both horses and associated equestrian personnel.
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A wide range of wild (deer, raccoon dogs, brown bears, red fox, gray wolves) and
domestic animals (horses, cattle, dogs, sheep) are hosts of ticks that harbor tick-borne
pathogens, e.g., Babesia, Theileria, Anaplasma, and Borrelia species [3–7]. The prevalence of
horse ticks varies according to geographical regions, such as Amblyomma cajennense and
Anocentor nitens in Brazil [8], Amblyomma americanum, Dermacentor variabilis, Amblyomma
maculatum in Oklahoma, US [9], and 13 species belonging to Ixodidae Family in Italy [10].
Ticks and tick-borne diseases (TBD) associated with horses have been reported in differ-
ent countries (Italy, Spain, Sweden, Guatemala, Taiwan) where selected pathogens have
resulted in abortion and decreased animal production [3,11–14]. Additionally, horse ranch
personnel and riders are exposed to biting ticks and associated transmission of tick-borne
pathogens [15,16].

In the ROK, Haemaphysalis longicornis harbors various pathogens, e.g., Candidatus
Rickettsia longicornii, Ehrlichia canis, and Theileria luwenshuni that have been reported
in horses at Jeju Island [17]. However, investigations on the distribution of ticks and
associated pathogens that are associated with horses and pasture lands in the ROK have
not been conducted. The aims of this study were to identify tick species associated with
horses and horse ranches at three metropolitan cities and seven provinces in the ROK,
and to detect selected tick-borne pathogens: A. phagocytophilum, E. chaffeensis, Borrelia spp.,
B. caballi, and T. equi.

2. Results
2.1. Prevalence of Ticks Infesting Horses in ROK

A total 9220 ticks consisting of 2267 larvae; 5433 nymphs; and 1520 adults (412 male
and 1108 female) were collected during 2016 and 2017, in which 1686 ticks (18.3%) were
collected from horses (1090 adults, 595 nymphs, 1 larva) and 7534 ticks (81.7%) from
vegetation associated with racetracks/ranches (430 adults, 4838 nymphs, 2266 larvae)
(Table 1). A total of 1532 ticks (16.6%); 2184 ticks (23.7%), and 5504 ticks (59.7%) were
collected at racetracks under the Racing Horse Authority (RHA), private horse farms
(PHF), and leisure horse-riding ranches (LHR), respectively (Table 2). The largest number
of ticks were collected from Jeju Island (6633; 71.9%), followed by Gyeonggi (614; 6.7%)
and Jeollanam (380; 4.1%) provinces (Table 1). Nymphs accounted for the highest number
of ticks collected (5433; 58.9%), followed by larvae (2267; 24.6%) and adults (1520; 16.5%)
(Table 1).

Table 1. Number of ticks collected (pools) at selected metropolitan areas and provinces.

Metropolitan
City and
Province

Collecting
Source

2016 2017 Total

H. longicornis * I. nippo-
nensis * H. longicornis *

Larva Nymph Adult Adult Larva Nymph Adult

Busan

Horse 0 0 0 0 0 0 0 0

Vegetation 2(1) 2(1) 0 0 0 148(17) 8(8) 160(27)

Subtotal 2(1) 2(1) 0 0 0 148(17) 8(8) 160(27)

Gwangju

Horse 0 0 0 0 0 0 0 0

Vegetation 1(1) 1(1) 0 0 0 65(7) 5(5) 72(14)

Subtotal 1(1) 1(1) 0 0 0 65(7) 5(5) 72(14)
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Table 1. Cont.

Metropolitan
City and
Province

Collecting
Source

2016 2017 Total

H. longicornis * I. nippo-
nensis * H. longicornis *

Larva Nymph Adult Adult Larva Nymph Adult

Ulsan

Horse 0 0 4(1) 0 0 0 0 4(1)

Vegetation 81(2) 101(7) 14(4) 0 0 0 0 196(13)

Subtotal 81(2) 101(7) 18(5) 0 0 0 0 200(14)

Gangwon

Horse 0 0 0 0 0 0 0 0

Vegetation 293(7) 5(2) 0 0 0 0 0 298(9)

Subtotal 293(7) 5(2) 0 0 0 0 0 298(9)

Gyeonggi

Horse 0 9(3) 0 0 0 0 0 9(3)

Vegetation 0 134(9) 0 4(3) 81(3) 375(45) 11(11) 605(71)

Subtotal 0 143(12) 0 4(3) 81(3) 375(45) 11(11) 614(74)

Gyeongsangbuk

Horse 0 0 33(11) 0 0 0 0 33(11)

Vegetation 60(2) 128(5) 32(7) 0 0 0 0 220(14)

Subtotal 60(2) 128(5) 65(18) 0 0 0 0 253(25)

Gyeongsangnam

Horse 0 0 3(2) 0 0 0 0 3(2)

Vegetation 0 0 0 0 0 269(27) 8(8) 277(35)

Subtotal 0 0 3(2) 0 0 269(27) 8(8) 280(37)

Jeollabuk

Horse 1(1) 126(42) 12(5) 2(1) 0 0 0 141(49)

Vegetation 0 108(8) 2(2) 0 0 3(2) 2(2) 115(14)

Subtotal 1(1) 234(50) 14(7) 2(1) 0 3(2) 2(2) 256(63)

Jeollanam

Horse 0 0 0 0 0 0 0 0

Vegetation 2(1) 6(2) 0 0 0 361(38) 11(11) 380(52)

Subtotal 2(1) 6(2) 0 0 0 361(38) 11(11) 380(52)

Jeju Island

Horse 0 454(156) 645(219) 0 0 6(3) 390(282) 1495(660)

Vegetation 1746(37) 2108(78) 156(43) 0 960(99) 168(168) 5138(425)

Subtotal 1746(37) 2562(234) 801(262) 0 0 966(102) 558(450) 6633(1085)

Total

Horse 1(1) 589(201) 698(237) 2(1) 0 6(3) 390(282) 1686(725)

Vegetation 2185(51) 2657(121) 213(62) 4(3) 81(3) 2181(235) 213(213) 7534(688)

Subtotal 2186(52) 3246(322) 911(299) 6(4) 81(3) 2187(238) 603(495) 9220(1413)

Note: “*” number of ticks with pool number was shown in parentheses.

Only two species of ticks, Haemaphysalis longicornis (9214; 99.9%) and Ixodes nipponensis
(6; 0.1%) were collected directly from horses and associated vegetation at racetracks and
horse ranches (Table 1; Figure 1). Haemaphysalis longicornis was collected from all 10 areas,
while I. nipponensis was only collected at Gyeonggi and Jeollabuk provinces.
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Table 2. Identification of tick species from horses and vegetative at racetracks and private horse ranches.

Spots Colletion
Source

2016 2017 Total

H. longicornis ** I. nippo-
nensis ** H. longicornis **

Larva Nymph Adult Adult Larva Nymph Adult

RHA *

Horse 1(1) 139(47) 74(30) 2(1) 0 0 211(111) 427(190)

Vegetation 2(1) 324(18) 11(6) 2(1) 0 678(68) 88(88) 1105(182)

Subtotal 3(2) 463(65) 85(36) 4(2) 0 678(68) 299(199) 1532(372)

PHF

Horse 0 263(90) 220(78) 0 0 0 0 483(168)

Vegetation 63(3) 1435(54) 97(28) 1(1) 0 101(12) 4(4) 1701(102)

Subtotal 63(3) 1698(144) 317(106) 1(1) 0 101(12) 4(4) 2184(270)

LHR

Horse 0 187(64) 404(129) 0 0 6(3) 179(171) 776(367)

Vegetation 2120(47) 898(49) 105(26) 1(1) 81(3) 1402(155) 121(121) 4728(402)

Subtotal 2120(47) 1085(113) 509(155) 1(1) 81(3) 1408(158) 300(292) 5504(769)

Total

Horse 1(1) 589(201) 698(237) 2(1) 0 6(3) 390(282) 1686(725)

Vegetation 2185(51) 2657(121) 213(62) 4(3) 81(3) 2181(235) 213(213) 7534(688)

Subtotal 2186(52) 3246(322) 911(299) 6(4) 81(3) 2187(238) 603(495) 9220(1413)

* RHA, Racetracks under the Racing Horse Authority; PHF, private horse farms; LHR, leisure horse-riding ranches. “**” number of ticks
with pool number shown in parentheses.
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Figure 1. Morphological characterization of H. longicornis and I. nipponensis using light microscopy
and scanning electron microscopy. (A) H. longicornis and (B) I. nipponensis females observed under a
light microscope at 40 × magnification. (C) Characterization of H. longicornis was performed using a
scanning electron microscope.
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2.2. Detection of Tick-Borne Pathogens

Only two, A. phagocytophilum and Borrelia spp., of the five pathogens surveyed were
detected (Table 3). Anaplasma phagocytophilum was detected in five pools of H. longicornis
ticks with a minimum infection rate (MIR) was 0.54%, and the pools of t A. phagocytophilum-
positive ticks were all adults (MIR = 3.30%) (Table 3, Figures 2 and 3). The number of
tick pools positive for A. phagocytophilum collected from grasses/herbaceous vegetation
associated with horse ranches and directly from horses was 3/5 (60%) and 2/5 (40%),
respectively. The distributions of the infected ticks included 1/5 pools (20%) from LHR
(Gyeonggi province), while the other four pools (80%) were from LHR (3), RHA (1) at Jeju
Island. Anaplasma phagocytophilum-positive ticks from Gyeonggi province and Jeju Island
were all adult H. longicornis ticks collected in June 2017.

Table 3. Tick-borne pathogens detected in ticks collected from horses in the Republic of Korea.

Year Species Stage
Tick No.

(Pool)

No. of PCR Positive Tick Pools

B. caballi T. equi A. phagocy-
tophilum E. chaffeensis B. burgdorferi

s.l.

2016
H. longicornis

Larva 2186 (52) 0 0 0 0 0

Nymph 3246 (322) 0 0 0 0 0

Adult 911 (299) 0 0 0 0 0

Subtotal 6343 (673) 0 0 0 0 0

I. nipponensis Adult 6 (4) 0 0 0 0 0

2017 H. longicornis

Larva 81 (3) 0 0 0 0 0

Nymph 2187 (238) 0 0 0 0 3

Adult 603 (495) 0 0 5 0 1

Subtotal 2871 (736) 0 0 5 0 4

Total 9220 (1413) 0 0 5 0 4
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Figure 2. PCR analysis of A. phagocytophilum from ticks collected from horses and associated veg-
etation in the Republic of Korea (ROK). Positive detection of A. phagocytophilum in five tick pools
(378, 513, 517, 523, and 736 ticks) was confirmed with an expected 511 bp band observed using
electrophoresis. “P” and “N” represent a positive control using recombinant A. phagocytophilum DNA
and a negative control without a DNA template, respectively. “M” represents a 100 bp DNA marker.
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Figure 3. Detection of Borrelia spp. from ticks collected from horses and associated vegetation by real-time PCR. Amplifica-
tion curves show positive detection of Borrelia spp. in four tick pools (196(A), 241(B), 318(C), and 357(D) ticks). Tick pool
number 196 and 241 were tested together in one PCR performance, and the pool numbers 318 and 357 were done together in
another PCR performance. The threshold cycle of Borrelia spp. detection from the four samples was 31.77; 32.81; 30.46; and
31.23, respectively. “P” and “N” represent a positive control using recombinant B. burgdorferi DNA and a negative control
without DNA template, respectively. “RFU” indicates relative fluorescence units.

Borrelia spp. were detected by real time PCR in four pools of ticks (MIR = 0.43%)
(Table 3, Figure 3). Borrelia spp. was only detected in H. longicornis with an MIR of 0.43‰,
in which three (MIR = 0.55%) and one pool (MIR = 0.66‰) were nymphs and adults,
respectively. All the Borrelia spp. infected ticks were collected in May and June 2017, in
which three pools were collected from grasses/herbaceous vegetation associated with RHA
(1; Jeju Island), LHR (2; Jeollanam province (1) and Busan metropolitan city (1)), while one
positive pool was collected directly from a horse at Jeju Island (Table 3).

2.3. Sequencing and Phylogenetic Analysis

Sequencing analysis of the 16S rRNA gene of A. phagocytophilum from five tick samples
showed 100% amino acid (aa) homology with each other and 99.78 to 100% nucleotide (nt)
identity with A. phagocytophilum sequences deposited in the NCBI. Phylogenetic analysis
based on the 16S rRNA gene (511 bp) showed that all the detected A. phagocytophilum had
the same genotype and shared a close relationship with A. phagocytophilum distributed in
China, USA, Canada, and Russia (Figure 4).
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Figure 4. Phylogenetic relationship of A. phagocytophilum from ticks collected from horses and associated vegetation in
the ROK. A neighbor-joining tree was created based on the 16S rRNA gene (511bp) of A. phagocytophilum using MEGA-6
software, with 1000 bootstrap replications. Anaplasma phagocytophilum detected from five tick pools collected in the ROK
with isolate names of APQA-378, APQA-513, APQA-517, APQA-523, and APQA-736 and NCBI accession numbers are
written in bold. The reference strains detected in different counties and the NCBI accession number are shown.

Phylogenetic analysis of Borrelia spp.-positive samples based on the 16S rRNA gene,
showed 99.82 to 100% nt identity with reported sequences of B. burgdorferi listed at NCBI.
The phylogenetic analysis showed a close relationship between Borrelia sp. in this study
and strains reported from the USA (B. burgdorferi and B. americana) and Japan (B. tanukii and
B. garinii) (Figure 5). The derived sequences of pathogens were submitted to the GenBank
database under the accession numbers MW715063 - MW715067 (A. phagocytophilum) and
MW715293 (Borrelia sp.)
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3. Discussion

Haemaphysalis longicornis was the predominant tick species collected from horses in
the ROK, which is consistent with previous reports that horses in the ROK are primarily
infested with H. longicornis ticks [18–20]. The prevalence of ticks in the ROK was identified
with a predominance of H. longicornis, followed by H. flava, and other less abundant
species, such as I. nipponensis, I. persulcatus, H. japonica, Amblyomma testudinarium, and
I. granulatus [21]. However, only two tick species, H. longicornis and I. nipponensis were
detected in horses in this study. This implies that the habitat of tick species might have
been affected by land use and the presence of animal reservoirs [22–26].

Detection of E. chaffeensis, T. equi, and B. caballi from cattle grazing in ROK during
2010 and 2011 showed that 19.4%, 7.2%, and 0.35%, respectively, of the tick pools were
positive for the three pathogens [27], and T. equi infections in horses have been serologically
confirmed [28]. However, the three pathogens were not detected in ticks collected from
horses and associated vegetation in the ROK during 2016 and 2017 in this study. The
collection of ticks and detection of associated pathogens provide information for disease
risks of veterinary and medical importance and are critical for assessing disease risks
and development of tick-borne disease mitigation strategies [29]. However, more rapid
detection methods should be developed, such as point-of-care diagnostics from ticks
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collected from horses and associated vegetation, for early detection and instituting early
control measure of tick-borne diseases in the future [30].

The two tick-borne pathogens, Anaplasma phagocytophilum and Borrelia spp., detected
from ticks collected from horses and associated vegetation are causative agents of anaplas-
mosis and Lyme borreliosis in humans [31,32]. Even though the positive rate of A. phagocy-
tophilum-positive ticks was very low (MIR = 0.54‰) from horse ticks in this study compared
to 9.9% of ticks collected from different domestic and wild animals reported in the ROK in
2003 [33], the potential risk of transmission of this zoonotic pathogen to humans was iden-
tified [34]. Analyzing the relationship of the outbreak of human granulocytic anaplasmosis
(HGA) and the collection areas of A. phagocytophilum-positive ticks has not been conducted
due to lack of data of HGA outbreaks at areas, such as Hwasong in Gyeonggi province,
and Jeju and Seoguipo cities at Jeju Island.

Borrelia spp. were detected in ticks associated with horses in the ROK for the first
time. While the seroprevalence of B. burgdorferi in horses in the ROK was 5.2% during 2009
through 2013 [35], its prevalence in ticks collected from horses and associated vegetation
during 2016-2017 was very low (MIR = 0.43%). Borrelia burgdorferi, the causative agent of
Lyme disease, is the most prevalent zoonotic TBD worldwide. Domestic animals that are
susceptible to B. burgdorferi infections include various species, e.g., dogs, cats, horses, and
ruminants [36]. In this study, Borrelia spp.-positive ticks were collected from vegetation
associated with leisure horseback riding ranches and horse racing parks, in addition to
directly from horses. However, Borrelia spp.-infections in horses has not been determined
in this study, while human cases of Lyme disease are reported annually in Korea [26].
Therefore, there is a need to investigate the horse infectious status of Borrelia spp. for
regions of Borrelia spp.-infected ticks to control and prevent zoonotic TBD in the future.

The high homology of A. phagocytophilum from different areas (100%) demonstrates
the low variation of A. phagocytophilum distributed throughout the ROK. In addition, the A.
phagocytophilum sequences detected in ticks during this study demonstrated 100% similarity
to those previously detected in infected horses [37]. Various gene fragments have been
used for identification of A. phagocytophilum [38]. However, other genes, e.g., groEL and
msp2, were shown not to be helpful for the detection of A. phagocytophilum in the ROK [37].

Borrelia spp. were detected by specific probe-based real-time PCR and then confirmed
based on sequencing analysis of the 16S rRNA gene. However, sequence results of 16S
rRNA gene was not useful for phylogenetic identification of B. burgdorferi sensu lato
because the sequence also shared 100% identity to B. tanukii. Therefore, further analysis
using various primer sets of alternate gene fragments [39,40], and specific primers for each
species detection are necessary. Unfortunately, the nucleic acids extracted from the positive
samples were exhausted. Therefore, we could not conduct further analysis for the detected
Borrelia spp. in this study.

A nationwide surveillance of tick prevalence and tick-borne pathogens harbored
by horse ticks was conducted in this study for the first time. The result revealed that
horses in the ROK are infested by two tick species, H. longicornis and I. nipponensis, with
majority of H. longicornis (99%). These ticks are vectors of two important tick-borne
pathogens, A. phagocytophilum and Borrelia spp., among the selected five targets for de-
tection (A. phagocytophilum, E. chaffeensis, Borrelia spp., B. caballi, and T. equi). The survey
of tick-borne pathogens harbored by horse ticks should be further extended for other
important pathogens, such as Rickettsia, by which a strategy for diagnosis and prevention
of the related diseases could be established.

4. Materials and Methods
4.1. Tick Collection and Identification

Ticks were collected directly from horses and associated vegetation at 72 sites, in-
cluding horse racetracks (2) and stud farms (3) operated by the Racing Horse Authority,
PHF (11), and LHR (56) in the ROK. Twenty four of the ranches were located in Gyeonggi
and Gangwon provinces in Northern ROK, while the other 48 ranches were located in
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central (2) and southern (46) provinces and metropolitan cities (Figure 6). Ticks on horses
were removed by securing the mouthparts with fine forceps as close to the skin as possible
and gently pulling the tick away to avoid breaking off the mouthparts, while ticks were
collected from the vegetation by the dragging/flagging method. Ticks were placed in
15 mL or 50 mL plastic vials with screw tops. At the end of each collection, the ticks were
placed in a cooler where they were transported to the Parasitic and Honeybee Disease
Laboratory, the Animal and Plant Quarantine Agency and stored at −80 ◦C until further
identified.
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Sex determination, identification of species and developmental stages were carried
out using morphological keys [41–43] under a light for all tick individuals, and a subset
of ticks was identified using electron microscopy. After identification, the ticks were
transferred to 1.5 mL cryovials according to species, stage of development, and sex (adults)
and returned to the −80 ◦C freezer until they were processed for the detection of selected
tick-borne agents.

4.2. Extraction of Nucleic Acids

Ticks were pooled based on the collection date, location, species, developmental
stage, and sex. Each pool consisted of adults (1–5), nymphs (1–30), or larvae (1–50). Ticks
from each pool and 300 µL of PBS solution were added in a tissue-homogenizing tube
with steel beads (SNC, Hanam, Korea), the sample was homogenized using a Precellys
24 Tissue Homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France). Maxwell
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RSC Viral Total Nucleic Acid Purification Kit (Promega, Madison, WI, USA) was used
for total nucleic acids extraction. The homogenate, 300 µL of lysis buffer, and 30 µL of
proteinase K solution were added in a new 1.5 mL microcentrifuge tube. After incubating
at 56 °C for 10 min purification of nucleic acids was done by using an automated Maxwell
RSC Instrument (Promega, Madison, WI, USA). Isolated material was stored at −80 ◦C
until further molecular analysis.

4.3. Polymerase Chain Reaction (PCR) and Real-Time PCR

The detection of Babesia spp., B. caballi, T. equi, A. phagocytophilum, and E. chaffeensis was
performed using conventional PCR, and the AccuPower ProFi Taq PCR PreMix (Bioneer,
Daejeon, Korea). Each 20 µL reaction mix included 5 µL DNA template, 1 µL (10 pmol)
of each primer, 13 µL of double-distilled water (ddH2O). The PCR conditions used to
amplify each target are shown in Table 4. Detection of Borrelia spp. was performed using
real-time PCR (CFX96 Touch Real-time PCR Detection System; Bio-Rad Laboratories, Inc.,
Hercules, CA). Each 20 µL reaction mixture consisted of 1 µL (10 pmol) of each primer, 1 µL
(5 pmol) of probe, 10 µL of PCR premix (IQ supermix, Bio-Rad Laboratories, Inc., Hercules,
CA, USA), 5 µL of DNA template, and 2 µL of ddH2O (Table 4). The volume of DNA
template (5 µL) used for each PCR was examined without PCR inhibition (Supplementary
Figure S1).

Results of positive detections were expressed as a minimum infection rate (MIR)
that assumed that every positive pool contains only one infected tick. The MIR was
calculated using the formula: MIR = number of positive pools/total number of tested
ticks × 1000 [44,45].

4.4. Phylogenetic Analysis

Positive samples of Borrelia spp. detected by real-time PCR were analyzed phylo-
genetically using the 16S rRNA gene and PCR products (622 bp; Table 4) amplified and
sequenced. Phylogenetic analysis of A. phagocytophilum was performed using the 16S
rRNA gene and PCR products of positive samples purified using a QIA Quick Purification
Kit (Qiagen, Hilden, Germany) and Macrogen (Seoul, Korea) sequenced the PCR prod-
ucts. The homologies of the generated sequences were analysed using the BLASTn tool
of the National Center for Biotechnology Information (NCBI) GenBank database. The
sequences were aligned using the Clustal W with MegAlign software version 7.1 (DNA-
STAR, Madison, WI, USA) and phylogenetic trees generated using the neighbor-joining
algorithm in MEGA-6 software [46] with 1000 bootstrap replications.
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Table 4. PCR primer sets and conditions used for detecting tick-borne pathogens in ticks collected from horses and associated vegetation.

Pathogens Primers Sequences (5′-3′) PCR Condition Target Gene (bp) Reference

B. caballi/
T. equi

Bec-UF1 GTTGATCCTGCCAGTAGTCA 95 ◦C (5 min); 37 cycles of 95 ◦C (30 s), 56
◦C (30 s), and 72 ◦C (1 min)

18S rRNA (Bc:867/ Te:913) [47]Bec-UR CGGTATCTGATCGTCTTCGA

Babesia spp. B5UK1 GTCAGCAAGCGAACCGACAA 95 ◦C (5 min); 37 cycles of 95 ◦C (30 s), 55
◦C (30 s), and 72 ◦C (40 s)

SpS7 (670) [48]B3UK1 CCAAGACGAGCTGAAGGATC

Anaplasma phagocytophilum PITA-fwd GTCGAACGGATTATTCTTTA 95 ◦C (5 min); 37 cycles of 95 ◦C (30 s), 58
◦C (30 s), and 72 ◦C (40 s)

16S rRNA (511) [49]PITA-rev TTCACCTTTAACTTACCGAA

Ehrlichia chaffeensis HE1 CAATTGCTTATAACCTTTTGGTTATAAAT 95 ◦C (5 min); 37 cycles of 95 ◦C (30 s), 50
◦C (30 s), and 72 ◦C (30 s)

16S rRNA (390) [50]HE3 TATAGGTACCGTCATTATCTTCCCTAT

Borrelia spp.

Bb23Sp-FAM 56-FAM/AGATGTGGT/ZEN/
AGACCCGAAGCCGAGTG/31ABkFQ 50 ◦C (2 min); 95 ◦C (5 min); 40 cycles of

95 ◦C (15 s) and 60 ◦C (30 s)
23S rRNA (75) [51]Bb23Sf CGAGTCTTAAAAGGGCGATTTAGT

Bb23Sr GCTTCAGCCTGGCCATAAATA
Bb16s-F GAGGCGAAGGCGAACTTCTG 95 ◦C (5min); 37 cycles of 95 ◦C (30 s), 60

◦C (30 s), and 72 ◦C (1 min)
16S rRNA (622) [52]Bb16s-R CTAGCGATTCCAACTTCATGAAG
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