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Simple Summary: Multiple Myeloma (MM) is a blood cancer characterized by an uncontrolled
growth of cells named plasma cells, within the bone marrow. Patients with MM may present with
anemia, bone lesions and kidney impairment. Several studies have been performed in order to provide
an explanation to how this tumor may develop. Among them, the so called “epigenetic modifications”
certainly represent important players that have been shown to support MM development and disease
progression. The present article aims to summarize the current knowledge in the specific are of
“epigenetics” in MM.

Abstract: Multiple myeloma (MM) is a plasma cell dyscrasia characterized by proliferation of clonal
plasma cells within the bone marrow. Several advances in defining key processes responsible for MM
pathogenesis and disease progression have been made; and dysregulation of epigenetics, including
DNA methylation and histone modification, has emerged as a crucial regulator of MM pathogenesis.
In the present review article, we will focus on the role of epigenetic modifications within the specific
context of MM.
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1. Introduction

Multiple myeloma (MM) is an incurable and biologically heterogeneous plasma cell dyscrasia
which accounts for about 10% of all hematologic cancers [1]. It is characterized by an uncontrolled
proliferation of plasma cells (PCs) within the bone marrow (BM), leading to extensive production of
non-functional monoclonal immunoglobulin protein. The malignant plasma cells primarily colonize
the BM, and patients with active MM present with a variety of clinical features that may include
anemia, renal insufficiency, bone lesions, and hypercalcemia [2]. MM is consistently preceded by
a pre-malignant condition named monoclonal gammopathy of undetermined significance (MGUS),
occurring in about 3–5% of the population above 50 year of age [3]. Approximately 1% of patients/year
may progress from MGUS to active MM [4]. MM cell may present with different genetic alterations [5,6].
Both chromosomal translocations and aneuploidy represent primary events associated with MM
pathogenesis. The most frequently observed translocations involve the immunoglobulin heavy chain
(IgH) locus: IgH gene is juxtaposed to oncogenes, thus resulting in their upregulation. t(11;14), found
in about 20% of all patients with MM, leads to enhanced expression of CCND1, thus favoring MM cell
cycle progression and cell proliferation [7]. Other frequently observed translocations include t(6;14)
(~21%); t(4;14) (~14%); t(14;16) (<5%); which will result in up-regulation of cyclin D3, FGFR3 and
NSD2/WHSC1, c-maf, respectively [8]. Importantly, somatic mutations have been recently described in
MM, with KRAS (~25%), NRAS (~20%), FAM46C (~11%), DIS3 (~11%), and TP53 (~8%) representing
the most frequently mutated genes [9,10].
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Of note, epigenetic aberrations may also support MM pathogenesis. The term “Epigenetics” was
defined in 1942, by Sir Waddington as “the branch of biology which studies the causal interactions
between genes and their products which bring the phenotype into being” [11]. It refers to those
mechanisms that controls gene expression via chromatin remodeling phenomenon that, in turn, can
be stably inherited in the absence of DNA sequence changes [12]. The chromatin is organized in
functional units composed of DNA and highly basic proteins found in eukaryotic cell nuclei, and its
functional unit is represented by the nucleosomes, wrapped around a histone octamer.

The histone core octamer is composed of 4 sets of dimers, interacting with each other via the
“histone fold”. Histone H3 and H4 interact through one fold, thus forming a heterodimer; similarly,
H2A and H2B dimerize, as the result of their interaction through another histone fold [13]. Of note,
nucleosomes do not only represent a tool necessary for DNA packaging, but they also are dynamic
structures that mirror the gene-expression pattern of a given cell [14]. Nucleosome stability and
dynamics may be modulated by chemical changes of the histones, thus affecting the energy landscape
of histone–DNA interactions, leading to increase of the DNA accessibility. These chemical modification
may appear as post-translational changes that can be added or enzymatically removed: the major
and most studied modifications include methylation, acetylation, ubiquitylation, phosphorylation,
and ADP-ribosylation [15,16]. Overall, hyperacetylated chromatin regions are transcriptionally active,
in contrast with hypoacetylated that are transcriptionally inactive [13].

In the present review article, we will focus on the role of epigenetic modifications in supporting
MM biology.

2. Epigenetics in Multiple Myeloma: DNA Methylation, Histone Acetylation, Epi-microRNAs

The process of lymphopoiesis is regulated by the expression of lineage specific gene sets. Indeed,
progenitor cells present with several mechanisms of control of gene expression, resulting in precise and
specific transcriptional patterns in a dynamic manner. This is controlled by the epigenetic machinery.
Within the context of MM, main common epigenetic mechanisms have been described to play a role in
MM pathogenesis, including DNA-methylation and histone acetylation. In addition, more recently,
the literature has referred to “epi-microRNAs”, as those microRNAs that may target epigenetic
regulators, including DNA methyltransferases and histone deacetylases [17,18].

2.1. DNA Methylation

The best-known epigenetic marker is DNA methylation. It plays a critical role in controlling
nuclear architecture and gene expression. DNA methylation occurs within specific areas, named as
CpG islands, enriched in dinucleotide CpGs and located at the 5′-end of the regulatory region of
several genes. DNA methyltransferases DNMT3A and DNMT3B establish new DNA methylation
patterns, while DNMT1A is responsible for maintaining methylation patterns upon replication.

Global DNA hypomethylation has been initially described in human cancer; other studies have
then identified hypermethylated tumor-suppressor genes [19–21], followed by the description of
miRNA inactivation by DNA methylation [22,23]. The literature has defined how CpG-island promoter
hypermethylation may target genes that are involved in cancer pathogenesis, acting as crucial regulator
of cell cycle progression, cell proliferation and survival, cell-to-cell interaction, programmed cell
death [24,25]. Of note, DNA methylation could be influenced by histone structure modifications that
are commonly disrupted in cancer cells [13,26–28].

Recent studies have reported on DNA methylation aberrations within the context of MM, showing
several DNA methylation patterns with identification of hypermethylated loci in aggressive subtypes,
compared to healthy donor [29]. Kaiser et al. reported on epigenetically-inhibited tumor suppressor
genes, demonstrating their prognostic significance in MM [30]. For instance, GPX3, RSBP1, SPARC,
and TGFBI were shown to be epigenetically inactivated in MM samples, and their methylation status
has been associated with overall survival, demonstrating their prognostic relevance. Importantly,
their inactivation was significantly higher as MM progressed to plasma cell leukemia [30].
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DNA methyltransferase inhibitors (DNMTi) are currently used to revert aberrant DNA methylation
patterns. Both cytidine analogs 5-azacytidine (azacytidine) and 5-aza-2′deoxycytidine (decitabine)
have shown to exert an anti-myeloma activity, supported by enhanced DNA damage, cell cycle arrest,
and induction of MM cell apoptosis [31,32]. Currently, clinical trials evaluating the safety of DNMTi in
combination with lenalidomide or dexamethasone are ongoing within the MM setting [33] .

The mechanisms responsible for altered MM cell DNA methylation are not fully described.
A higher expression of the DNA methyltransferase, DNMT1, has been reported in clonal MM cells as
compared to their normal cellular counterpart. Several studies have investigated whether aberrations
in DNA methylation could be described as disease stage-specific, thus changing during disease
progression [34]. Indeed, methylation aberrations may occur as early events in myelomagenesis,
being described in MGUS patients, involving mainly CpG islands [35]. CpG islands appear to play a
critical role in recruiting Polycomb repressive complex 2-PRC2 to gene promoters [36]. Enhancer of
Zeste homolog 2-EZH2 encodes part of PRC2 complex catalytic component; it regulates genome-wide
chromatin structure and transcriptome profiling via histone H3-lysine-27 methylation, thus resulting
in chromatin condensation and repression of transcription [37]. EZH2-overexpression is responsible
for the suppression of cell cycle control genes and is associated to poor prognosis in several tumors,
including prostate, colorectal, and breast cancer [38,39]. EZH2-overexpression has been recently
described within the context of MM, demonstrating its negative prognostic value: specifically, authors
have reported on increased EZH2 during disease progression, going from MGUS, to smoldering
myeloma, to MM [40]. It is important to consider also the occurrence of mutations of epigenetic
enzyme-related genes. Up to 53% of MM patients may present with mutated histone acetylation-,
methylation-, DNA methylation-, and chromatin remodeling-related genes (Table 1). These mutations
were also shown to be of prognostic relevance, as they correlated with overall survival in MM
patients [40].

The chromatin reader PHF19 modulates transcriptional chromatin activity [41], with a peculiar
role within the context of B-cell-to-plasma cell differentiation [42,43]. PHF19 acts recruiting the PRC2,
binding to H3K36me3, leading to EZH2 activation [44,45]. This process ultimately enhances gene
repression promoting tumor cell growth, as demonstrated in several tumor types [46]. Therefore,
PHF19 role in modulating MM biology has been a matter of investigation. Expression of PHF19 was
reported as significantly associated with MM disease progression, showing a predictive value greater
than NSD2 [47], an oncogene frequently over-expressed in MM plasma cells harboring the high-risk
t(4;14) translocation; and reported to modulate by the oncogene NSD2 [48]. These findings prompted
research groups to dissect the potential functional relevance of NSD2-inhibition in MM.

The multiple myeloma SET domain (MMSET), also known as NSD2 or WHSC1, was identified for
the first time as a potential candidate gene for the Wolf–Hirschhorn syndrome (WHS) [49]. It acts as a
histone-modifying enzyme, and its abnormal expression in MM is driven by the t(4;14).

NSD2 interacts with both histone-H3 and -H4, thus leading to H3K36-dimethylation and
H4K20-trimethylation; of note, it also favors the function of histone deacetylase-1, -2, and histone
demethylase LSD1 [50–52]. Within the specific context of MM, the accumulation of H3K36me2
levels, causes transcriptional activation of oncogenes, thus leading to MM cell growth and disease
progression [51,52].

Moreover, miRNA-126* has been identified [53] as an NSD2-regulated miRNA, as shown in MM
cells harboring t(4;14). Of note, c-MYC is one of the miRNA-126*-predicted targets.

Studies have demonstrated how NSD2 binds to miRNA-126*-promoter, with the nuclear
corepressor KAP-1 and HDACs; induces H3K9-trimethylation; reduces histone-H3 acetylation;
thus, ultimately resulting in miRNA-126* silencing. Moreover, considering c-MYC as one of the
miRNA-126*-predicted targets, the NSD2-dependent inhibition of miRNA-126* could result in increased
c-MYC expression, thus contributing to MM pathogenesis [53].
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Authors have demonstrated the anti-MM activity exerted upon NSD2-silencing using t(4;14)+
KMS11 cells, with a doxycycline-inducible NSD2-specific shRNA: in vivo studies confirmed reduction
of tumor growth and enhanced survival in the setting of NSD2-silenced MM cells [54].

To further define the oncogenic relevance of PHF19 in supporting MM biology, functional
studies have been carried out and PHF19-silencing approaches have demonstrated inhibition of MM
cell cycle progression, reduction of MM cell proliferation and survival [47], thus recapitulating the
importance for PHF19 in supporting MM pathogenesis and disease progression. Overall, targeting the
PHF19-PRC2-EZH2 complex could represent a novel therapeutic strategy for MM treatment. Indeed,
EPZ-643 and GSK-126, known as EZH2 inhibitors, were shown to sensitize MM cells to HDAC inhibitor
panobinostat, favoring MM cell apoptosis and reducing MM cell survival [55]. Similarly, recent studies
have demonstrated how PRC2 inhibitors were able to inhibit MM tumorigenicity [54,55]. It can be
also hypothesized that PHF19-targeting could represent a novel therapeutic approach, considering
its link to PRC2 and EZH2, and given the anti-MM activity exerted by single and specific PRC2- or
EZH2-targeting.

The expression levels of other histone methyltransferases (HMTs), such as members of the KMT1
and KMT2 families of lysine methyltransferases, have been reported to be altered in MM. For instance,
the histone-lysine N-methyltransferase KMT1 member, SUV39H1, has been associated with tumor
suppressor silencing in acute myeloid leukemia [56]. Similarly, its role in supporting MM pathogenesis
has been also reported. SUV39H1 is differentially expressed between healthy donor- and MM-derived
plasma cells; and high-SUV39H1 levels have been associated with adverse prognosis in MM patients.
Importantly, the selective inhibition of SUV39H1, achieved using either small molecule or conditional
shRNA-based approaches, is responsible for reduced MM cell proliferation, cell cycle arrest, enhanced
DNA damage, and induction of the apoptotic phenotype in MM cells [57].

KMT2 methyltransferases act as a complex including histone acetyltransferase CBP/p300, members
of the SWI/SNF chromatin-remodeling complex, and the demethylase KDM6A, to ultimately function
as transcription activators [58]. Recent studies have reported on the occurrence of mutations within
the KMT2 complex components, even though a clear functional role remains to be elucidated.

KDM6A and KDM6B, also known as UTX and JNJD3, respectively, guide demethylation of
the repressive mark H3K27me2/3: they have been reported to be mutated in around 10% of MM
cases [59,60], and the presence of the mutations correlates with adverse prognosis [60,61].

Among HMTs, protein arginine N-methyltransferases (PRMTs) catalyze the addition of methyl
groups to arginine residues of histone tails.

PRMT4 and PRMT5, for instance, could play a role in supporting MM pathogenesis. PRMT4 (also
known as CARM1) is overexpressed in several solid tumors, including breast, prostate cancer, and
hepatocellular carcinoma [62–64]. PRMT4 catalyzes the addition of methyl groups to arginine 17
and 26 of histone H3, as well as to non-histone proteins. Overall, this would lead to transcriptional
activation [65], cell cycle progression [66], DNA damage response [67], and cell differentiation [68].
The oncogenic role of PRMT4 has been described MM, and PRMT4-silecing using selective inhibitors,
such as EZM2302 [69] or TP064 [70], was proven to exert anti-tumor activity in preclinical models
of MM.

PRMT5 has been described to be up-regulated in MM patients, as compared to healthy individuals
and, importantly, high levels of PRMT5 are associated with reduced progression free survival and overall
survival [71]. Studies have properly shown the oncogenic role of PRMT5 within the specific context of
MM. Of note, EPZ015666-dependent inhibition of PRMT5 exerted anti-MM activity, as documented
both in vitro and in vivo [71].

2.2. Histone Acetylation

Histones may undergo post-translational modifications (PTMs), such as acetylation [72].
Acetylation of histones represents one of the most well-described PTMs, resulting the major player
in remodeling chromatin structure and in modulating gene transcription [73]. Under physiological
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conditions, there is a well kept balance between histone acetyltransferases (HATs) and histone
deacetylases (HDACs). HATs are enzymes that catalyze the addition of acetyl-groups to a specific
lysine residue located within the histone N-terminal tail, with the aim to: neutralize lysine’s positive
charge; favor an open chromatin structure; increase the accessibility of transcription factors to promoters;
and, ultimately, to favor gene expression. Acetylated histones also function as binding sites for proteins
with bromodomain which often positively regulate gene expression [74]. In contrast, HDACs are
enzymes that act, catalyzing the removal of acetyl groups, resulting in transcriptional repression [75].

HATs comprise two classes of enzymes: type A and type B. Type A- and type B-HATs are
localized within the nucleus or the cytoplasm, respectively. Type A-HATs are responsible for histone
acetylation. Type B-HATs mainly acetylate newly translated histones, thus facilitating their assembly
into nucleosomes [76]. Besides their main role in mediating histone acetylation, both types may be
involved in transferring acetyl groups to other proteins, including many several oncogenes and tumor
suppressors, such as MYC, P53, and PTEN, thus altering their protein functions [77]. Both solid
tumor and hematologic malignancies, including MM, may present with coding mutations involving
HATs [78].

CREB-binding protein (CBP)/p300, a type A-HAT, is essential in physiological events, such as
cell proliferation, differentiation, and programmed cell death; it may also play a role during tumor
transformation [79]. For instance, mutations in HAT CREBBP and gene copy loss of CREBBP and
EP300 have been identified in MM patients [80] (Table 1).

Table 1. Mutation of genes encoding for epigenetic regulators.

CATEGORY GENE NAME EPIGENETIC
ACTIVITY

MUTATED
CASES (%)

MUTATION
TYPE REF.

DNA
methylation DNMT3A DNA

methylation 5 LOF [59]

Histone
methylation KMT2A Histone H3K4

methylase 1.7 LOF [61]

KMT2B Histone H3K4
methylase 1.3 LOF [61]

KMT2C Histone H3K4
methylase 1.5 LOF [61]

SETD2 Histone H3K36
methylase 1.3 LOF [59]

NSD2
Histone H3K36,

K27
demethylase

0.4 LOF [61]

NSD3 Histone H3K36
demethylase 0.9 LOF [61]

KDM6A Histone H3K27
demethylase 1.3 LOF [60,61]

Histone
acetylation P300 Histone H3K27

acetylase 1.3 LOF [79,80]

CREBBP Histone H3K27
acetylase 0.7 LOF [79,80]

LOF: loss of function.

Given the oncogenic role of the CBP/p300 HAT, several attempts have been made to develop novel
therapeutic intervention; and the small molecule CCS1477 has been designed to selectively target and
inhibit CBP/p300. Its anti-MM effect has been demonstrated both in vitro and in vivo, used either as a
single agent or in combination with lenalidomide [81]. CCS1477 is currently approved for Phase I/II
clinical trial for the treatment of MM.

Enhancer rewiring is a fundamental epigenetic mechanism in carcinogenesis and acetylation of
H3K27 is critical in regulation of enhancers. For this reason, targeting enzyme binding acetylated
histones has often been highlighted as a therapeutic strategy in MM. The bromodomain and
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extra-terminal domain (BET) superfamily consist of four proteins (BRDT, BRD2, BRD3, and BRD4),
each containing two bromodomains, capable of recognizing acetylated lysine residues. BRD-proteins
promotes the recruitment of transcriptional activators, thus enhancing transcriptional activation [82].
Abnormal transcription activation resulting from aberrant expression of transcription factor represents
a crucial step for MM pathogenesis: for instance, MYC upregulation is seen in up to 50% of MM
patients [83]. Importantly, selective BRD4-inbhition, via JQ1, has been proven to exert an anti-tumor
effect in MM, as demonstrated in preclinical model both in vitro and in vivo [84]. The JQ1-dependent
anti-MM activity was supported by induction of MM cell cycle arrest and cellular senescence [84].
The other class of enzymes that balance the activity of HATs are HDACs. Four HDAC classes have been
identified (I, IIa, IIb, and IV), for a total of 11 canonical subtypes. Specific biological functions of each
HDAC isoform result from a differential HDAC localization within the cell; tissue-specificity; enzymatic
activity; and substrate specificities. Several biological processes are regulated by HDACs, including
for instance, modulation of senescence, cell differentiation, cell survival, programmed cell death,
angiogenesis [85] HDACs may present with aberrant expression and function, leading to enhanced
cell proliferation and survival, as demonstrated within the context of tumor transformation [86–90].
Within the field of blood cancers, increased HDAC expression was reported in lymphoproliferative
disorders (diffuse large B-cell lymphomas; T-cell lymphomas; cutaneous T-cell lymphomas; acute
lymphoblastic leukemia) and myeloproliferative neoplasms [91–95]. Of note, the aberrant expression
and function of HDACs has also been described in MM where Class I HDAC over-expression (i.e.,
HDAC1), was shown to be of prognostic relevance and associated to poor prognosis [93]. Overall,
these studies provided the rational for considering HDACs as potential new targets for therapy. Indeed,
several efforts were made to design and develop HDAC-inhibitors, in terms of both HDAC-specific
blockade and pan-HDAC-inhibitors [96].

Histone deacetylase inhibitors (HDAC-Is), including for instance, Vorinostat and Panobinostat
represent HDAC inhibitors that would therefore elicit a potential anti-tumor effect acting as
epigenetic-targeting agents; and their activity has been also evaluated within the context of MM [97].
Extensive research has unveiled the ability of HDAC6-inhibition to halt protein degradation, leading to
significant accumulation of polyubiquitinated proteins by targeting the aggresomal protein degradation
machinery; thus ultimately favoring MM cell apoptosis. Of note, studies have also shown a synergistic
activity between HDAC6- and proteasome-inhibition [98].

Vorinostat acts as a reversible inhibitor of class I and II HDACs [99]; and its anti-MM effects were
demonstrated in MM models, resulting from Vorinostat-dependent inhibition of MM cell proliferation,
enhanced MM cell apoptosis, reduced expression of pro-survival factors [100].

Panobinostat is a cinnamic hydroxamic acid analog that has proven to act with 10-fold higher
inhibitory activity against Class I, II, and IV HDACs as compared to Vorinostat: it has shown anti-MM
activity, either used as a single agent or in combination with proteasome inhibitors [101].

HDAC deregulation may be responsible for drug resistance, and indeed, studies have reported on
HDAC1 over-expression as a possible player in mediating MM cell resistance to bortezomib-dependent
proteasome inhibition [93].

Romidepsin acts as primarily class I HDAC inhibitory, and its anti-tumor activity has
been described within the field of MM, showing synergism when used in combination with
bortezomib [102,103]. More recently, authors have described the anti-MM activity exerted by ACY-241
(HDAC6 selective inhibitor), when used in combination with both immunomodulatory drugs (IMiDS)
and proteasome inhibitors (PIs). In addition, importantly, ACY-241-dependent HDAC6 inhibition
was supported by enhanced immune response in MM, resulting in a more efficacious host anti-tumor
immunity when used in combination with PIs and IMiDS [104].
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2.3. Epi-microRNAs and lncRNAs

Thousands of genes that lead to non-coding RNA (ncRNA) transcripts have been described in the
past years in tumor cells, thus suggesting the presence of high complexity within the genome of cancer
cells. Based on their length, they have been classified as short non-coding RNAs (<200 nucleotides,
sncRNAs) or long non-coding RNAs (>200 nucleotides, lncRNAs) [105]. miRNAs are small non-coding
RNAs (∼22 nt) that play crucial role under physiological and pathological conditions: they target
mRNAs of protein-coding genes, thus negatively regulating their expression [106]. The biogenesis
of miRNA involves a complex protein system. The RNA polymerase II (RNA pol II) transcribes the
miRNA sequence present within the DNA, resulting in precursor miRNAs, named primary miRNAs
(pri-miRNAs). At the nuclear level, the complex of Drosha (RNase III) and Pasha (DGCR8) convert
pri-miRNAs into pre-miRNAs. Pre-miRNAs are subsequently exported from the nucleus to the
cytoplasm, by exportin-5; and Dicer (RNA III Family member) acts to cleave the hairpin in dsRNA
(including the mature miRNA guide, and the complementary passenger strand). The mature miRNA
strand of the duplex is then assembled to form the ribonucleoprotein complex (RISC). The remaining
strand typically undergoes degradation. The mature miRNA-containing RISC is able to target the
related mRNAs by suppressing their translation [107–109].

The field of B-cell lymphoproliferative disorders has been the first area to be investigated in terms
of miRNAs in cancer. Dr. Croce and colleagues were the first to identify tumor suppressors miRNAs,
located at 13q14, where a significant lower expression of miRNA-15a and -16-1 was demonstrated in
patients with chronic lymphocytic leukemia, as compared to their normal cellular counterpart [110].
Similar findings were also described within the field of MM, where lower expression of miR-15a and
-16-1 was demonstrate in MM patients’ derived plasma cells [111,112]. These studies, reported, for the
first time on the tumor-suppressor role of miR-15a and -16-1, in MM, demonstrating how miR-15a and
-16-1 gain of function approached were able to inhibit MM tumor growth both in vitro and in vivo,
using xenograft disseminated MM models [111,112].

Epigenetic modifications may be responsible for impaired miRNA expression. For instance,
both DNA methylation and histone modifications have reported to modulate miRNA levels [113].

Overall, the functional relevance of miRNAs in supporting the biology of cancers is due to
the presence of miRNAs within genome regions that encode for either oncogenes (OGs) or tumor
suppressor genes (TSGs). In the first case tumor cells will present with reduced expression of the given
miRNAs, thus leading to lack of miRNA-mediated OG silencing; while, in the second case, tumor
cells will presenting with over-expression of a certain miRNAs, that will ultimately result in enhanced
inhibition of the target TSG [114]. It is important to take into consideration how epigenetics, such as
DNA methylation, may modulate miRNA expression [115]. Specifically, authors have demonstrated
the presence of DNA methylated peaks within intragenic and intronic regions, in MM; and found
hypermethylation-mediated inhibition of tumor suppressor-miRNA-10b-5p, and -miRNA-152, thus
leading to overexpression of their target genes (oncogenes DNMT1, BTRC, MYCBP, and E2F3) in
CD138+ bone marrow derived MM cells [29].

Epigenetic regulation of the tumor suppressor miRNA-23b has been reported in MM, resulting
from the occurrence of methylation of its promoter region [116]. Specifically, the authors have reported
on the miRNA-23b/Sp1/Myc feed-forward loop as a crucial regulator of MM cell growth; and proven
how promoter methylation may represent one of the mechanisms supporting the suppression of
miRNA-23b. Functional studies were also carried out, demonstrating how miRNA-23b-gain of function
led to inhibition of MM cell proliferation and survival, supported by induction of caspase-dependent
apoptosis [116]. miRNA-23b targets Sp1 3′UTR, thus resulting in inhibited Sp1-driven NF-kB activation.
Moreover, the authors provide novel insights into the ability of the oncogenic transcription factor c-Myc
to repress miRNA-23b. Therefore, c-Myc-induced miRNA-23b silencing may favor the oncogenic
Sp1-activity, thus enhancing MM cell growth and survival.

Recent studies have focused on the role of miRNAs in regulating the epigenetic machinery.
For instance, miRNA-29b has been shown to target DNMT-3A and -3B mRNAs, thus leading to
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global hypomethylation in MM cells [17]. miRNA-29b mimic-transfected MM cells presented with
inhibition of cell cycle progression and reduction of MM cell growth. Importantly, in vivo studies have
confirmed how systemic delivery of synthetic miR-29b mimics exerts significant anti-MM activity [17].
Importantly, miRNA-29b has been shown to target HDAC4 in MM cells, thus further confirming the
role of miRNA-29b as an “epi-miRNA” in MM [18]. miRNA-29b-dependent inhibition of HDAC4
resulted in reduced MM tumor growth as demonstrated both in vitro and in vivo [18].

The role of lncRNAs in supporting MM pathogenesis has been recently reported. Among lncRNAs
that could be involved in epigenetic regulation of MM disease, MALAT1, RP11-553 L6.5, ZFY-AS1,
RP4-803, RP1-43E13.2, and BM742401 have been described. [18,117–119].

Higher expression levels of MALAT1 were associated with MM disease progression [120]. Of note,
MALAT1-silencing strategies led to inhibition of MM tumor growth, thus providing the preclinical
rational for considering MALAT-1 a novel therapeutic target in MM [117]. MALAT1 is able to induce
up-regulation of epi-miRNAs, such as miRNA-29b [18], with an inverse correlation with EZH2
enhancer [118]. EZH2-inhibition results in enhanced expression of the epi-miRNA miRNA-29b, as a
consequence of H3K27me3 in promotor regions of miR-29b [118].

RP11-553 L6.5, ZFY-AS1, RP4-803, and RP1-43E13.2 were also described as modulators of MM
disease progression, as a result of their correlation with epigenetic changes connected to MM [119].

Another lncRNA that has been described as epigenetically silenced by DNA promoter methylation
in MM is BM742401 [121]. Higher level of BM742401 methylation characterized MM cells, as compared
to normal plasma cells, leading to reduced expression of BM742401. The tumor suppressor role
of BM742401 was also demonstrated by performing BM742401 gain-of-function studies, unveiling
inhibited MM cell migration, thus suggesting how epigenetic silencing of BM742401 may enhance
myeloma metastases and disease progression [121].

Most recently, several studies have also focused on the role of novel assays for the detection
of ncRNAs within several body fluids, thus suggesting the use of minimally invasive procedures
for identifying miRNA patterns in MM [122–124]. For instance, circulating exosomal miRNAs were
described as an important tool to enhance the stratification of MM patients with high-risk disease;
and miRNA-let7b and -18a were associated with both progression-free and overall-survival [123].

In summary, miRNAs have certainly gained scientists’ attention due to their important within the
clinical setting. Indeed, miRNAs may be used to differentiate between a tumor and a normal tissue;
between tumor subtypes, within a given tumor type; to better define outcome of patients and their
response to treatments; and, finally, can be either silenced or over-expressed for therapeutic purposes.

3. Role of Epigenetics in Supporting the MGUS-to-MM Transition

Epigenetic dysregulation represents a well-known hallmark of tumor cells, contributing to cancer
onset and tumor progression. Detailed mechanisms underlying the MGUS-to-MM progression have not
fully defined. Authors have defined a gene pattern for high-risk MM [125,126], nevertheless, additional
studies are required for properly define mechanisms responsible for the MGUS-to-MM transition.
Recent studies have dissected the potential role of epigenetics in supporting the MGUS-to-MM transition,
including, for instance, DNA and histone methylation [34]. MM cells and several other tumor types
present with global hypomethylation of DNA, together with hypermethylation of gene-specific
promoter regions [127]. Genome-wide methylation arrays have been performed at several stages of
MM disease, demonstrating the occurrence of DNA hypomethylation at early MM phases; importantly,
the hypomethylated status was shown to further decline during MM progression [34]. Notably,
promoter hypermethylation of several cancer-related genes (i.e., BNIP-3, p16, E-CAD, DAPK-1),
was reported to correlated with adverse prognosis [30,128–130]. Recent studies have reported on the
promoter methylation-dependent silencing of RASSF4 (RAS association domain family member 4),
occurring with MM disease progression; with a correlation with adverse prognosis [131].

Transcriptome profiling has demonstrated EZH2 up-regulation during MM progression, with a
specific enrichment within the high-risk proliferative subgroup [40]. Several evidences have highlighted
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the role of miRNAs in MM progression. Moreover, serum-miRNA signature was evaluated in both
MGUS and MM patients, demonstrating its prognostic and diagnostic relevance [132,133].

Recent studies have dissected the potential role of methylation on miRNA expression; and reported
on hypermethylation-mediated silencing of miRNAs that have reported as potential TS-miRNA in
MM (i.e., miRNA-10b-5p, -152) [29].

Moreover, components of miRNA processing machinery are also associated with MM pathogenesis.
Aberrant expression of Dicer has also been shown to play a role in the MGUS-to-MM progression;
and to correlate with outcome in MM. Specifically, reduced Dicer levels were associated with disease
progression from MGUS to active MMM; whereas increased Dicer levels resulted in prolonged PFS
in MM patients [116,134]. In addition, the miRNA processing- and B-cell differentiation-regulator
and Argonaut 2 (AGO2) [21,135,136] was shown to be up-regulated in MM patients with high-risk
disease [126]. This findings prompted the authors to investigate the functional role of AGO2 in
MM, demonstrating its oncogenic role, as shown by enhanced MM cell programmed cell death in
AGO2-silenced MM cells [137].

4. Targeting Epigenetics within the Context of the Bone Marrow Milieu

High dose chemotherapy followed by stem cell transplantation, and the use of novel small
molecules and antibodies, have certainly improved MM patient survival. Nevertheless, MM remains
an incurable disease, and most patients succumb due to disease relapses and progression. It has been
shown that the bone marrow (BM) milieu enhances MM cell survival and proliferation, conferring drug
resistance [138]. How bone marrow mesenchymal stromal cells (BMSCs) may support MM disease
progression and drug resistance has gained the attention of several research groups. For instance,
BMSCs could favor the acquisition of additional genetic aberrations within the tumor clone, thus leading
to prolonged MM cell survival, and drug-resistance, even in those cases presenting with a clinical
remission state.

It has been previously reported that selective HDAC3-targeting using BG45, results in inhibition
of MM cell growth [139]. Importantly, other groups have demonstrated how targeting HDAC3 within
the context of the BM milieu results in an indirect anti-MM activity [140]. These data were supported
the demonstration that HDAC3 levels were significantly higher in MM patients as compared to
healthy individuals, and, importantly, MM cells were shown to induce the expression of HDAC3 in
BMSCs [140].

Moreover, additional studies have also demonstrated the importance of engineering miRNAs in
MM cells, aiming to obtain an anti-MM effect: indeed, enhancing the expression of pre-miRNA-15a
and -16-1 in MM cells has shown to result in a significant anti-MM activity, supported by inhibition of
MM cell adhesion to the surrounding BM milieu, resulting in disruption of the MM cell-to-BMSC cross
talk, followed by significant reduction of MM tumor growth, as shown using xenograft disseminated
MM models [112].

5. Conclusions

It is well accepted the concept that epigenetic alterations are an important process in MM
pathogenesis and progression. All these findings yield potential avenues for novel therapy,
thus suggesting the use of epigenetic-targeting drugs as a putative novel therapeutic approach
for this disease. Several studies have dissected the potential anti-MM activity exerted by epigenetic
modifier-targeting agents, such as inhibitors of DNMTs, HDACs, EZH2; and confirmed their
anti-neoplastic effect in pre-clinical models of MM, as shown both in vitro an in vivo. Sequencing of
MM patients during their disease progression could result in the identification of new epigenetic-related
targets, thus supporting the rational for the design and development of new epigenetic-targeting
agents for personalized therapies. Moreover, considering the recent advances within the field of
CRISPR-Cas9-based genome editing approaches, these technologies could be potentially applied to
better define the functional role of the described epigenetic aberrations, thus further contributing
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to a better understanding of the MM biology; and allowing for the identification of novel
therapeutic interventions.

Furthermore, data from utilizing epigenetic inhibitors targeting several epigenetic modifiers
e.g., DNMTs, HDACs, EZH2, BMI-1, and BET bromodomains have shown pleiotropic anti-MM
effects by affecting several oncogenic pathways using MM in vitro and in vivo models. The use of
relevant pre-clinical animal models, such as the Vk*MYC mice [141], that highly resemble the MM
disease as it appears in human will be an absolute requirement to evaluate the efficacy and safety of
epigenetic inhibitors in a syngeneic tumor microenvironment, as well as on-target drug effects in vivo.
Such studies will provide proof-of-concepts for the translation of rational targeting of epigenetic
modifiers into clinical practice in MM.
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