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Background and Objective: Electroencephalography (EEG) can be used to control

machines with human intention, especially for paralyzed people in rehabilitation exercises

or daily activities. Some effort was put into this but still not enough for online use. To

improve the practicality, this study aims to propose an efficient control method based

on P300, a special EEG component. Moreover, we have developed an upper-limb assist

robot system with the method for verification and hope to really help paralyzed people.

Methods: We chose P300, which is highly available and easily accepted to obtain

the user’s intention. Preprocessing and spatial enhancement were firstly implemented

on raw EEG data. Then, three approaches– linear discriminant analysis, support vector

machine, and multilayer perceptron –were compared in detail to accomplish an efficient

P300 detector, whose output was employed as a command to control the assist robot.

Results: The method we proposed achieved an accuracy of 94.43% in the offline test

with the data from eight participants. It showed sufficient reliability and robustness with

an accuracy of 80.83% and an information transfer rate of 15.42 in the online test.

Furthermore, the extended test showed remarkable generalizability of this method that

can be used in more complex application scenarios.

Conclusion: From the results, we can see that the proposed method has great potential

for helping paralyzed people easily control an assist robot to do numbers of things.

Keywords: EEG, human-machine interface, assist robot, online control, practicability

INTRODUCTION

Electroencephalography (EEG), a meaningful attempt to explore the secrets of the brain which is
made up of neurons (Noctor et al., 2001). It also can be used to reflect the human intention under
different physiological conditions because the transfer of information between neurons produces
changes in electrical potentials (Schomer and da Silva, 2012). High-resolution EEG (Mitzdorf,
1985) is quickly becoming a powerful tool in human-machine interface (HMI), with which people
is able to work by internal intention and external equipment instead of their own limbs (Gao et al.,
2003). This technology plays a vital role in helping disabled people out of the dilemma that they
have to rely on the help of others all the time. Moreover, robots can be controlled by EEG-based
HMI to assist paralyzed people with neuromuscular disorders such as stroke or amyotrophic lateral
sclerosis in performing rehabilitation training (Prasad et al., 2010; Ang et al., 2015). A large amount
of evidence shows that EEG-based assist robots effectively promote patients recover (Bhattacharyya
et al., 2014; Chaudhary et al., 2016; Alia et al., 2017; Monge-Pereira et al., 2017; Cervera et al., 2018)
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by essentially helping reconstruct the neural circuit between the
brain and the muscles compared to the traditional method of
repetitive motion (Dobkin, 2004; Belagaje, 2017).

Many control methods for assist robots have emerged but
there are still some challenges such as causing fatigue, requiring
too much pre-training, or poor online testing results (Tariq et al.,
2018), which allows us to question how assist robots can be more
practical for assistance purpose. Steady-state visually evoked
potentials (SSVEPs) are adopted to extract effective components
of EEG with too much, and cluttered information. An SSVEP-
controlled assist robot has been developed to perform pick and
place tasks (Chen et al., 2019), which are completed by showing
the user four targets flickering at 30, 31, 32, 33Hz to trigger
different commands. In the same regard, SSVEPs are used to
control functional electrical stimulation for rehabilitation (Han-
Pang, 2015). This paradigm has good information transfer rate
(ITR) and accuracy (Vialatte et al., 2010; Chen et al., 2019),
but is restricted by the limited number of control commands
(Norcia et al., 2015; Zhao et al., 2015), and constant flickering
easily causes fatigue, which is not appropriate for people in
rehabilitation (Duszyk et al., 2014). Some research turns its
attention to motor imagery (MI) for closely correlating brain
commands and body movement responses. A system with MI
for after-stroke rehabilitation exercises has been presented (Wang
et al., 2009), that controls a robot to drive the arm by letting
subjects imagine hands moving. In another work, the left, right,
up, and down robot arm movements are driven by imagining
the movement of their left hand, right hand, both hands, and
the relaxation of both hands (Meng et al., 2016). Nevertheless,
MI is not practical enough because the imaginary movements
with distinct individual differences are not definite, causing
participants to need extra pre-training and resulting in lower
accuracy (Dahm and Rieger, 2016).

Event-related potentials (ERPs), brain voltage fluctuations in
response to specific stimuli such as images or sounds (Sams et al.,
1985; Picton et al., 2000), provide a more straightforward mean
to control the assist robot. A lower limb prosthesis based on
P300, the peak observed 300ms (250–500ms) after a specific
event (Picton, 1992; Polich, 2007), has been developed to help
people walk (Duvinage et al., 2012). Four letters for simulation
are used to represent low-, medium-, and high-speed states and
stop states. As one of the most easily observed ERP, P300 is also
used for spelling by constantly flashing the rows and columns of
a 6×6 alphabet matrix when the subjects are focusing on a target
letter, which stimulates the P300 response (Velasco-Álvarez et al.,
2019). Therefore, we chose P300 because it was more stable to be
observed in most people and less prone to fatigue.

Researchers have tried some methods to detect P300 (Raksha
et al., 2018; Tal and Friedman, 2019; de Arancibia et al., 2020) and
no good conclusion yet as to which method is really acceptable
to practical online use of assist robot due to the rigorous
requirement for accuracy and stability. Many good works with
impressive performance have been obtained (Cecotti and Graser,
2011) only from offline experiments (Kobayashi and Sato, 2017;
Mao et al., 2019; Kundu and Ari, 2020) or BCI competition
(Kundu and Ari, 2018; Arican and Polat, 2019; Ramele et al.,
2019). However, we cannot risk using offline results directly in

real life. Serious differences may be caused by complex objective
factors such as impedance (Ferree et al., 2001) and specificity
(Chowdhury et al., 2015). Some researchers have also tried online
experiments, but many of them focus on new frameworks or user
interfaces while ignoring the performance of the method itself
(Achanccaray et al., 2019; Lu et al., 2019; Mao et al., 2019).

Consider these issues, we propose a highly practical control
system with remarkable accuracy and nice ITR after comparing
three P300 detection methods offline and online, that can be
used for the control of assist robots. Moreover, with the method,
a complete upper-limb assist robot has been built to verify
the feasibility and effectiveness of the system, as well as an
exploratory mobile robot controlled together with computer
vision to confirm the robustness and generalizability.

The main contributions of this research are as follows: (i) a
handy and efficient EEG-based method to steadily control assist
robots for helping disabled people practically was proposed; (ii)
With the method, we developed a safe robot that can assist
user to perform up to 36 preset upper-limb movements such as
rehabilitation exercises; (iii) both offline and online tests were
performed to verify the practicability of the finalized system with
detailed comparisons of three classifiers as intention detector;
and (iv) good reference for future research was provided by a
novel assistive mobile robot with shared control of our method
and computer vision.

The sections of this paper are given as follows. We introduce
data collection, the framework of our control method, the
theoretical details of three comparison methods, the composition
of the upper-limb assist robot and the extended test in section
Materials And Methods. The experiments and the results are
presented in section Results. Finally, the study is discussed in
section Discussion, and concluded in section Conclusions.

MATERIALS AND METHODS

Data Acquisition
Eight healthy volunteers (six males and two females), aged
from 19 to 28 years old, joined in these experiments. All
participants without any experience of an EEG experiment gave
informed consent before the experiment. All the procedures were
approved by the Guangzhou First People’s Hospital Department
of Ethics Committee. It took <2 h for each one to complete
the experiment. EEG signals recorded from 64 scalp electrodes
on BrainCap MR (Brain Products GmbH) were amplified using
BrainAmp MR (Brain Products GmbH), with all impedances
kept at approximately 20 k�.

The P300 speller paradigm (Farwell and Donchin, 1988)
composed of 26 letters and 10 numbers in a 6×6 matrix was
used for stimulation. Each participant was instructed to watch
a 15.6" LCD monitor 0.7m away with a 6×6 character matrix
and focus on one of them. The character flashed within the
entire row or column, and each row or column flashed once
for a total of 12 times per repetition. Twelve repetitions were
conducted to recognize one character. In the training portion
of the experiment, the rows and columns flashed in random
order with a flashing duration of 100ms and a no-flash duration
of 50ms, leading to an interstimulus interval (ISI) of 150ms.
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Besides, we set the inter-repetition delay to 0.5 s and the inter-
character delay to 5 s. Fifteen characters were collected for
training classifiers, which took 476.5 s for each participant to
perform. A dataset for specific people and objective factors was
obtained with 360 target samples and 1,800 no-target samples,
comprising 2,160 samples in total.

Method
The schematic diagram of the proposed method is shown in
Figure 1. It consists of four parts: the user module to stimulate
participant and acquire EEG signal, the signal processing part to
conduct pre-processing and feature enhancement, the classifier to
detect P300 from continuous EEG, and the execution module to
control the robot. In the short-term training phase, the acquired
data were pre-processed, and a spatial filter was used to enhance
the features. Then, we used the processed data to train the
P300 classifier. In the online test phase, the data were classified
to obtain the user’s intention as control commands for the
assist robot.

Pre-processing and Data Enhancement
First, the signals collected at a sampling rate of 500Hz were
temporally filtered using a fourth-order Butterworth bandpass
filter with a 1Hz lower cut-off frequency and a 20Hz upper
cut-off frequency. Then, down sampling with a factor of four

was used to reduce the computational cost. Next, the signal
was divided into 500ms epochs, including 250ms duration to
preserve the P300 wave and a 250ms interval to avoid overlap.

After the above steps, the spatial filter based on xDAWN
algorithm (Rivet et al., 2009) was used to enhance the evoked
potential of the data which means to improve the signal to
signal-plus-noise ratio (SSNR). It can be expressed as follows:

EEGpp = D1A1 + D2A2 + N (1)

where EEGpp is the matrix of preprocessed EEG signal. A1 and
A2 indicate two states with evoked potential and no evoked
potential. D1 and D2 are Toeplitz matrices whose first column
are defined to zero except for those corresponding to the two
states. N is the sum of the original noise. A1 can be factorized as
a1W

T
1 , where a1 is the temporal distribution andW1 is the spatial

distribution. Now the SSNR can be defined as:

SSNR =
UTE1U

UTEEU
(2)

where U is a spatial filter, E1 and EE represent the expectation of
(AT

1D
T
1D1A1) and (EEGT

ppEEGpp) separately. Assuming that A1 is
uncorrelated to other parts, the SSNR can be rewritten as:

SSNR =
E1

′
(

UTW1
)2

UT(E1′W1W
T
1 + D2A2 + N)U

(3)

FIGURE 1 | Schematic diagram of the proposed EEG-based assist robot control method.

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2020 | Volume 14 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Song et al. EEG Online Control Assist Robot

where E1′ is the expectation of (aT1D
T
1D1a1). The spatial filter can

be calculated by maximizing SSNR. The A1 can be obtained by
least mean square estimation, then the estimated spatial filter Û.
The final output after pre-processing and spatial enhancement
can be calculated by:

EEGp = EEGpp Û (4)

where EEGp is the matrix of processed EEG signal. The signal
space is compressed to three dimensions, which serves as an input
tomake the classifiers of the next part substantially more efficient.

Due to the good performance of xDAWN, channel selection
was no longer a problem that seriously affected the experiments.
All 64 channels were used to provide sufficient information
without worrying about too much computation for the classifier.
From another perspective, we can settle for impedances at
approximately 20 k� to cut down the preparation time before
the experiment.

Classifiers
The EEG with complex structure is easily affected by slight
changes in human thoughts. Therefore, a highly efficient
and robust classifier is essential for P300 detection. Some
classification methods have been used for P300 detection, such
as linear discriminant analysis (LDA), random forest (RF),
and convolutional neural network (Cecotti and Graser, 2011;
Duvinage et al., 2012; Akram et al., 2015; Hong and Khan,
2017). Some good results have been achieved with some datasets
but testing using real-time data is insufficient. As we all know,
there are many external factors that affect the signal quality
of non-invasive EEG. It makes us confused that what is most
suitable for assist robot online control. Besides, too much time
is unacceptable to train a large amount of data with a complex
classifier in rehabilitation scenario. Thus, the classifier design is a
serious problem in our work.

To propose a method capable of accurately detecting the P300
signal at a fast speed, we used three types of classifiers– SVM,
LDA, and multilayer perceptron (MLP) –to classify the data into
two classes, Target meant P300 signal was detected and No Target
meant no P300 signal was detected.

For every participant, only the data of 15 characters were used
as the training set, which was acquired as described in section
Data acquisition. Five-fold cross-validation was introduced
to avoid overfitting. The following content will explain the
structures and parameter settings of the three classifiers
in detail.

LDA Classifier

Linear discriminant analysis is a classification algorithm which
performs well for EEG signals (Xu et al., 2019) despite its simple
structure. It looks for a vector to preserve as much information
indicating the discrimination of class Target and No Target as
possible, which means to make the samples in the same class
more aggregated and those from different classes more separated.
LDA was used to verify whether the cost-effective linear classifier
could be used well for EEG signals. The low input dimensions

made the dimensionality reduction mapping smoother as well.
For better classification results, a metric function was used as:

J (VEEG) =
VT
EEGSbVEEG

VT
EEGSwVEEG

(5)

where VEEG is the vector used to project the output from EEG
signal processing part to a low-dimensional sample space for
discrimination; Sb is the between-class scatter representing the
distance between the means of the classes; and Sw is the within-
class scatter, which is the variance within a class. These two
scatters were used to control Target away from No Target and to
ensure that each class was dense enough. The partial derivative
given as follows was used to find VEEG, which can obtain a
maximum J (VEEG ):

∂J (VEEG)

∂VEEG
= SbVEEG − J (VEEG) SwVEEG (6)

Through the determinant operation, we can obtain the values
of J (VEEG), further finding VEEG which could be used for
classification directly.

SVM Classifier

Support vector machine is a supervised machine learning
method that is used for classification or regression. Similar to
LDA, the processed EEG signal is mapped to high-dimensional
feature space and is divided into two regions by a hyperplane.
Considering the significant individual differences of different
people’s EEG signal, SVM, which does not require too many
parameters or local optimization but has low generalization error,
is particularly well-suited.

The training data is given as {EEGi, Li}
n
i=1, in which EEGi

is the processed EEG signal segment and Li ∈ {−1, 1} is the
class label. We can determine the hyperplane by maximizing the
separation margin of class Target and No Target and minimizing
the classification error. It can be expressed mathematically as:

arg max w,b

{

1

‖w‖
min

[

Li(w
Tϕ(EEGi)+ b)

]

}

(7)

where w is the weight and b is the bias, ϕ() is the mapping
function. After modification we got:

min
1

2
‖w‖2 + C

∑

N
i=1ξi s.t. Li

(

wTϕ (EEGi) + b
)

≥ 1− ξi

(8)

where ξi ≥ 0 is the slack variable representing the magnitude
of the error. Further, the dual representation obtained with
Lagrange multiplier method is:

max L (a) =
∑

N
i=1an −

∑

N
i=1

∑

N
j=1aiajLiLjϕ (EEGi)

T

ϕ
(

EEGj

)

s.t.
∑

N
i=1anLn = 0 (9)

where multiplier an ≥ 0. A non-linear kernel as follows was used
in the classifier to replace the simple inner product of the data
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FIGURE 2 | Structure of multilayer perceptron neural network.

mapping which makes it more robust for the linearly inseparable
case and differentiate from the previous linear method LDA.
Then, the decision could be made with the hyperplane.

kernel = K(ϕ (EEGi) ,ϕ
(

EEGj

)

) =
(

ϕ (EEGi)
T ϕ

(

EEGj

)

+1
)3

(10)

MLP Classifier

Recently, deep learning based on neural networks has achieved
amazing performance in some classification problems (Lecun
et al., 2015). However, too deep network on small data is prone
to problems like overfitting. MLP, a classic model with most
characteristics of neural networks, was chosen for comparison.
The structure of MLP shown in Figure 2 is made of three
parts with layers containing many neurons that perform linear
weighting calculation separately. Similar to the information step-
by-step transfer in the brain, the processed EEG data input from
the first layer is used to obtain few abstract features in the two
hidden layers, and these features are integrated by the output
layer to obtain the final classification result.

The tanh function given as follows was used as the activation
function in the neurons to introduce non-linear properties after
performing a linear operation on each neuron.

neuron ouput = tanh (FEEG) =
2

1+ e−2FEEG
− 1 (11)

where FEEG indicates the abstract feature of EEG in different
layers. The weights and biases were corrected by gradient descent
and calculated by backpropagation in training. With continuous
optimization, this network was able to classify a sample to class
Target or No Target at last.

Upper-Limb Assist Robot System and
Practical Test
We built an integrated control system to verify the actual
performance of our methods and an upper-limb assist robot that
can be used in practice, shown in Figure 3, which we hoping
to employ to replace repeating mechanical rehabilitation that is
commonly used in hospitals with general results but massive
manpower. An example is given to illustrate the use, when
the participant keeps focusing on the letter “O,” it would be
detected by the system and accompany the screen displayed the
corresponding indicative picture with a voice prompt to remind
the user that the assistivemovement of grasping orange was about
to be done. After that, the robot helped the participant pick up the
orange in front of him and put it down in another place.We could
also program different actions for rehabilitation corresponding to
the 36 characters. Besides, different quantities and forms of P300
stimulation, such as vivid pictures instead of characters, could be
customized according to actual needs.

The control module was a laptop with an Intel Core i7-8750H
processor and 16 GB RAM. The EEG signal was transmitted
to this laptop after acquisition and amplification. We used
OpenViBE (Renard et al., 2010) and MATLAB R2018b for data
collection, signal processing, and user interface building. After
detecting P300, the participant’s intention is converted to a
control command and sent to the execution module through the
TCP protocol. The execution module was mainly composed of a
UR5 robot (Universal Robots) for performing preset movements
and a 3D printed end effector with a gasbag to assist the
user in doing tasks by driving user’s upper limb. As shown in
Figure 4, we preset four tasks related to the shoulder and elbow
muscle groups, shoulder flexion in Figure 4A, elbow flexion in
Figure 4B, orange grasping in Figure 4C and book turning in
Figure 4D, which were triggered separately by focusing on the
corresponding character. Up to 36movements that can be set give
the assist robot a lot of possibilities.

We must pay attention to the security issue. The security
mechanism of our assist robot included several aspects. There
was an emergency stop button on the control panel with which
the operator can stop the robot at any time. Besides, the force
that the UR5 can withstand was limited to 80N. If unexpected
movement occurs, it will automatically stop without harming the
user due to the small resistance generated by the user. Moreover,
the preset movements would be recorded manually for each new
user based on his exclusive status.

In practical use, it is not necessary to reduce the impedance to
an excessively low level because of the good performance of our
control strategy, preparation can be finished within a short time
by an operator familiar with the process. According to the results
of the pre-experiment, we reduced the ISI to 75ms, consisting of
a flashing duration of 50ms and a no-flash duration of 25ms, as
well as an inter-repetition duration of 0.25 s. This measure was a
substantially effective use of the P300 signal.

Extended Test
We have built a control system with an upper-limb assist
robot, and hope that the control strategy can be applied in a
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FIGURE 3 | The upper-limb assist robot controlled by our method for testing. Written informed consent was obtained from the individual for the publication of

this image.

FIGURE 4 | Four preset tasks of the upper-limb assist robot. (A) Shoulder flexion; (B) elbow flexion; (C) orange grasping; (D) book turning.

wild range of scenarios. Therefore, we develop a more novel
mobile robot controlled by our HMI and computer vision for
further verification.

As in the previous section, the control system was used to
obtain the user’s intention and control the mobile robot to go
to another place to grasp items and return to the user. The
mobile robot given in Figure 5 has three parts, a mobile platform
with radar for navigation, a stereo camera (Stereolabs Inc.)
for recognition and a robot arm (Kinova Inc.) for grasp. As
shown in Figure 6A, we selected an area in which four positions
had placed an apple, a mobile phone, a cup and a bottle as
four targets to be grasped. Some cartons were randomly placed
as obstacles.

We set four characters to correspond to the four targets and
built a map of the environment at first in actual use. When the
control system detected the participant’s intention, the command
would be wirelessly transmitted to the mobile robot. Then the
mobile platform planned a global route to avoid the obstacles
and reach the target with A∗ algorithm as in Figure 6B. Near
the target, the stereo camera used computer vision method

FIGURE 5 | A novel mobile robot with control of our method and

computer vison.

(Redmon and Farhadi, 2017) to detect the target and calculate the
three-dimensional coordinates, with which the robot arm could
grasp the target as in Figure 6C. Finally, the mobile robot returns
to the participant’s position.
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FIGURE 6 | Scenarios of four targets for mobile robot testing. (A) actual scene; (B) route planning; (C) grasp motion.

This part is an imperfect exploratory attempt. We hope to use
it to further test the practicality and robustness of our control
method, which showed a very high application value. There is no
very detailed implementation description because the robot and
computer vision technology we used is quite mature.

RESULTS

The 64-channel EEG data of eight healthy participants with no
experience of P300 experiments were used to test our method.
In each experiment, we collected data from 15 characters with a
total of 2,160 samples for training and offline testing, followed by
nine groups with 10 characters each for online testing. The linear
LDA, non-linear SVM and neural network method MLP were
compared with three experimental groups to obtain an effective
method for the HMI.

The accuracy was used as the primary criterion to guarantee
the reliability of the entire system after selecting the ISI and
the number of repetitions. The training results of the three
methods for each participant are presented in Figure 7 with
average accuracies and standard deviations of 92.15± 1.42, 94.43
± 1.32, and 81.87± 10.9%, respectively, in which we can see that
LDA and SVM were always high and stable. The results of MLP
were unstable and significantly lower than LDA (p < 0.05) and
SVM (p < 0.05), even though it could achieve good accuracy in
some cases.

Five-fold cross-validation was used to avoid overfitting and
confirm the validity of our offline test because EEG with

an amount of noise was easily affected by the limited data
we used to reduce the detection ability of the method. The
data of each participant was randomly divided into five equal
parts. The five results obtained by using one of them as
the test data and the other four as the training data were
combined into the final accuracy. As shown in Table 1, the
cross-validation accuracy of LDA and SVM remain stable
with low standard deviation. However, MLP still shows large
differences in different participants, sometimes having rather
poor results. Besides, we used the standard deviation of the
classification accuracy and cross-validation accuracy to evaluate
the performance of three classifiers. The results of LDA,
SVM and MLP are 0.0227, 0.0267, and 0.3200. It can be
seen that the first two meet our demand, while the third
is worse.

Then the confusion matrixes shown in Table 2 were
used to compare LDA and SVM and further confirm the
reliability of the finalized control method. Signals of target
stimuli are referred to as positive samples, and signals of
no-target stimuli are referred to as negative samples. TP
indicates the number of positive samples correctly predicted. FN
indicates the number of positive samples incorrectly predicted
as negative samples. FP indicates the number of negative
samples incorrectly predicted as positive samples. TN indicates
the number of negative samples correctly predicted. For the
convenience of observation, the confusion matrices reflecting
the overall performance of LDA and SVM are given in Figure 8

after normalization.

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2020 | Volume 14 | Article 32

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Song et al. EEG Online Control Assist Robot

FIGURE 7 | Offline results of three methods in eight different participants. The average accuracies with standard deviations of LDA, SVM, and MLP are 92.15 ± 1.42,

94.43 ± 1.32, and 81.87 ± 10.9%, separately. The results of MLP are significantly lower than LDA (p < 0.05) and SVM (p < 0.05).

TABLE 1 | Accuracy of 5-fold cross-validation.

Participant P1 P2 P3 P4 P5 P6 P7 P8 Average

LDA 88.29 92.27 88.61 86.94 86.76 92.27 91.62 89.68 89.56 ± 2.27

SVM 88.84 93.70 90.37 89.07 86.90 92.22 92.50 90.97 90.57 ± 2.24

MLP 16.67 90.03 17.33 11.19 12.25 87.39 86.75 84.75 50.80 ± 39.02

The standard deviations between these results and offline results of LDA, SVM, and MLP are 0.0227, 0.0267, and 0.3200, which shows that the offline performance of the first two

meets our requirement, the third is worse.

TABLE 2 | Confusion matrix for a two-class problem.

Prediction

True Target No-target

Target TP FN

No-target FP TN

We used another four exact criteria derived from the
confusion matrix, sensitivity, precision, specificity, and
F-measure, to evaluate the performance of the method as follows:

Sensitivity =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

Specificity =
TN

TN + FP
(14)

Fmeasure =
2× Precision× Sensitivity

Precision+ Sensitivity
(15)

Sensitivity and specificity mean the ability to predict positive
samples and negative samples, separately. Precision refers to the
proportion of samples predicted positive are predicted correctly.
Sometimes Sensitivity and Precision will contradict, so we choose
F-measure that combines both of them. The results of LDA and
SVM for each participant are shown in Tables 3, 4, respectively.
From the results, the sensitivity of SVM is significantly higher
than LDA (p < 0.01). The difference of precision is small (p >

0.05) but the F-measure of SVM is higher obviously (p < 0.05).
Both specificities of them are very high.
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FIGURE 8 | Normalized confusion matrices of LDA and SVM.

TABLE 3 | Sensitivity, precision, specificity, and F-measure of LDA for different

participants.

Participants Sensitivity Precision Specificity F-measure

P1 0.5170 0.9282 0.9920 0.6641

P2 0.6560 0.9563 0.9940 0.7782

P3 0.5140 0.9362 0.9930 0.6637

P4 0.4940 0.9165 0.9910 0.6420

P5 0.4780 0.8968 0.9890 0.6236

P6 0.6560 0.9704 0.9960 0.7828

P7 0.6250 0.9843 0.9980 0.7645

P8 0.5690 0.9192 0.9900 0.7029

Average 0.5636 ± 0.073 0.9385 ± 0.030 0.9929 ± 0.003 0.7027 ± 0.064

TABLE 4 | Sensitivity, precision, specificity, and F-measure of SVM for different

participants.

Participants Sensitivity Precision Specificity F-measure

P1 0.6440 0.9083 0.9870 0.7537

P2 0.8190 0.9010 0.9820 0.8580

P3 0.7030 0.9336 0.9900 0.8021

P4 0.6360 0.9550 0.9940 0.7635

P5 0.8000 0.9816 0.9970 0.8815

P6 0.8030 0.9305 0.9880 0.8621

P7 0.7170 0.9111 0.9860 0.8025

P8 0.6830 0.8723 0.9800 0.7661

Average 0.7256 ± 0.073 0.9242 ± 0.034 0.9880 ± 0.006 0.8112 ± 0.050

The sensitivity (p < 0.01) and F-measure (p < 0.05) are significantly higher than LDA. The

difference between their precisions is small (p > 0.05).

The online tests with 30 characters in three groups per
classifier were also conducted for each participant to test the
actual performance of the method. As shown in Figure 9, the
accuracies of the three classifiers are 70.83±14.00, 80.83±13.18,
and 70.00±17.28%. The online results are lower and more
unstable than offline, possibly due to different external factors

and brain changes during thinking. The trends are similar to
the offline test, in which SVM shows distinct superiority and
robustness than LDA and SVM.

DISCUSSION

This paper aims to design a practical HMI to help disabled people
control assist robot for some daily movements or rehabilitation
exercises on their own. An EEG-based method is proposed with
an effective spatial filter followed by a robust P300 classifier to
obtain the user’s intention and control the robot.

Since the characteristics of the EEG signal are still not well-
understood, three representative classifiers, including LDA and
SVM, that have distinct linear and non-linear features, as well
as the MLP with neural network properties were chosen. The
parameters of the classifiers determined by pre-experiment were
consistent across all experiments to make certain the universality
of the method. According to offline and online results, both
LDA and SVM remained stable, but MLP varied wildly across
different participants. Although the neural network has achieved
many excellent classifications, it depends heavily on data size
and hyperparameter fine-tuning. If the structure is simple, this
method may not be able to handle all the features; however,
if the structure is too complicated, it may consume too much
time and also have the individual specificity problem, which
is unacceptable in this control scenario. In further reference
to the metrics derived from the confusion matrix, the overall
performance of SVM is indeed preferable.

Our finalized method has achieved an offline accuracy of
94.43% and an online accuracy of 80.83%. Besides, the extended
test of the mobile robot reached an online accuracy of 81.67%.
The reliability and stability of our method make it more likely
to be used in practice. Another valuable achievement is that the
specificity is very high. This means that our control system hardly
recognizes unexpected intention when the user does not need
it, which may cause sudden movement of the assist robot. This
character greatly guarantees the safety of users.

For the practical application of EEG for rehabilitation, time
consumption is a problem that cannot be ignored. As shown in
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FIGURE 9 | Online results of the three methods in eight different participants. The average accuracies with standard deviations of LDA, SVM, and MLP are

70.83±14.00, 80.83±13.18, and 70.00±17.28%.

TABLE 5 | Time for preparation and detection.

Preparation Time (min)

Lower impedance 25 min

Collect training data 8 min

Train model 1 min

Table 5, the experiment takes only approximately half an hour
for preparation, which is very convenient for the users, especially
for people with mobility impairment and their escorts. Moreover,
the ITR introduced by Shannon (1948) is used to quantitatively
evaluate the efficiency and speediness. This metric, commonly
used for measuring control systems, is defined as:

ITR =
60 (P log2 P + (1− P) log2

(

1−P
N−1

)

+ log2 N)

T
(bits/min)

(16)

where P is the probability of correctly recognizing a command
(character), N is the number of classes, and T is the time needed
to detect a command. Table 6 shows a comparison between
previous research using the P300 signal and our method. Here,
the N is 36, which supported our method to meet the practical
needs of versatility. However, in this case, how to balance the

accuracy and detection time becomes a difficult problem. To
ensure stability and safety, ISI is set to 150ms during training to
help the participant adapt easier and is set to 75ms during the
online testing and actual use for faster speed. In comparison, we
can see that although the offline performance is average due to
the conservative T setting, the online performance has achieved
a significant advantage. The method proposed by Cecotti et al.
uses a massive data set to train a convolutional neural network
with great potential (Cecotti and Graser, 2011). But as seen in
this paper, there may be serious instability in online use.

Our method has been significantly improved compared with
some nice research based on P300, which was not limited to the
use of assist robot. It can be seen that it achieves not only a high-
performance method but also a practical and easy-to-use system
for target groups from the experimental test, statistical inference,
and comparison with other methods.

There are still some limitations. Some parameters in the
method were not detailed for demonstration because we chose
the best of the ones we had considered through a series of pre-
experiments for comprehensive performance. And the number
of repetitions used to detect a character was set to medium,
that also made the T slightly long, to ensure our method was
robust enough for any user. Besides, the inherent characteristics
of P300 made the ITR less than some methods based on SSVEP.
Nevertheless, SSVEP was not very acceptable for some applicable
scenarios, such that some cases do not need to be too fast but
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TABLE 6 | Comparison of offline and online ITR between our method and others.

Reference Year Type ITR

Cecotti and Graser (2011) 2011 Off 8.25

On —

Akram et al. (2015) 2015 Off 7.03

On —

Han-Pang (2015) 2015 Off —

On 7.91

Kobayashi and Sato (2017) 2017 Off 8.67

v On —

Chen et al. (2017) 2017 Off 13.95

On —

Nurseitov et al. (2017) 2017 Off 16.53

On 5.84

Achanccaray et al. (2019) 2019 Off 6.49

On 4.54

Mao et al. (2019) 2019 Off 10.53

On —

Our method 2019 Off 10.13

On 15.42

Bold values highlights the best result of this paper.

need to be more stable and comfortable to use. A shortcoming
cannot be ignored is that we did not compare our method in-
depth with some recent great P300 detection methods based on
deep learning (Ditthapron et al., 2019). However, we think our
methods on the basis of classical machine learning also have
decent performance and are convenient to be implemented with
lower computation cost, which is easier to be used in practice for
relevant developers. We will try to use deep learning to improve
our online control system in future work.

CONCLUSIONS

In this paper, a remarkable EEG-based human-machine interface
is proposed to online control assist robots for disabled people.
We have accomplished a high-performance method using the
P300 component to detect the user’s intentions for control. This
method with good accuracy and ITR proved to be effective
and practical enough for real life by offline and online tests.
Moreover, based on the control method, an upper-limb assist

robot is developed to assist users to perform some activities
such as grasping, book turning with security measures and
a user-friendly interactive program, which gives a meaningful
reference to future work. Besides, a novel mobile robot controlled
by our method and computer vision proves the robustness
and generalizability. Further tests on stroke patients performing
therapeutic exercises will be considered with the upper-limb
assist robot.
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