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Protozoan parasites represent a major threat to health and contribute significantly to

morbidity and mortality worldwide, especially in developing countries. This is further

compounded by lack of effective vaccines, drug resistance and toxicity associated with

current therapies. Multiple protozoans, including Plasmodium, Entamoeba, Toxoplasma,

and Leishmania produce homologs of the cytokine MIF. These parasite MIF homologs

are capable of altering the host immune response during infection, and play a role in

immune evasion, invasion and pathogenesis. This minireview outlines well-established

and emerging literature on the role of parasite MIF homologs in disease, and their

potential as targets for therapeutic and preventive interventions.

Keywords: MIF, cytokine, protozoan parasites, host-parasite interaction, immune evasion, immunopathology,
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INTRODUCTION

Protozoan parasites cause more than one million deaths annually. For example, Plasmodium
falciparum, a protozoan parasite responsible for most human malaria, accounted for an estimated
200millionmalaria cases and roughly 500,000malaria deaths in 2015 (1, 2). The protozoan parasite
Leishmania causes an estimated 50,000 deaths per annum through visceral leishmaniasis (3).
Entamoeba histolytica is a protozoan parasite that causes colitis (inflammatory diarrhea). Millions
of people are infected with E. histolytica, making amebic colitis a leading cause of severe diarrhea,
estimated to kill more than 50,000–100,000 people each year (4–6). The protozoan parasite
Toxoplasma gondii, which affects up to a third of the world’s population, is adapted to survive and
abide chronically in its host (7). The threats posed by protozoan parasites are further compounded
by lack of any effective parasite vaccine, emerging drug resistance, drug toxicity, poor efficacy,
and limited antimicrobial options (5, 8, 9). Therefore, identifying novel targets for therapeutic
intervention and vaccine prevention is urgently needed. Pathogenic protozoans produce virulence
factors that enable immune response evasion and host invasion which promote their transmission
and ability to cause human disease (10). Targeting these virulence factors required to cause host
damage and disease might successfully treat and prevent these infectious diseases.

The pathogenesis of protozoan diseases is highly variable, and is often influenced by individual
life cycles and immunologic consequences of infection. The complicated life cycle of Plasmodium
begins when an infected female anopheles mosquito injects sporozoites into the bloodstream of a
human during a blood meal, which travel to the liver, before emerging to release merozoites into
the bloodstream. These merozoites invade and multiply within erythrocytes to rupture, releasing
more merozoites, and continually perpetuating invasion by the parasite. Plasmodium promotes
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its survival by avoiding excessive exposure to the immune system
by infecting hepatocytes and erythrocytes. Clinical symptoms
are associated with the rupture of infected erythrocytes and the
release of malarial toxins, and include fever, severe hemolytic
anemia and other systemic features. Merozoites also develop
into sexual forms known as gametocytes, which are ingested
during mosquito bites to continue the life cycle (11). Similarly,
Leishmania is also a vector-borne protozoan parasite, that is
transmitted when Leishmania promastigotes are inoculated into
the subdermis of the skin by the bite of an infected female
phlebotomine sand fly. Leishmania is rapidly phagocytized by
neutrophils. Promastigotes within dead infected neutrophils are
taken up by host macrophages, morphing into the amastigote
form. Depending on the species, amastigotes replicate within the
macrophage locally to form disfiguring skin ulcers (cutaneous
leishmaniasis) or disseminate to the bone marrow, liver, and
spleen (visceral leishmaniasis) which is fatal if untreated (12–15).

In contrast to these vector-borne infections, the transmission
of the highly prevalent protozoa, Toxoplasma gondii, is fecal-oral,
through the ingestion of the oocyst from material contaminated
with feline feces or undercooked meat infected with tissue
cysts. Following intestinal infection, tachyzoites form, and then
disseminate to other tissues in the body including the brain,
eye, muscle, liver, and placenta. Like Leishmania, Toxoplasma is
able to infect phagocytes, which facilitates successful infection.
Symptoms of primary infection include fever, adenopathy,
headache, and myalgia. The stimulation of a robust immune
response controls the acute infection, driving the parasite into
a chronic, asymptomatic stage allowing Toxoplasma to survive
as bradyzoites in cyst forms within multiple tissues capable of
later reactivation (7). Infection with E. histolytica also begins with
the ingestion of fecally contaminated food or water, but has a
relatively simpler life cycle. E. histolytica exists as either infective
cysts which are ingested or transforms into invasive trophozoites
that penetrate the mucus layer of the large intestine to cause
colitis leading to diarrhea, dysentery, and colonic ulceration. The
trophozoites can also on occasion disseminate to cause extra-
intestinal disease, with a particular predilection for the liver
leading to amebic liver abscess (16). Thus, in order to complete
their life cycle, all of these protozoa must be able to invade and
pass from host to host while avoiding clearance by the immune
response. In this minireview, we describe how protozoa secrete
a specific protein macrophage migration inhibitory factor to
accomplish this task.

MACROPHAGE MIGRATION INHIBITORY
FACTOR

Macrophage migration inhibitory factor (MIF) was one of the
first cytokines to be discovered over 50 years ago (17, 18).
Since then, a significant amount of information has been
accumulated regarding the role of MIF in normal physiology
and pathology. MIF is a well-studied pleiotropic inflammatory
protein, expressed by a variety of cells, and is a critical upstream
mediator of innate immunity. While MIF’s exact molecular
mechanism is not fully understood, partial pathways of MIF

signaling have been established. For example, secreted MIF
binds to its receptor, CD74, on immune cells, activates the
ERK1/2 and PI3K/Akt pathways, and modulates expression
of various cytokines, e.g., TNF-α, IL-6, IL-8, and IL-12 (19).
MIF may also bind to CXCR2 and CXCR4, which may be
responsible for its chemotactic properties. In addition, MIF
stimulates the production of matrix metalloproteinases (20).
Therefore, it is not surprising that MIF plays an important role
in immunity and that excess MIF expression has been linked
to exaggerated inflammation and immunopathology in diseases
such as rheumatoid arthritis, and inflammatory bowel disease
(19, 21, 22).

The proinflammatory properties of MIF also make it a
crucial mediator in the immune response against a wide
variety of pathogens including parasites (23). In protozoan
infection, host MIF play a key role in reducing parasite burden
through stimulation of both innate and adaptive immune cells.
Mechanistically, host MIF can stimulate nitric oxide production
by macrophages and dendritic cells, which in turn eliminates
parasites such as Leishmania, Toxoplasma, and Trypanosoma
(13, 23, 24). MIF can also be harmful to the host. That
is, MIF production has been linked to pathology during
malaria and T. brucei infection, by promoting inflammation-
induced tissue damage (21, 25, 26). The role of host MIF
during parasite infections has been well-reviewed elsewhere
(23, 24, 27).

Counterintuitively, many pathogenic protozoans, including
Plasmodium, Entamoeba, Toxoplasma, and Leishmania, produce
their own MIF cytokine. These secreted parasite-produced MIF
are structurally similar to human MIF, bind the MIF receptor
(CD74), and stimulate immune cells and epithelial cells to
cause the release of cytokines such as TNF-α, IL-8, and IL-
12 (28–35). While it seems counterintuitive for protozoans to
secrete a proinflammatory cytokine, it appears they have an
important role in the parasite life cycle. Here, we focus on MIF
produced by medically important protozoans, highlighting the
recent contributions that have improved our understanding of
the role of protozoan MIF in immune evasion, invasion, and
pathogenesis (Figure 1).

IMMUNE EVASION

The host deploys a robust immune response to prevent parasite
invasion, clear the infectious pathogen, and prevent re-infection.
However, parasites have developed a remarkable number of
mechanisms to evade these attacks (10). For example, Leishmania
has developed ways to modify host cell signaling pathways, in
order to survive and persist in host cells. Leishmania targets
macrophages, which, interestingly, are the primary immune cells
involved in the parasite’s eradication (13). Leishmania major
encodes two isoforms of MIF which facilitates its persistence
in macrophages and contributes to its evasion from immune
clearance. L. majorMIF binds to CD74 on infected macrophages,
activating the ERK1/2 pathway and preventing apoptosis of
macrophages (35, 36). Infected macrophages then survive a
sufficiently long enough time for the parasite to avoid excessive
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FIGURE 1 | Host-parasite interaction involving protozoa-produced macrophage migration inhibitory factor (MIF). Protozoa secrete MIF that is structurally similar to

human MIF. Protozoa MIF binds directly to the human MIF receptor CD74, activating the ERK pathway with immunomodulatory effects on variety of immune and

epithelial cells. Protozoa MIF immunomodulatory effects appear to play a role in parasite invasion and immune evasion, and has been linked to pathogenesis.

exposure to the immune system and complete its infectious
life cycle.

The lack of protective immunity against re-infection is
one of the biggest problems in controlling the transmission
of protozoan infections. An adequate amount of protective
memory T-cells are needed to fight off re-infection (37).
Recent research in parasite MIF has provided a mechanism by
which parasites evade the immune response by interfering with
the development of immunological memory during infection,
allowing them to re-infect their host (28, 29, 35). Using mouse
models, researchers found that the proinflammatory effects of
both Plasmodium and Leishmania MIF can manipulate T-cell
differentiation. Plasmodium MIF enhances the production of
IFN-γ and IL-12 which reduces the anti-Plasmodium blood-
stage CD4 T-cell response. Mice infected with MIF-deficient
P. berghei had reduced levels of these cytokines. This reduced
inflammatory state correlated with improved survival of CD4T
helper cells. As a result, mice were able to develop effective
T-cell memory when infected with MIF-deficient parasites
which provided a protective response against a subsequent
P. berghei infection. Leishmania MIF cause T-cells to develop
into exhausted PD-1+ short-lived effector cells with reduced
IL-7R expression, which is needed to produce and maintain
memory cells (28, 29, 35). These short-lived cells die during
infection, and the long-lived memory T-cells required to
prevent re-infection were not produced in adequate amounts
(29). This MIF-induced lack of memory cells resulted in
parasitic re-infection.

Recent clinical observations also support these findings.
It was observed that in a cohort of children in an area
endemic for amebiasis, those who lacked adequate amounts of
antibodies against E. histolytica MIF were not protected from
future infection (Figure 2A). The authors postulated that E.
histolytica MIF might share similar properties to Plasmodium
and Leishmania MIF. That is, E. histolytica MIF might also
inhibit the development of sufficient amounts of memory cells.
Thus, antibodies against E. histolytica MIF would block this
effect resulting in adequate amounts of memory cells to protect
against reinfection (32). Nevertheless, further studies are needed
to confirm this theory. Also, the role of Toxoplasma MIF in
immune evasion remains largely understudied.

INVASION

Host tissue invasion by extracellular or intracellular protozoan
parasites play an important role in the pathogenesis of disease.
The extent of tissue invasion by extracellular parasites correlates
with the degree of disease severity (16). For example, the
depth of tissue invasion is associated with worse outcomes in
clinicopathological studies of patients with severe amebic colitis
(38, 39). On the other hand, obligate intracellular parasites invade
host cells to complete their life cycle (13, 40). Several parasite
factors are known to contribute to the invasion process. Recent
studies have implicated parasite MIF proteins in facilitating
invasion and dissemination of several protozoan parasites.
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FIGURE 2 | E. histolyica MIF (EhMIF) in human amebiasis. (A) Children in the

top 50th percentile for anti- EhMIF antibody (blue line) had a significantly higher

probability of survival free of E. histolytica infection than children within lower

50th percentile (red line). (B) Significant positive correlation between fecal

EhMIF levels and the myeloperoxidase (MPO) marker of intestinal inflammation

in persons with amebiasis (n = 35). Panels are reproduced from (17)

with permission.

The extracellular matrix (ECM) is a network of proteins that
provides tissue support and represents a major physical barrier
to the parasite invasion. Matrix metalloproteinases (MMPs)
are enzymes primarily responsible for ECM breakdown (41).
Protozoa infections trigger an inflammatory response which
leads to MMP overexpression, resulting in ECM breakdown.
ECM degradation facilitates cell movement, and allows immune
cell infiltration at the site of infection for host defense (42).
Parasites have developed mechanisms to exploit the activities
of MMPs to promote their invasion. For example, MMPs play
a critical role in E. histolytica invasion. MMP expression is
increased in human amebic colitis and inhibition of MMP
prevented E. histolytica invasion in a human colonic explant
model (32, 43, 44). Recently, a causal relationship between E.
histolytica-produced MIF and gut inflammation was established
using cellular and mouse models of amebic colitis. In the
same study, researchers found that E. histolytica MIF-induced
inflammation resulted in increased MMP production (32).
Therefore, E. histolytica parasites appear to produce MIF as a
virulence factor to exploit the inflammatory response to promote
tissue invasion.

As mentioned above, neutrophils are the first immune cells
to reach the site of Leishmania infection after a sand fly
bite, and their uptake by neutrophils followed by macrophage
engulfment contributes to leishmanial parasites infectivity and
assist in life cycle progression (12–14). Neutrophils are short-
lived phagocytes that act as a “Trojan horse” used by Leishmania
parasites to obtain entry into macrophages thereby avoiding cell
activation (15). Whether there are leishmanial factors that drive
this neutrophil infiltration remains largely unanswered. While
host MIF exhibits chemokine-like activities through interactions
with the chemokine receptors CXCR2 and CXCR4 (45, 46),
protozoanMIF-CXCR2 and CXCR4 interactions remain unclear.

Similar to Leishmania, T. gondii induces immune cell
infiltration and not only evades their killing, but also hitches a
ride in these cells to spread infection (47, 48). T. gondii must
cross the intestinal barrier for it to advance from the gut to
sites of secondary infection, and tachyzoites are often found in
neutrophils in the gut lumen. In vitro studies have indicated
that T. gondii MIF stimulates the production of the potent
chemoattractant IL-8 from human cells. In an attempt to explain
why this would benefit the parasite, it has been suggested that
MIF-induced IL-8 production leads to neutrophil recruitment.
Infected neutrophils, which are incapable of clearing the parasite,
serve as motile reservoirs for T. gondii infection, facilitating
the transepithelial migration of the parasite (30, 48, 49). While
plausible, additional studies are warranted to validate the role of
ToxoplasmaMIF in invasion.

PATHOGENESIS

During protozoan infections, an unbalanced inflammatory
reaction increases tissue destruction which leads to clinical
disease. The inflammatory response is essential in that it provides
protection against invading microbes. However, protozoan
parasites have developed effective strategies to evade the immune
response, avoid elimination, and persist in their host, which
exacerbates the damage caused by the lingering inflammatory
response to invading parasites (10). This is further compounded
by the fact that these parasites secrete MIF cytokine that can
directly drive inflammation.

Host cytokines released during Plasmodium infection
contribute to severe malaria. For example, high TNF-α
production is a strong predictor of severe malarial anemia and
cerebral malaria in children (50, 51). P. falciparum MIF was
shown to stimulate TNF-α secretion by immune cells in-vitro.
Also, circulating serum P. falciparum MIF levels positively
correlated with serum TNF-α levels in malaria patients, and
higher P. falciparum MIF levels were observed in patients with
severe malarial anemia and cerebral malaria (25, 28). These
findings suggest that P. falciparum MIF is likely contributing to
immunopathogenesis during malaria.

Neutrophil infiltration is a hallmark of amebic colitis.
Neutrophils generate oxygen free radicals that are capable of
killing the E. histolyica parasite. That said, E. histolytica has
developed several strategies to counter and survive neutrophil
killing (52–54). This results in an excessive and persistent
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neutrophil response in the gut that has been shown to be
associated with the most severe forms of human amebiasis,
which also carry high fatality (6, 55–57). E. histolyica MIF plays
an essential role in neutrophil infiltration during infection. E.
histolytica MIF was shown to stimulate IL-8 and the murine IL-
8 homolog KC (potent neutrophil chemoattractants), resulting
in neutrophil infiltration and tissue destruction in cellular and
mouse models. A recent human study found that gut E. histolyica
MIF levels correlated with intestinal inflammation severity
[Figure 2B; (32, 33)].

Macrophages also play a crucial role in protozoan MIF-
induced immunopathology. In vitro studies show that E.
histolyica MIF directly enhances TNF-α and IL-6 production
from macrophages (31). Both cytokines cause collateral tissue
injury in amebic colitis and liver abscess (10, 58). In
a mouse model of Leishmania infection, Leishmania MIF
upregulated inflammatory and innate immune signaling in
infected macrophages, such as CXCL1, TLR2, and TNF-α, when
compared to MIF−/− strains (35). Taken together, this pro-
inflammatory phenotype, extending the survival of infected
macrophages, and defective adaptive immune response supports
the contribution of Leishmania MIF to the chronic destructive
inflammatory state observed in leishmaniasis.

OTHER PROTOZOANS PRODUCING MIF

Other medically important protozoans include Trichomonas,
Giardia, Trypanosoma, Acanthamoeba, and Naegleria. MIF
orthologs have been discovered in Trichomonas andGiardia. The
structure of GiardiaMIF has been solved with a characterization
similar to human MIF, but its role in infection is not well-
understood (59). Surprisingly, MIF orthologs have not been
characterized in Trypanosoma, Acanthamoeba, and Naegleria.
However, incomplete genome assembly and annotationmay limit
in-silico analysis and explain why MIF has yet to be identified in
these protozoans.

Inflammation is a critical component of tumor progression
and many cancers, including prostate cancer, arise from sites

of infection and chronic inflammation (60, 61). Trichomonas
vaginalis is a sexually transmitted parasite that can colonize
the prostate in men. T. vaginalis also secretes MIF which has
pro-inflammatory properties. In addition to stimulating the
production of IL-8 and IL-6 cytokines, Trichomonas MIF binds
to the human CD74 MIF receptor triggering the activation of
the pro-proliferative ERK and P13K/Akt pathways in prostate
epithelial cells. Trichomonas MIF-driven inflammation and cell
proliferation, was linked to the promotion and progression of
prostate cancer (62).

CONCLUSION

Recent studies have made it increasingly clear that parasite-
produced MIF is a virulence factor that play a significant role
in host-parasite interactions and contributes to pathogenesis.
Despite these advances, key questions remain unanswered.
Such as, can we translate these findings to provide beneficial
interventions to patients infected with these pathogens? Do we
know enough to intervene in a meaningful way? Protozoan MIF
(P-MIF) appears to be a logical candidate for further evaluation as
an effective immunotherapeutic target given the accumulation of
data showing that: (i) infected persons naturally make antibodies
against P-MIF, (ii) anti-P-MIF do not cross-react with host
MIF, and (iii) neutralizing antibodies inhibit P-MIF activity and
therefore prevent re-infection and reduce immunopathology.
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