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Ranking factors involved in diabetes remission after bariatric
surgery using machine-learning integrating clinical and
genomic biomarkers
Helle Krogh Pedersen1, Valborg Gudmundsdottir1, Mette Krogh Pedersen1,2, Caroline Brorsson1, Søren Brunak1,2 and Ramneek Gupta1

As weight-loss surgery is an effective treatment for the glycaemic control of type 2 diabetes in obese patients, yet not all patients
benefit, it is valuable to find predictive factors for this diabetic remission. This will help elucidating possible mechanistic insights
and form the basis for prioritising obese patients with dysregulated diabetes for surgery where diabetes remission is of interest.
In this study, we combine both clinical and genomic factors using heuristic methods, informed by prior biological knowledge in
order to rank factors that would have a role in predicting diabetes remission, and indeed in identifying patients who may have low
likelihood in responding to bariatric surgery for improved glycaemic control. Genetic variants from the Illumina CardioMetaboChip
were prioritised through single-association tests and then seeded a larger selection from protein–protein interaction networks.
Artificial neural networks allowing nonlinear correlations were trained to discriminate patients with and without surgery-induced
diabetes remission, and the importance of each clinical and genetic parameter was evaluated. The approach highlighted insulin
treatment, baseline HbA1c levels, use of insulin-sensitising agents and baseline serum insulin levels, as the most informative
variables with a decent internal validation performance (74% accuracy, area under the curve (AUC) 0.81). Adding information for the
eight top-ranked single nucleotide polymorphisms (SNPs) significantly boosted classification performance to 84% accuracy
(AUC 0.92). The eight SNPs mapped to eight genes — ABCA1, ARHGEF12, CTNNBL1, GLI3, PROK2, RYBP, SMUG1 and STXBP5 — three
of which are known to have a role in insulin secretion, insulin sensitivity or obesity, but have not been indicated for diabetes
remission after bariatric surgery before.
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INTRODUCTION
Type 2 diabetes mellitus patients are increasingly recognised to
experience improved glycaemic control following bariatric
surgery,1 and a growing number of randomised control trials
consistently report surgery to be more effective for controlling
obese Type 2 diabetes patients than various medical/lifestyle
interventions.2 Furthermore, obese type 2 diabetes patients who
have undergone bariatric surgery present with fewer complica-
tions compared with surgery-naive patients.3 Consequently, new
guidelines from the second Diabetes Surgery Summit recommend
the use of bariatric surgery as an antidiabetic treatment for Type 2
diabetes patients with body mass index (BMI) ⩾ 40 kg/m2

or BMI 35.0–39.9 kg/m2 suffering from inadequately controlled
hyperglycaemia, and further suggest considering surgery for
patients with BMI 30.0–34.9 kg/m2 and inadequately controlled
hyperglycaemia.2 Several mechanisms seem to contribute to
surgery-induced diabetes remission, including gut hormone and
microbiota changes, bile acid reabsorption and caloric
restrictions.4–7 In an effort to curb the epidemic of obesity and
diabetes, a growing number of people are turning to gastric
bypass surgery. However, not all patients achieve surgery-induced
diabetes remission, and the remission rate depends on surgery
procedure,8 clinical presentation, patient risk factors9,10 and
patient genetic predisposition.11 Genome-wide association studies

(GWAS) are attempting to uncover genetics that predispose an
individual to good prognosis of diabetes remission (database of
Genotypes and Phenotypes (dbGaP) accession number:
phs000380.v1.p1) but not much has yet been published. The
heritability of diabetes remission following bariatric surgery is
largely unknown, but surgery-induced excess body weight loss
has been found to be significantly more similar between first-
degree relatives compared with unrelated individuals, including
unrelated individuals living together,12 suggesting the involve-
ment of a genetic component. However, despite increased focus
in this area, the precise underlying molecular mechanisms and
prognostic factors of remission remain incompletely understood.
Such insight would improve selection of patients for bariatric
surgery, and might hint at new pharmaceutically relevant
biomarkers and targets. Consequently, it is of interest to
investigate and identify phenotypic and genomic factors asso-
ciated with surgery-induced diabetes remission. It is also of
interest to identify patients unlikely to benefit in their diabetic
condition to possibly avoid surgical risks where the diabetic
condition is a major objective of the surgery, since the surgery
procedure is not without risk, although the mortality rate and
complication frequency are within reasonable range for elective
surgery. Still, up to 15% of patients experience minor complica-
tions and 2–6% suffer from major complications with 2.5% and
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5.1% requiring early reoperation or readmission after laparoscopic
Roux-en-Y gastric bypass.2

The multifactorial genetic architecture of a complex disease
like diabetes presents challenges in correlating genomic variation
with phenotypic differences. Most existing methods for GWAS are
single-locus/single nucleotide polymorphism (SNP) association-
based approaches.13,14 Such methods are not able to capture
correlations between SNPs and the burden of correcting for
multiple-hypothesis testing necessitates ever increasing sample
sizes. Furthermore, not many studies examine the interactions
between genetic and clinical or environmental factors in part due
to a substantially larger multiple-hypothesis-testing correction
necessity for exhaustive combinatorial searches. Consequently,
integrative network- and machine-learning-based approaches are
gaining interest in the search for the missing heritability of many
complex traits,15 with the promise of being able to harness
information across SNPs as well as other data types.
Here we propose a methodology that allows for the

combination of factors, originating from heterogeneous data
types to investigate the effect of multiple variables simultaneously

and uncover correlations between variables (Figure 1a).
The data set in the present study of surgery-induced diabetes
remission includes clinical traits and SNP data from the
CardioMetabochip.
Testing all feature combinations from a 200,000 SNP Cardio-

MetaboChip array is computationally infeasible (and a severe
multiple-testing burden). To overcome this obstacle, we initially
ranked single SNP associations using univariate tests adjusted for
age and sex and prioritised a set of 200 markers, through a typical
genome-wide association approach. We expanded the most
promising associations with prior biological knowledge to
generate a larger SNP set, likely encompassing a wider range of
relevant biological signals. This larger SNP set, together with a set
of clinical prognostic factors, were then feature-selected through
machine-learning. This involved training artificial neural networks
to discriminate between patients with and without surgery-
induced diabetes remission; over half a million predictive models
were built where their performance helped assess the importance
of individual features used in the various models. In order to
reduce patient similarity between training and test sets, samples
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Figure 1. (a) General framework for integrating heterogeneous data types for patient stratification. In this study we focus on the three data
types: clinical traits, genetic information and protein–protein interactions. Panels (b–e) illustrate the approach for compiling an enriched
subset of candidate SNPs by utilising prior biological knowledge. Essentially, the top 200 GWAS SNPs were expanded using protein–protein
interaction data, see text for details.

Table 1. Baseline patient characteristics associated with diabetes resolution for the nonredundant subset of 268 patients from the eMERGE cohort

Variable No diabetes resolution Diabetes resolution P

No. of patients 114 154
Male sex 39 (34.2%) 44 (28.6%) 0.393
Age at time of bariatric surgery (years) 52.0 [45.0;59.0] 48.0 [38.0;56.8] 0.004
Weight before bariatric surgery (pounds) 308 [268;337] 308 [260;374] 0.423
BMI before bariatric surgery (kg/m2) 48.0 [43.7;55.0] 50.5 [43.4;57.8] 0.321
Alcohol use before bariatric surgery (n= 237) 25 (25.0%) 52 (38.0%) 0.05
Tobacco use before bariatric surgery (n= 192) 27 (33.3%) 37 (33.3%) 1
Systolic blood pressure before bariatric surgery (mm Hg) 136 [122;153] 134 [122;152] 0.649
Diastolic blood pressure before bariatric surgery (mm Hg) 74.0 [67.0;85.8] 77.0 [68.0;86.0] 0.452
Pulse pressure before bariatric surgery (mm Hg) 60.0 [49.2;73.8] 59.0 [48.0;68.0] 0.21
Serum glucose before bariatric surgery (n=267) 131 [91.0;198] 101 [86.0;143] 0.01
Serum insulin before bariatric surgery (n= 255) 17.2 [9.80;35.3] 23.2 [13.5;37.8] 0.031
Haemoglobin A1c before bariatric surgery (n=264) 8.10 [7.20;9.40] 6.70 [6.05;7.80] o0.001
Use of biguanides before bariatric surgery 68 (59.6%) 127 (82.5%) o0.001
Use of insulin before bariatric surgery 84 (73.7%) 35 (22.7%) o0.001
Use of sulfonylureas before bariatric surgery 39 (34.2%) 58 (37.7%) 0.651
Use of insulin-sensitising agents before bariatric surgery 57 (50.0%) 51 (33.1%) 0.008

Abbreviation: BMI, body mass index.
Values show the median [1st; 3rd quartiles] or number of patients and percentages (%). P values are shown for χ2-test (categorical variables) and Kruskal–Wallis
test (continuous variables). Rows with P values o0.05 are shown in bold. If not otherwise stated, n= 268.
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with similar clinical properties were removed from the entire data
set ahead of training the models.
The main goals of the study were to stratify individuals based

on clinical and genomic factors that determine their diabetic
response to surgery, and to eventually identify factors that have
an important role in this response, several of which might be
overlooked in individual feature association tests.

RESULTS
Assessing informative clinical traits
Univariate analysis showed significant associations of multiple
baseline characteristics with surgery-induced diabetes remission
(Table 1). Younger age, lower baseline HbA1c and baseline serum
glucose levels, higher baseline serum insulin levels, and use of
biguanides, but not insulin or insulin-sensitising agents, were all
associated with diabetes remission. In accordance with previous
findings, this together suggests a higher likelihood of diabetes
remission for less severe or progressed diabetes patients.9,16–18

Multivariate feature ranking (through artificial neural network
models) also highlighted factors associated with preoperative
disease severity as important for discrimination between remitters
and nonremitters (Figure 2a). Insulin therapy was selected in
109/125 feature selections, whereas use of insulin-sensitising
agents, baseline serum insulin level and baseline HbA1c were
selected in 50, 47 and 57 feature selections, respectively.

Assessing informative genetic information
Single SNP association from the ca. 200,000 marker
Cardiometabochip did not show any genome-wide significant
associations, where the SNP with the best association score was
rs2279400 (odds ratio = 0.49, 95% confidence interval 0.36–0.66,
P value = 3.5 × 10− 6; see Supplementary Figure S1). In the neural
network multivariate models, eight SNPs (from eight separate
genes) were selected at least once in each of the five outer
cross-validation folds (Figures 2b,c) and listed in Table 2.
These eight SNPs include the top GWAS SNP (rs2279400), but
interestingly, also three SNPs with weaker P values originating
from the protein interaction network expansion of the top 200
GWAS SNPs (Supplementary Figure S1). We further investigated
association scores with obesity, type 2 diabetes and glucose-
stimulated insulin secretion-related phenotypes in summary-level
data from the GIANT, DIAGRAM and MAGIC consortiums. Of the 18
included traits and studies (described in Table 2), only one SNP
showed associations with nominal P valueo0.01 (rs11600200 in

waist–hip ratio adjusted for BMI), indicating that the majority of
the SNPs potentially point at either novel biological mechanisms
underlying bariatric surgery-induced diabetes remission or low
effect sizes not picked up in single-marker association studies.
The eight SNPs were annotated to eight genes and, interestingly,
three of these, ARHGEF12, RYBP and STXBP5L, overlap clusters of
islet-selective (compared with five non-islet cell lines) open
chromatin sites (altogether counting 1,512 genes).25 STXBP5L
further has islet-selective open chromatin in the transcription start
site or gene body,25 and its expression levels have been associated
with HbA1c levels.26

In order to untangle the artificial neural network models to try
to understand how the different clinical traits and SNPs coalesce in
stratification of the patients, we investigated the relative
importance and directionality of each variable within the models
(Figure 2d). Use of insulin medication and high baseline HbA1c
predisposes an individual to the non-remitter phenotype, whereas
minor alleles for six of the eight SNPs are associated with higher
likelihood of experiencing post-surgery diabetes remission.

Performance of selected clinical traits and SNPs
Internal cross-validation of the top-ranked four clinical traits
(insulin treatment, baseline serum insulin levels, use of
insulin-sensitising agents and baseline HbA1c levels) resulted in
correct prediction of remission for 74% of the patients (area under
the receiver operating characteristic curve (AUC) = 0.81, Table 3).
Adding information for the eight selected SNPs improved
performance to an accuracy of 84% (AUC= 0.92) and resulted
in highly significant performance improvement as calculated
by net reclassification improvement (NRI, NRI categorical:
P value = 1.45 × 10− 4, NRI continuous: 2.81 × 10− 29) and integrated
discrimination improvement (P value= 7.33× 10− 25; Supplementary
Table S1), emphasising the potential of including these genomic
markers (see also receiver operating characteristic in Figure 3c).
Adding the eight SNPs further pulls the prediction output scores
towards the extremes, thereby making the separation of remitters
and nonremitters more distinct (Figure 3d). As a further validation,
we tested the performance of eight random SNPs (drawn 1,000
times from the 960 tested SNPs, but excluding the selected eight
SNPs) together with the clinical traits, which gave a performance
similar to the clinical traits alone (Supplementary Table S2). Lastly,
we verified that random data, simulated by permuting the labels,
yielded (as expected) random performance for both models based
on the clinical traits alone or in combination with the eight SNPs
(Supplementary Table S2).
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Although the four top-ranked clinical traits (insulin treatment,
baseline serum insulin levels, use of insulin-sensitising agents and
baseline HbA1c levels) independently explained variance in
diabetes remission, no obvious cutoff could be applied to separate
remitters from nonremitters (Figure 3a,b). Again, this emphasises
the need for multivariate analysis to capture feature interactions in
patient classification.

DISCUSSION
As big data approaches become more relevant in precision
medicine,27 we demonstrate in this paper a follow-up to GWAS
approaches and the ability to integrate clinical data as well as prior
biological knowledge. We believe that such a paradigm can help
identify subgroups of patients where genetic predisposition leads
them to a different path, in response to surgery. For example,
a group of 25 patients (9.9%) was incorrectly classified as remitters
with the clinical traits alone, but correctly predicted to be
nonremitters when including the eight most informative genomic
markers (Figure 3a). The ability to identify this non-obvious patient
group may rescue these individuals from undergoing an invasive
surgery because of their genetic predisposition against diabetic
recovery. Likewise, a group of 15 patients (5.9%) was phenotypi-
cally similar to the group whose diabetes remained unresolved
postoperatively, but had a genetic profile pre-empting them to
experience remission.
Although including genomic information increased classifica-

tion performance overall, a few patients (n= 6 and 8, Figure 3a)
were incorrectly classified. These patients might have been
clinically misclassified or been subjected to diabetes remission
mechanisms emerging over a longer period of time. Remission
end point and diabetes definitions are other limitations of the
study. Diabetes remission is here defined as a discontinuation of
antidiabetic treatment after 30 days. It would be interesting to see
how the models proposed here perform over alternative
definitions of diabetes remission.
A number of studies9,16–18,28 have recently been conducted

with the aim of elucidating clinical traits associated with diabetes
remission following bariatric surgery — often with reasonable
performance. However, performances are reported differently
across studies and are hard to directly compare. To our
knowledge, this is the first study that reduces patient similarity
across the cohort, and a rigorous cross-validated performance is
reported, which should provide higher generalisability in other
cohorts of the selected models and their performance. Previous
studies have shown associations of higher C-peptide concentra-
tion and shorter duration of diabetes with diabetes remission.16,29

These factors, as are often related to diabetes severity, are likely to
improve the remission predictions had they been measured in the
present data set. Our study nevertheless highlights insulin
treatment, insulin-sensitising agents, baseline HbA1c and baseline
serum insulin as important clinical features, and also points to a
higher likelihood of diabetes remission for patients with a less
severe diabetes.
Interestingly, several of the prioritised genes are known to have

a role in insulin secretion, insulin sensitivity or obesity. The
ATP-Binding Cassette, Sub-Family A, Member 1 (ABCA1) is a
cholesterol efflux pump regulating cellular cholesterol. Studies
suggest a possible relationship between ABCA1, beta-cell
cholesterol homeostasis and insulin secretion, although the
precise mechanism remains unresolved. In mice, absence of
pancreatic islet ABCA1 seems to cause intracellular cholesterol
accumulation and beta-cell dysfunction and, at some level,
affected insulin secretion.30–33 A human study further suggests
the importance of ABCA1 for normal function of the beta-cell
where loss-of-function heterozygous carriers showed impaired
insulin secretion without insulin resistance,34 although the precise
role of ABCA1 mutations on pancreatic beta-cell function is notTa
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universally agreed on,35,36 perhaps pointing at subgroup effects
where further context-dependent studies or analyses are needed.
Different steps in the insulin secretion pathway might be affected
by cholesterol overload; suggested pathways include regulation of
glucokinase, a key factor in beta-cell glucose metabolism, via
nNOS.30 Furthermore, hepatic expression of ABCA1 has been
shown to improve glucose tolerance in mice.37 In macrophages,
hepatic and intestinal tissue expression of ABCA1 can be regulated
by the bile acid nuclear receptor Farnesoid-X-Receptor and the
oxysterol nuclear receptor Liver-X-receptor38, where bile acids are
known to increase post surgery.39 Both ligand-activated transcrip-
tion factors are known to have important roles in the enterohe-
patic circulation of bile acids, the metabolism of lipids and glucose
and—more interestingly—the pathogenesis of type 2 diabetes.40,41

Furthermore, mouse studies have shown that a functional
Farnesoid-X-Receptor pathway is important for beneficial effects
of bariatric surgery such as weight loss and improved glucose
tolerance.39 Tomosyn-2 (STXBP5L) inhibits insulin secretion from
the pancreatic beta cells.42,43 More specifically, it inhibits the
formation of the SNARE complex that is central to the fusion of
insulin granules with the plasma membrane and consequent
release of insulin into the bloodstream.44 Several insulin
secretagogues have, furthermore, been shown to induce
phosphorylation and consequently degradation and/or inactiva-
tion of tomosyn-2.44 Prokineticin-2 (PROK2,) is an anorexigenic
peptide hormone, which binds to two similar G protein-coupled
receptors (PKR1 and PKR2). Signalling from PKR1 has several
beneficial effects, including promoting peripheral transcapillary
insulin uptake and hereby sensitising the peripheral organs to
insulin, decreasing food intake by central appetite regulation and
preventing adipose tissue expansion by inhibiting pre-adipocyte
proliferation and differentiation into adipocytes.45 The three SNPs
corresponding to these genes were shown to be in opposition to
the clinical background in the prediction models (Figure 2d), and
it would be very useful to monitor these SNPs in other cohorts.
We have in the present study proposed and applied a machine-

learning-based approach for ranking clinical and genomic
features, allowing nonlinear combinations, in order to uncover
factors at play in diabetes remission triggered by bariatric surgery.
However, the general framework holds the potential to integrate
additional data types, such as environmental factors or metabolite
concentrations on an equal footing. We propose that the
combination of contextual information and genomic information
holds the key to uncover more biological findings than genomics
can accomplish alone and vice versa, that the use of clinical
information can be better informed by including certain genomic
markers. This is of particular interest in selecting patients for
bariatric surgery. For instance, there is interest in future studies
determining predisposing factors towards diabetic remission in

low-BMI patients. Mechanistic insights derived from multivariate
models will lead to improved understanding of the continuum of
diabetic remission response after surgery in different patient
subgroups.
Many GWAS data sets are underpowered for using strict

statistical methods; hence, we hope that the use of heuristic
approaches, as outlined here, can be useful in mining existing data
sets, and proposing actionable hypotheses. Indeed, it is note-
worthy that we, by such an approach, could identify a set of
predictive SNPs even though none of the SNPs were significant at
the 0.05 level after correcting for multiple testing in the GWAS.
Although such studies do not have the power of classical
statistical approaches, they do offer a paradigm for working with
limited sample sets in identifying prognostic factors and generat-
ing testable and clinically understandable hypotheses.

MATERIALS AND METHODS
Data
Data used in this study originated from the Geisinger eMERGE Genome-
Wide Association Studies of Obesity, where 982 primarily Caucasian,
extremely obese patients had undergone a Roux-en-Y gastric bypass
surgery. The data set was obtained through the dbGaP (study accession
phs000380.v1.p1).46 A subset of the cohort (n= 460, but three were
excluded because of high rate of missing genotypes) was on diabetes
medications (biguanides, insulin, sulfonylureas and insulin-sensitising
agents) before surgery. For these patients, diabetes remission was defined
as discontinued used of diabetes medication within 30 days after surgery
(317 remitters and 140 nonremitters). The data set included 15 pre-surgery
clinical covariates (presented in Table 1; height was excluded because of
multicollinearity with weight and BMI, and tobacco use was excluded
because of a high number of missing observations (428%)).
Genotyping was performed with the CardioMetaboChip (Illumina, San

Diego, CA, USA) array, designed for genotyping SNPs associated with
metabolic and cardiovascular diseases and traits, with available genotype
data for 86,444 SNPs. SNP and gene annotations were taken from the
CardioMetaboChip Gene Annotation file with map positions in build 36
coordinates.
Data processing, statistical analysis and machine-learning were

performed in the R statistical software, and single-locus associations with
PLINK v1.07 (https://www.r-project.org and http://pngu.mgh.harvard.edu/
purcell/plink/; ref. 47) as described below. A flowchart detailing the
workflow with references to the corresponding figures and tables is
depicted in Supplementary Figure S2.

Generating an enriched subset of candidate SNPs by utilising prior
biological knowledge
Single SNP allelic associations with diabetes remission were tested with
logistic regression under a multiplicative model of associations (Figure 1b),
adjusted for sex and age and with standard quality-control filters applied
(exclude SNPs with minor allele frequency o5%, deviation from

Table 3. Internal validation performance for the two models: the four clinical traits alone or in combination with the eight SNPs

Model Included individuals AUC mean (s.d.) for 1,000 splits on the individuals
held out because of their redundant properties

Same splits as used for feature selection AUC mean (s.d.)
for 1,000 splits

AUC Accuracy Specificity Sensitivity

Clinical traits alone 0.810 0.735 0.629 0.811 0.807 (0.0054) 0.992 (0.00008927)
Clinical traits+eight SNPs 0.921 0.838 0.790 0.872 0.919 (0.0046) 0.917 (0.001072)

Abbreviations: AUC, area under the curve; SNP, single-nucleotide polymorphism.
The first four columns show internal validation and performance measures for the cross-validation splits used for feature selection and the 268 individuals
remaining after excluding similar patients (as reported throughout the paper). The next column shows internal validation again based on the 268 individuals,
but for 1,000 different cross-validation splits. The last column shows the AUC for the 189 individuals initially held out because of their redundant properties in
terms of clinical traits. In this last column, the models are trained on the 268 included individuals but evaluated on the 189 held out individuals.
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Hardy–Weinberg equilibrium (Po0.0001) or missingness rate 410% and
patients with missing genotype rate 410%). No sign of population
stratification was detected; the genomic inflation factor (λ) was 1.0, and
there was no sign of inflation of the associated P values in the qq plot of
observed versus expected − log10(P value) (Supplementary Figure S3).
The top 200 SNPs with the lowest P values (3.54 × 10− 6–1.96 × 10− 3)

were used as seeds for the subsequent analysis (Figure 1c). The set of seed
SNPs was expanded in a biologically relevant context by including SNPs
associated with protein–protein interaction partners for gene products
with an associated top 200 SNP (Figure 1d). Protein–protein interaction
partners were retrieved from InWeb5.5, a high-confidence human protein–
protein interaction network created from experimental data from both
human and model organisms48 that has recently been updated
(unpublished) and covers 14,536 proteins with 337,951 interactions.
Finally, SNPs were removed if they were in linkage disequilibrium
(r240.8, keeping the SNP with lowest P value) or with P values 40.2,
resulting in 960 SNPs (Figure 1e).

Reducing patient similarity
Typically, there are two pitfalls in estimating performance; one relates
to the cross-validation set-up where one is in danger of overfitting
the data, which we address through a rigorous approach as outlined in
Supplementary Figure S4, and the second challenge relates to high
similarity of the patients. Data similarities in the training and test sets will
lead the algorithm into learning to reproduce its own input rather than
being able to interpolate and extrapolate sufficiently. Thus, a non-redundant
data set was generated by removing phenotypically similar patients using a
modified version of algorithm 2 of Hobohm et al.,49 which favours removing
similar patients with many missing observations, resulting in a more
complete final data set. Similar patients were defined by having a Gower
similarity coefficient50 of phenotype vectors above 0.925, as the data set
contains both metric and dichotomous variables, which resulted in a final
data set of 268 individuals (154 remitters and 114 nonremitters;
Supplementary Figure S5). This patient similarity-reduced data set of 268
individuals was used in neural network models outlined below.
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Figure 3. Patient breakdown. (a) The number of patients correctly or incorrectly classified in the internal validation step with an artificial neural
network (ANN) predictor trained on the top four clinical traits alone, or the clinical traits+the eight top-ranked SNPs. (b) Distributions of
variables for the eight different patient subgroups for the four top-ranked features. The violin plots in b indicate frequency distributions of the
features (a kernel density plot), with the black bars indicating interquartile range and white circles the median value. (c) Receiver operating
characteristic (ROC) curves for the two models: the four clinical traits alone or in combination with the eight SNPs. (d) Adding the SNPs pulls
patients to the poles. The start of the arrows marks the output score from ANN trained on the four clinical traits, whereas the end (arrowhead)
marks the output from ANN trained on both the four clinical traits and eight SNPs. During ANN training and evaluation, nonremitters are
encoded as 0 and remitters as 1.
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Ranking of features, network training and validation
For network training and testing, a standard feed-forward-back-
propagation network using one hidden layer with three units was applied
using the nnet51 and caret52 R-packages. This artificial neural network
implementation ignores individuals with missing information; therefore,
only the subset of the 268 individuals with complete information for the
included features was used. Regularisation with a weight decay parameter
of 1 was included to minimise risk of overtraining the rather small data set.
Training of the weights in the neural network was performed with a
maximum of 1,000 iterations and otherwise default parameters using
training data. To improve network training, dichotomous variables were
encoded as 0.05 and 0.95, continuous variables were log-transformed and
SNP data were additively encoded as one-column vectors with counts of
minor alleles ({0,1,2}). Continuous variables were further standardised
within the cross-validation, using the mean and s.d. for the given train
data-split for standardising both the train and test data set (Supplementary
Figure S4). In summary, we implemented a standard artificial neural
network approach using good practices and building on experience in the
use of artificial neural networks in biological context.
Feature selection was performed by a sequential forward feature

selection approach within a nested cross-validation set-up (see
Supplementary Figure S4 for a schematic representation), with five outer
folds and five inner folds, where the inner split was repeated five times; in
total, 125 sets of features selected (this feature selection scheme
represents over half a million tested models). Subjects without diabetes
remission were equally distributed across the different cross-validation
splits. AUC for test performance was employed as performance measure
for selecting features. In cases of equally good features, one was randomly
selected in the feature selection approach, and features were added as
long as AUC improved by at least 0.01. This procedure was first applied to
clinical features. Second, fixed sets of top-ranked clinical features
constituted the basis for evaluating individual SNP importance. This
approach appeared to be more successful in workflow complexity than
considering the clinical and SNP features simultaneously. The final set of
features was determined by all features, which was selected at least once
in each of the five outer cross-validation folds, and at least X-times over all
125 feature selections, where X is 45 for clinical features and five for SNPs.
The first condition is an attempt to reduce the potential risk of circularity in
features selected and internal validation.
Relative importance of input variables was made based on the code

described in https://beckmw.wordpress.com.
For the downstream patient stratification, an artificial neural network

output score of 0.5 was used to classify predicted nonremitters from
remitters. Performance improvements, as reported by categorical and
continuous NRI and integrated discrimination improvement, were
calculated using the PredictABEL R-package.
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