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A B S T R A C T   

Glucagon-like peptide-1 (GLP-1) reduces postprandial hyperglycaemia, but its short half-life inhibits clinical 
application. The aim of the current study was to evaluate the treatment efforts of an engineered strain, Lacto-
bacillus plantarum-pMG36e-GLP-1 (L. plantarum-pMG36e-GLP-1), that continuously expresses GLP-1 in sponta-
neous type 2 diabetes mellitus (T2DM) monkeys. After 7 weeks of oral supplementation with L. plantarum- 
pMG36e-GLP-1, the fasting blood glucose (FPG) of monkeys was significantly (p < 0.05) reduced to a normal 
level and only a small amount of weight was lost. The results of metagenomic sequencing showed that 
L. plantarum-pMG36e-GLP-1 caused a substantial (p < 0.05) reduction in the intestinal pathogen Prevotella and 
marked enhancement of butyrate-producing Alistipes genera. According to the functional analysis using Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) pathways, 19 metabolism-related pathways were significantly 
enriched in T2DM monkeys after treatment with L. plantarum-pMG36e-GLP-1. LC-MS faecal metabolomics 
analysis found 41 significant differential metabolites (11 higher and 30 lower) in monkeys after treatment 
pathways linked to the metabolism of cofactors and vitamins were the most relevant. The present study suggests 
that L. plantarum-pMG36e-GLP-1 had an impact on the gut microbial composition and faecal metabolomic profile 
in spontaneous T2DM monkeys and may be a novel candidate for diabetes treatment.   

1. Introduction 

Diabetes mellitus (DM) is a frequently-occurring disease endangering 
people’s health, which can lead to a lack of insulin, insulin resistance, 
and impaired biological function [1]. Because of the significant 
morbidity caused by complications and mortality, DM is a major public 
health threat around the world, including in China [2,3]. The disease 
can result in multiple health problems and complications, such as heart 
disease, eye problems, impairment of kidney function, nerve damage 
etc. [4]. DM manifests as two types; type 2 DM (T2DM) accounts for 
about 85–90% of all cases. 

Up to now, there have been many different treatment options that can 
be effective in T2DM, such as movement treatment, reasonable nutritional 
therapy and drug treatments. The medications used for the treatment of 

T2DM include sulfonylurea, biguanide, nateglinide, glucosidase inhibitors 
and thiazolodinediones [5]. Although these traditional oral antidiabetic 
agents exert a glucose-lowering effect through improving insulin action 
and raising the efficiency of insulin secretion, there are also certain side 
effects, such as gastrointestinal intolerance, leading to impaired liver 
function and weight gain or worse. Therefore, the development of new 
anti-diabetic drugs is important. Glucagon-like peptide-1 (GLP-1) is a 
peptide that can lower blood glucose in many ways and has become a 
hotspot of research, as GLP-1 analogues and agonists of the GLP-1 re-
ceptor have received intense focus [6,7]. 

GLP-1 is secreted by the intestinal L-cells and can decrease post-meal 
blood sugar [8]. The mechanism of its hypoglycaemic effects mainly 
include enhancing the biosynthesis and secretion of insulin, and it also 
interacts with glucagon as part of its glucose lowering effect, in a sense 
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beyond the insulin effect [9–12]. By promoting the secretion of insulin, 
GLP-1 analogues and dipeptidyl peptidase-4 (DPP-IV) inhibitors have 
been applied as anti-diabetic drugs [13–15]. As a kind of GLP-1 
analogue, Victoza helps the pancreas make more insulin after eating a 
meal, the short biologic half-life caused by DPP IV-regulated degrada-
tion limits GLP-1 as an effective diabetes drug [16]. 

As a multifactorial disease, diabetes requires more than one treat-
ment of multiple risk factors [17]. The intestinal microbiota is a 
complicated microbial ecosystem, and keeping the intestinal flora in 
balance plays an important role in staying healthy [18]. In recent years, 
the intestinal microbiota has been considered a major component of the 
human internal environment and is one of the primary environmental 
agents that determines the severity of diabetes. Animal experiments and 
population-based studies have shown that there is an intimate rela-
tionship between the intestinal microbiota and diabetes [19,20]. 
Germ-free mice develop type 1 diabetes (T1D), indicating that intestinal 
microbes contribute to modifying T1D predisposition [21]. Comparing a 
T2D group to subjects with normal glucose tolerance in another exper-
iment, four Lactobacillus species positively correlated with fasting blood 
glucose and HbA1c (glycosylated haemoglobin) were found to be 
enriched, while there was negative correlation between five reduced 
Clostridium species and fasting glucose, HbA1c and insulin [22]. More-
over, the microbiota has been reported to autonomously mediate blood 
glucose [23]. 

In view of GLP-1’s short half-life, our group has obtained an engineered 
strain Lactococcus lactis MG1363-pMG36e-GLP-1 in which GLP-1 is persis-
tently expressed, which showed good treatment results in diet-induced 
obese mice and in a mouse model of neuropsychiatric disease [24–27]. 
Since the Lactococcus lactis is not a residential bacterium of the human in-
testine and has poor probiotic characteristics, we constructed a similar 
engineered strain, L. plantarum-pMG36e-GLP-1. L. plantarum is a member of 
the human intestinal microflora and has many physiological functions [28]. 
In the current study, we administered three spontaneous T2DM rhesus 
monkeys with the engineered strain L. plantarum-pMG36e-GLP-1 to eval-
uate its potential as a diabetes drug by analysing its effects on the gut 
microflora and faecal metabolism. 

2. Materials and methods 

2.1. Animals and administration 

Three spontaneous T2DM rhesus monkeys, aged from 13 to 17 years 
with 1–3 years’ course of diabetes, were selected for this study. The 
selection criteria for the monkeys were according to the report [29] that 
the fasting plasma glucose (FPG) of the animal should be no more than 
5.6 mmol/L [30]. Monkeys were singly raised in large cages with 
enough space for activities at 22–26 ◦C and 50–55% humidity under a 
12 h light/dark cycle. Besides nutritious food and water, fruit or vege-
tables were supplied daily, providing 109 CFU of the engineered strain 
L. plantarum-pMG36e-GLP-1 that we constructed. The study lasted for 7 
weeks. The monkey housing and all experimental protocols used were 
conducted with the approval of the Committee on the Ethics of Animal 
Experiments of Nanchang University. 

2.2. Body weight measurement and determination of fasting plasma 
glucose (FPG) 

During the two-month study, the body weight and FPG of the three 
monkeys were measured weekly. The FPG level was determined at 
7:00AM (before treatment and each week after start of study) using a 
Gold AQ Blood Glucose Monitoring System (Sonicare, Changsha, China). 

2.3. Microbiota analysis 

For the microbiota analysis, faecal samples from the three rhesus 
monkeys were collected before (C) and after (PC) the administration of 

L. plantarum-pMG36e-GLP-1 for 8 weeks. A genomic DNA kit (Qiagen, 
Cat # 51804) was used to extract the bacterial genomic DNA, and 1.2% 
agarose gel electrophoresis and a NanoDrop 2000 UV–vis instrument 
(Thermo Scientific, Wilmington, DE, USA) were applied for DNA quan-
tification and purity analysis. The 16S rRNA gene region of each sample 
were amplified and sequenced on an Illumina NovaSeq 6000 platform 
(GenBank accession No. PRJNA 643924). Libraries were sequenced and 
paired-end sequencing reads were obtained on the Illumina NovaSeq 
6000 platform. Metagenomic sequencing was performed using the 
shotgun sequencing method. Using FLASH (version1.2.8), the paired-end 
sequencing reads were merged and divided into the above sequences 
according to 97% sequence similarity. 

2.4. Untargeted faecal metabolomics analysis 

The faecal samples collected before (C) and after (PC) the admin-
istration of L. plantarum-pMG36e-GLP-1 for 8 weeks were mixed with 
sodium azide and stored at − 80 ◦C. Then, 100 mg (±1%) of each 
sample was thawed at 4 ◦C. The extraction process of the metabolites 
from faeces was performed by adding 600 μL of methanol (− 20 ◦C) 
containing 2-chlorophenylalanine (4 ppm) and vigorously vortexing 
for 30 s, and grinding with 100 mg glass beads for 90 s at 60 Hz in high- 
throughput tissue grinder, followed by sonication for 5 min. Then, 300 
μL of the supernatant was carefully transferred for further analysis 
after centrifugation (12,000 rpm, 4 ◦C for 10 min). 20 μL of each 
extract was combined for each test as a quality control (QC) samples. 
0.22 μm membranes were applied for the filtration of samples before 
LC-MS analysis. 

The LC-MS experiment was performed on a Thermo Ultimate 3000 
system coupled with the Thermo Q Exactive Focus. The LC conditions 
were set as follows: ACQUITY UPLC® HSS T3 (150 × 2.1 mm, 1.8 μm, 
Waters) with the temperature of column at 40 ◦C and the autosampler at 
8 ◦C. Separation was carried out with the following gradient: 2% B/D 
over 0–1 min, 2%–50% B/D over 1–9 min, 50%–98% B/D over 9–12 
min, 98% B/D over 12–13.5 min, 98%–2% B/D over 13.5–14 min, and 
14–20 min holding at 2% D in positive mode while 14–17 min at 2% B in 
negative mode at a flow velocity of 0.25 mL/min, where C is water 
containing 0.1% formic acid and D is acetonitrile containing 0.1% for-
mic acid in positive mode, while A is 5 mM ammonium formate in water 
and B is acetonitrile in negative mode. The volume of sample injected 
was 2 μL. The mass spectrometric experiment was executed using the 
Thermo Q Exactive Focus mass spectrometer assembled with a positive/ 
negative ion electrospray ionisation (ESI) source. The temperature of the 
capillary was set to 325 ◦C and the data were gathered within the range 
of 81–1000 m/z at a mass resolution of 70,000. The prepared QC sample 
was injected every sixth sample to assess system stability. 

The raw data from LC-MS were analysed using R (v3.3.2) to collect 
the data matrix including retention time (RT), m/z values and intensity 
of peaks. Principal component analysis (PCA) and orthogonal partial 
least squares discriminant analysis (OPLS-DA) were used for dis-
tinguishing the overall differences in metabolic profiles in monkeys 
before and after treatment. Based on OPLS-DA analysis, metabolites 
with variable importance in the project (VIP) higher than 1 were 
selected for significance testing. Based on the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) and the Human Metabolome Database 
(HMDB), the ID number of the metabolites were obtained. The metab-
olites were annotated based on the KEGG database to obtain the general 
pathway functions of these metabolites. The increased and decreased 
levels of differentially expressed metabolites were analysed to further 
explore the impact. 

2.5. Statistical data analysis 

Statistical analysis was performed with GraphPad Prism software, 
Version 7.0 (USA). The unpaired t-test was applied to analyse significant 
mean differences between the data of monkeys before and after treatment. 
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Data are expressed as mean ± standard deviation (X ± SD). A P value 
below 0.05 was considered a significant difference. 

3. Results 

3.1. Effect of 7 weeks of L. plantarum-pMG36e-GLP-1 on body weight 
and FPG 

Before the start of the study, the body weight of all the monkeys was 
about 10 kg and the FPG level was above 5.6 mmol/L. We continually 
measured the body weight and the FPG level weekly during the treat-
ment with L. plantarum-pMG36e-GLP-1. During the study, no change 
was found in the consumption of food and water. After being treated for 
7 weeks, the weight of these monkeys all slightly lower to 9.9 kg, but the 
FPG level of all the monkeys dropped from 7.33 mmol/L back to 4 
mmol/L, which was below the normal level of 5.6 mmol/L (Table 1). 
The mean values with standard deviation of weekly weight and FPG 
level during the study are depicted in Fig. 1, and the FPG levels dropped 
significantly from the second week after treatment. The results reveal 
that L. plantarum-pMG36e-GLP-1 had a marked function on blood sugar 
reduction and a slight effect on body weight. 

3.2. Response of gut bacterial structure to L. plantarum-pMG36e-GLP-1 
in T2DM monkeys 

To investigate the effect of the engineered L. plantarum-pMG36e- 
GLP-1 on the gut microbiota of T2DM monkeys, we assessed the gut 
microbiota in faecal samples from monkeys before or after treatment. As 
is shown in Fig. 2a, the top four phyla in the faecal flora of the monkeys 
were Firmicutes, Bacteroidetes, Proteobacteria and Spirochaetes. Com-
bined, these phyla accounted for 90.79% and 89.65% of the total 
sequencing number in the two samples, respectively. L. plantarum- 
pMG36e-GLP-1 treatment increased the relative abundance of Firmicutes 
from 0.52 ± 0.06 to 0.62 ± 0.03 and decreased that of Bacteroidetes from 
0.32 ± 0.08 to 0.21 ± 0.07 after 7 weeks. At the genus level, adminis-
tration of L. plantarum-pMG36e-GLP-1 increased the abundance of 
Clostridium (8.88% vs. 10.29%) and Eubacterium (1.71% vs. 4.07%) that 
were related to the enhancement of intestinal functions (Fig. 2b). To 
distinguish the specific bacterial taxa, microbiota in faeces samples of 
T2DM monkeys before and after L. plantarum-pMG36e-GLP-1 treatment 
were compared by linear discriminant analysis effect size (LEfSe) anal-
ysis. There were 65 discriminatory genera with an LDA score higher than 
2.5 (Fig. 2c). Among these discriminatory genera, Prevotella, Pre-
votellaceae, Bacteroidetes, Bacteroidales, and Bacteroidia were signifi-
cantly more abundant in the faeces of T2DM monkeys before treatment, 
whereas Rikenellaceae, Alistipes, Alistipes_sp_CAG_435, Lactobacillus and 
Lactobacillaceae were enriched in monkeys after treatment. A cladogram 
showing the different abundances in the faecal microbiota indicated that 
the phylogenetic distributions differed significantly between the 
microflora of T2DM monkeys before and after L. plantarum-pMG36e- 
GLP-1 treatment (Fig. 2d). The results show that the recombinant strain 
L. plantarum-pMG36e-GLP-1 had a considerable impact on the faecal 
microbiota composition in T2DM monkeys. Finally, the amount of some 
probiotic microbes and pathogens associated with T2DM were analysed. 
As shown in Fig. 2, administering L. plantarum-pMG36e-GLP-1 enriched 
Firmicutes and Eubaterium and significantly enhanced the abundance of 
Alistipes (P < 0.05), whereas it reduced the number of pathogenic Bac-
teroidetes, Bacteroides, and markedly reduced Prevotella (P < 0.05). 

LEfSe was used to study the KEGG pathways with obviously altered 
abundances in T2DM monkeys subjected to the administration of 
L. plantarum-pMG36e-GLP-1 (Fig. 3). On the basis of the LDA score 
higher than 2 and P value higher than 0.05, 19 KEGG pathways 
(including endocrine system, nucleotide excision repair, base excision 
repair, RNA polymerase and others) were significantly enriched in 
T2DM monkeys after treatment, and 24 KEGG pathways (including the 
metabolism of cofactors and vitamins, fructose and mannose meta-
bolism, the metabolism of terpenoids and polyketides, porphyrin and 
chlorophyll metabolism, and others) were significantly higher in T2DM 
monkeys before treatment. The results show that L. plantarum-pMG36e- 
GLP-1 affected multiple functional pathways. 

3.3. Alterations in the faecal metabolic profile of T2DM monkeys 

This investigation adopted LC-MS to analyse faecal samples from 
monkeys before and after administrating L. plantarum-pMG36e-GLP-1. 
The peak intensity chromatograms of week 0 (C) and week 7 (PC) 
samples indicated differences both in positive and negative ion modes 
(Fig. 4). For example, as shown in Fig. 4a, the peaks from 8 min to 9 min 
in negative ion mode showed a much higher intensity in C samples than 
that in PC samples. This means that the observation was sufficient to 
survey for the therapeutic effect of L. plantarum-pMG36e-GLP-1. 

As is shown in Fig. 4c, the metabolic data of T2DM monkeys before 
and after treatment were differentiated in the principle component 
analysis (PCA). All the points representing the composition in the 
faecal samples of treated T2DM monkeys (PC) were separated from 
those of monkeys before treatment (C), which means that L. plantarum- 
pMG36e-GLP-1 showed the trends of a curative effect. The data matrix 
was further analysed by OPLS-DA. As depicted in Fig. 4d, the OPLS-DA 
score plots clearly separated between the C and PC samples. Based on 
the parameters that [R2X (cum) = 0.532, R2Y (cum) = 1, Q2(cum) =
0.859] of the OPLS-DA models, it indicated good predictability and 
reliability of the models, and the abundance of various metabolites in 
T2DM monkeys before and after administrating L. plantarum-pMG36e- 
GLP-1 was significantly different. 

Potential metabolic biomarkers were selected with a VIP value higher 
than 1.0 in the OPLS-DA and p value below 0.05 (Table 2). There were 41 
potential metabolic biomarkers identified in T2DM monkeys before and 
after treatment. As shown in Fig. 4e, the significantly different abun-
dances of these 41 metabolites were visualised in a heat map. Among 
these metabolites, 11 were significantly higher and 30 were obviously 
lower in monkeys after treatment. Based on comparing the peak area and 
the FC value, the changes in biomarkers after administrating L. plantarum- 
pMG36e-GLP-1 are shown in column configuration (Fig. 5). 

Table 1 
Effect of L. plantarum-pMG36e-GLP-1 on body weight and FPG.   

Before initiating the study After the treatment for 8 weeks 

Body weight (kg) 10.27 ± 0.21 9.90 ± 0.32 
FPG level (mmol/L) 7.33 ± 0.26 4.00 ± 0.29 * 

*Significant difference compared with samples before the treatment:*p < 0.05. 

Fig. 1. The fasting blood glucose level (mmol/l) and body weight (kg) of 
monkeys were assessed weekly during the study. The FPG and weight data are 
expressed as the mean ± SD, n = 3/group; *P < 0.05, **P < 0.01. 
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Fig. 2. The L. plantarum-pMG36e-GLP-1 
affected the intestinal microbiota in T2DM 
monkeys. (a) The relative abundances of the 
top 20 phyla; (b) The relative abundances of 
the top 20 genus; (c) LEfSe analysis between 
T2DM monkeys before and after treatment 
(LDA score >2.5); (d) Cladogram showing 
the phylogenetic distribution of the micro-
biota of T2DM monkeys before and after 
treatment；The relative abundance of Fir-
micutes (e), Bacteroidetes (f), Prevotella (g) 
Alistipes (h), Bacteroides (i) and Eubaterium 
(j) in faeces of T2DM monkeys before and 
after treatment.   
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In the current study, MetaboAnalyst was applied for correlational 
analyses between altered metabolites and biochemical pathways. The 
results show that L. plantarum-pMG36e-GLP-1 induced changes in many 
metabolites that were taking part in many biochemical pathways (Fig. 6 
and Table 3). The pathways linked to the metabolism of cofactors and 
vitamins, such as vitamin B6 metabolism (p＝0.005, impact 0.16) or 
pantothenate and CoA biosynthesis (p = 0.003, impact 0.08), seemed to 
be more important. Yet, it is worth noting the three important major 
forms of metabolites, including amino acids (6), lipids (2), and carbo-
hydrates (3). Additionally, other pathways such as caffeine metabolism 

(p = 0.00094, impact 0.043) and beta-alanine metabolism (p = 0.003, 
impact 0.066) were also listed. 

4. Discussion 

The current study is one of the first to comprehensively evaluate the 
hypoglycaemic effects of an engineered bacterium, L. plantarum-pMG36e- 
GLP-1, on spontaneous T2DM monkeys. The faecal microbiome of T2DM 
monkeys before and after the administration of the engineered bacterium 
was characterised by integrated metagenomic sequencing, and the 

Fig. 3. LEfSe analysis based on the KEGG pathways of the T2DM monkeys before and after treatment (LDA score >2.0, P < 0.05).  
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Fig. 4. Effect of the L. plantarum-pMG36e- 
GLP-1 on fecal metabolism of T2DM monkeys 
before (C) and after (PC) treatment. The ion 
chromatograms of the faeces sample in (a) 
positive and (b) negative modes; The dots in 
(c) PCA and (d) OPLS-DA indicating clear 
separation between the two periods; (e) Hi-
erarchical clustering of heat map displaying 
the 41 significantly changed metabolites be-
tween two periods. The rows represent 
different specific metabolite, and the columns 
represent the individuals. The abundance 
level of metabolite changed with different 
colors. Red and blue mean increased and 
decreased levels of metabolites, respectively.   
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metabolite composition of faecal samples of monkeys was assessed using 
LC-MS-based metabolomic approaches. Overall, the results suggest that 
L. plantarum-pMG36e-GLP-1 exhibited a beneficial effects in T2DM 
monkeys. 

Enteroendocrine L-cells liberate GLP-1, which increases the secretion 
of insulin and thus lowers the blood sugar level in a glucose-dependent 
manner [31]. GLP-1 analogues have been approved to treat T2DM. The 
glucose-lowering mechanisms of GLP-1 mainly include promoting the 
synthesis and secretion of insulin and also includes many others, like 
reducing the production of glucagon, affecting gastric emptying func-
tion, and suppressing appetite [32]. However, the short biological 
half-life of GLP-1 is identified as a key determinants delaying its appli-
cation. Our recently published study showed an engineered strain 
MG1363-pMG36e-GLP-1 could decrease the FPG level and improve 
glucose intolerance in high fat diet-induced obese mice [24]. In this 
study, the treatment effect of a similar engineered strain L. plant 
arum-pMG36e-GLP-1 on spontaneous T2DM monkeys was evaluated. 
Compared to other animal models, rhesus monkey models are consid-
ered an excellent non-human model for basic and applied biomedical 
research because of the similarity in genetics and physiology with 
humans [33]. At the different stages of diabetes, the clinical character-
istics and risk factors of rhesus monkey are like those of humans [29]. 
The normal glucose level should below 5.6 mmol/L, defined by the ADA, 
while the FPG level defined by the WHO is a little higher at 6.1 mmol/L 
[34,35]. Therefore, to investigate the hypoglycaemic effect of L. plant 

arum-pMG36e-GLP-1, three spontaneous T2DM rhesus monkeys with an 
FPG level higher than 6.1 mmol/L were enrolled in this study. Because of 
the differences in the characteristics and state of the animals and since 
GLP-1 may suppress appetite, some studies have shown that GLP-1 an-
alogues decreased the FPG level while some increased the plasma insulin 
level [36,37]. The current study results clearly demonstrate that 
L. plantarum-pMG36e-GLP-1 led to a significant improvement in the FPG 
level of spontaneous T2DM monkeys after 2 weeks of administration 
with no effects on appetite. 

The gut microbiota maintains a state of low-grade inflammation and 
is associated with T2DM as it plays a role in the progression of T2DM and 
metabolic disorders. In our previous study, the engineered strain 
MG1363-pMG36e-GLP-1 markedly increased the intestinal microbial 
diversity of obese mice [24]. In the present study, the intestinal flora 
composition was found to be different in monkeys after administration 
with a similar engineered bacterium, L. plantarum-pMG36e-GLP-1. The 
main changes in the gut microbiota linked to T2DM included a signifi-
cant reduction in Firmicutes and an increase in Bacteroidetes [38]. Thus, 
the increased Firmicutes microbes that were also seen in the obese mice 
in our previous study [24] and the reduced Bacteroidetes microbes we 
observed in T2DM monkeys after L. plantarum-pMG36e-GLP-1 treatment 
indicate the benefits of these engineered strains on T2DM. Another study 
has shown that a reduction in butyrate-producing bacteria was the main 
change in the microbiota in T2DM patients [39], since butyrate stimu-
lates the secretion of GLP-1, which improves insulin sensitivity and 

Table 2 
Potential biomarkers identified in T2DM monkeys before (C) and after (PC) treated with L. plantarum-pMG36e-GLP-1.  

No. Metabolites mean concentration fold change（C/PC） 

C PC 

1 Mannitol 69270951.81 1474006.72 46.995 
2 p-Octopamine 20967456.61 12258399.75 1.711 
3 Choline sulfate 40581979.17 21735102.29 1.867 
4 L-Rhamnofuranose 683330704.10 215.68 3168300.000 
5 N6-(L-1,3-Dicarboxypropyl)-L-lysine 33367994.29 11530183.68 2.894 
6 4-Oxonebramine 1647792.00 12978509.50 0.127 
7 4-Acetamido-2-aminobutanoic acid 25749261.03 11226789.93 2.294 
8 Homovanillic acid 814701.09 215.68 3777.300 
9 1-Methylxanthine 36901995.27 15474001.39 2.385 
10 Erucic acid 162804312.30 215.68 754840.000 
11 Lamivudine 124782739.60 310071688.50 0.402 
12 Aldosterone 17835955.47 10861243.26 1.642 
13 3-Keto-4-methylzymosterol 12723211.13 7084711.77 1.796 
14 2-Dehydropantoate 26013384.61 15092305.99 1.724 
15 2-Amino-2-deoxy-D-gluconate 22578141.77 62572654.29 0.361 
16 2,3-Dinor-8-iso prostaglandin F2alpha 22348799.70 16759248.07 1.334 
17 4-Hydroxyestradiol 391695969.30 531552176.60 0.737 
18 20a,22b-Dihydroxycholesterol 23303358.55 37972436.51 0.614 
19 Spermidine 158860735.60 803577367.40 0.198 
20 Tryptophanol 7627140.94 4042589.22 1.887 
21 D-Lysopine 28022369.93 10623311.99 2.638 
22 (R) 2,3-Dihydroxy-3-methylvalerate 6677087.51 1179554.42 5.661 
23 Pyridoxal 5-phosphate 21066618.49 14293125.63 1.474 
24 Ophthalmate 34347091.10 18920789.71 1.815 
25 Phenylacetylglutamine 127051559.60 5760702.20 22.055 
26 Linatine 80983385.33 50006706.22 1.620 
27 beta-Alanyl-L-arginine 2274890.07 7766763.78 0.293 
28 Jasmonic acid 143468622.40 180381301.00 0.795 
30 2-Phenylacetamide 38946014.84 70865550.57 0.550 
31 3,7-Dimethyluric acid 8766071.51 2503871.42 3.501 
32 Caprylic acid 5301240.10 998576.48 5.309 
33 Indolepyruvate 31540363.61 21812926.82 1.446 
34 N-Formyl-L-methionine 58695260.42 11627812.34 5.048 
35 Quinate 9074725.22 3805647.54 2.385 
36 Stearic acid 33217030.13 19338794.81 1.718 
37 Pyruvic acid 21298227.64 250.41 85055.000 
38 Phenyllactate 1137816.18 2036349.68 0.559 
39 Nicotinuric acid 6369628.51 12842966.66 0.496 
40 Hippuric acid 19912048.41 4286656.62 4.645 
41 (R)-(Indol-3-yl) lactate 13261244.83 6026911.48 2.200  
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Fig. 5. The level of the 41 metabolites 
changed significantly in T2DM monkeys 
before (C) and after (PC) treatment with 
L. plantarum-pMG36e-GLP-1. Among these 
metabolites, the former 30 metabolites 
were significantly declined and the later 11 
metabolites were obviously increased in 
monkeys after treatment. The ordinate 
represented the peak area, the red bar rep-
resents sample in the 0 week, and the green 
bar represents sample in the seventh week. 
* indicates a significant change between the 
samples before and after treatment: *p <
0.05, **p < 0.01.   
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secretion [40]. Our results show a significant enrichment of Alistipes in 
T2DM monkeys after the administration of L. plantarum-pMG36e-GLP-1 
(Fig. 2h). Alistipes can produce short chain fatty acids (SCFA) like ace-
toacetate and butyrate and reverse the adverse impact of a high-fat diet 

[41]. It is quite possible that the enrichment of Alistipes is the immediate 
cause of decreased blood sugar in T2DM monkeys after taking the 
engineered bacteria. Prevotella is the main species linked to biosynthesis 
of branched-chain amino acids (BCAAs) with insulin resistance and has 
been found to induce insulin resistance [42]. The significantly lower 
level of Prevotella in T2DM monkeys after the administration of 
L. plantarum-pMG36e-GLP-1 compared to pre-treated monkeys in this 
study has been reported in relation to type 2 diabetes in mouse models 
[43] and to obesity in human adults [44,45]. 

Metagenomic sequencing has been used to comprehensively analyse 
the connection between microbial function and host physiology and 
explore the function of changed microbiota [46]. In the current study, 
analysis based on the KEGG database indicated that the changed intes-
tinal bacteria in T2DM monkeys were closely related to metabolic dis-
orders involving cofactors and vitamins, fructose and mannose, 
terpenoids and polyketides, as well as porphyrin and chlorophyll. 

Faecal metabolome characterisation was used to further understand 
the microbial reactions to intestinal microbiota regulations. In this study, 
metabolite profiling in faeces was significantly different in T2DM mon-
keys before and after the administration of L. plantarum-pMG36e-GLP-1. 
The VIP [47] value was used as an important index reflecting the variable 
importance and to find potential biomarkers. A total of 41 potential 
metabolic biomarkers were identified, of which 30 metabolites were 
significantly reduced and 11 metabolites were markedly increased in 
monkeys after treatment (Fig. 5). The results of the metabolic pathway 
analysis indicated that 21 pathways with impact values > 0.01 were 
perturbed in monkeys (Fig. 6). The vitamin B6 metabolic pathway may 
be perturbed in monkeys in this study, although there were only two 
metabolites matched, i.e. pyridoxal 5-phosphate and pyruvic acid were 

Fig. 6. The main metabolic pathways analysis of 41 metabolites changed according to the MetaboAnalyst. Node coloured based on p value and node radius 
determined based on pathway impact values. Some pathways that were affected, and the vitamin B6 metabolism (p＝0.005, impact 0.16) pathway was most 
heavily affected. 

Table 3 
Results (selected) from the pathway analysis.  

Pathway p-Value Impact  

Vitamin B6 metabolism 0.005 0.156 Metabolism of cofactors 
and vitamins Pantothenate and CoA 

biosynthesis 
0.003 0.076 

Phenylalanine metabolism 7.97 ×
10− 8 

0.067 Amino acid metabolism 

Valine, leucine, and isoleucine 
biosynthesis 

0.003 0.058 

Arginine and proline 
metabolism 

0.011 0.025 

Lysine degradation 0.022 0.026 
Glycine, serine, and threonine 

metabolism 
0.024 0.023 

Cysteine and methionine 
metabolism 

0.040 0.016 

Pentose phosphate pathway 0.005 0 Carbohydrate metabolism 
Fructose and mannose 

metabolism 
0.024 0.020 

Glyoxylate and dicarboxylate 
metabolism 

0.027 0 

Fatty acid biosynthesis 0.025 0 Lipid metabolism 
Steroid hormone biosynthesis 0.036 0.027 
Caffeine metabolism 9.40 ×

10− 4 
0.043 others 

beta-Alanine metabolism 0.003 0.066  
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both reduced. Pyridoxal 5-phosphate is the biologically active form of 
vitamin B6; it is implicated in homocysteine metabolism and is an in-
dependent risk factor for cardiovascular disease [48]. In the US and 
China, the incidence of diabetes increased after vitamin fortification 
[49], while countries without fortification like Norway have a low 
prevalence of T2DM [50]. This increases the likelihood that obesity and 
T2DM may be related to excessive intake of B vitamins. It has been re-
ported that excess vitamins B6 metabolism significantly increases plasma 
H2O2 levels [51]. The level of pyruvic acid is also higher in T2DM pa-
tients [52]. Pyruvate is an initial substrate for hepatic glucose production 
and plays a vital role in the pathogenesis of T2DM. Furthermore, in the 
current study, it was found that similar metabolites involved in lipid 
metabolism, like aldosterone [53] and caprylic acid [54] were higher in 
diabetes. Aldosterone may directly induce inflammation at the pancreatic 
β-cell level, compromising insulin secretion [55]. 

5. Conclusions 

To sum up, the current study offers a new conception of the features 
of the engineered strain L. plantarum-pMG36e-GLP-1 in a spontaneous 
T2DM monkey model and discusses the impact on intestinal microbes 
and faecal metabolism. Therefore, L. plantarum-pMG36e-GLP-1 could 
become a new T2DM treatment. 
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