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Background. Shenzhuo formula (SZF) is a traditional Chinese medicine (TCM) prescription which has significant therapeutic
effects on diabetic kidney disease (DKD). However, its mechanism remains unknown. /erefore, this study aimed to explore the
underlying anti-DKDmechanism of SZF.Methods. /e active ingredients and targets of SZF were obtained by searching TCMSP,
TCMID, SwissTargetPrediction, HIT, and literature. /e DKD target was identified from TTD, DrugBank, and DisGeNet. /e
potential targets were obtained and PPI network were built after mapping SZF targets and DKD targets. /e key targets were
screened out by network topology and the “SZF-key targets-DKD” network was constructed by Cytoscape. GO analysis and
KEGG pathway enrichment analysis were performed by using DAVID, and the results were visualized by Omicshare Tools.
Results. We obtained 182 potential targets and 30 key targets. Furthermore, a “SZF-key targets-DKD” network topological analysis
showed that active ingredients like M51, M21, M5, M71, and M28 and targets like EGFR, MMP9, MAPK8, PIK3CA, and STAT3
might play important roles in the process of SZF treating in DKD. GO analysis results showed that targets were mainly involved in
positive regulation of transcription from RNA polymerase II promoter, inflammatory response, lipopolysaccharide-mediated
signaling pathway, and other biological processes. KEGG showed that DKD-related pathways like TNF signaling pathway and
PI3K-Akt signaling pathway were at the top of the list. Conclusion. /is research reveals the potential pharmacological targets of
SZF in the treatment of DKD through network pharmacology and lays a foundation for further studies.

1. Introduction

Diabetic kidney disease (DKD) is one of the most common
chronic microvascular complications of diabetes. It may be
caused and shaped by the interaction of many factors such as
endoplasmic reticulum dysfunction, high sugar-mediated
generation of terminal advanced glycation endproducts
(AGE), increased activation of the renin angiotensin aldo-
sterone system, increased generation of reactive oxygen
species (ROS), and activation of extracellular matrix (ECM)
and protein kinase C [1, 2]. It is reported that the incidence
of DKD is about 40% in the diabetic population [3].

Furthermore, with the increasing incidence of diabetes, the
incidence of DKD is increasing yearly [4]. /erefore, it is
important to intensify studies of the pathogenesis of DKD
and the search for effective intervention targets.

Shenzhuo formula (SZF) as a traditional Chinese
medicine (TCM) prescription has certain advantages in the
treatment of DKD [5].It is created by Tong Xiaolin, an
academician at the Chinese Academy of Sciences, and his
team. /is formula was based on the pathogenesis of qi
deficiency blood stasis, and the classic prescription of
Didang decoction. Years of clinical studies have shown that
SZF can effectively increase the glomerular filtration rate,
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reduce 24-hour urinary protein and kidney damage, and
reverse kidney disease when used early [5, 6]. However, due
to the diversity of TCM compounds and complexity of in
vivo processes, the systematic mechanism research of SZF
has been hindered.

Recently, network pharmacology has been developed
rapidly with the use of multiomics, high-throughput screening,
network visualization and analysis, or other techniques [7–9]. It
can help to reveal the network structure of drug action [10] and
provide possibilities for exploring the mechanism of action of
TCM compounds. /erefore, this study aimed to shed light on
the underlying mechanisms of SZF in DKD treatment using a
network pharmacology approach.

2. Methods

2.1. Research Tools. /e Chinese Traditional Medicine System
Pharmacological Database Analysis Platform (TCMSP, http://
lsp.nwu.edu.cn/tcmsp.php) [11], Traditional Chinese Medicine
Integrated Database (TCMID, http://www.megabionet.org/
tcmid/) [12], SwissTargetPrediction (http://www.swisstargetpred
iction.ch/) [13], and HIT (http:lifecenter.biosino.org/hit/) [14]
were used to access to SZF ingredients and targets. (2) /e
/erapeutic Target Database (TTD, http://bidd.nus.edu.sg/
group/cjttd/) [15], DrugBank (https://www.drugbank.ca/) [16],
and DisGeNet (http://www.disgenet.org/) [17] were used to get
the targets’ proteins of DKD. (3)/e protein-protein interaction
(PPI) network was obtained online using STRING (http://
string-db.org) [18]. Compositional software Cytoscape 3.2.1
(http://www.cytoscape.org/) [19] was used to carry out network
topology analysis and construct SZF-key targets-DKD network.
/e Database for Annotation, Visualization and Integrated
Discovery (DAVID, http://david.ncifcrf.Gov) [20] was used for
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis./eOmicshare Tools (https://www.
Omicshare.com/) were used for visual analysis of GO and
KEGG results.

2.2. Collection of Major Chemical Constituents. We relied on
TCMSP, TCMID database, and literatures mining to search for
the chemical constituents of SZF (Hedysarum Multijugum
Maxim, Radix Salviae, Hirudo, and Radix Rhei Et Rhizome).

2.3. Screening of Active Compounds. As we all know, TCM
drugs enter human body and then take effect through ab-
sorption, distribution, metabolism, and excretion (ADME)
processes. Among them, oral bioavailability (OB) and drug
similarity (DL), the key parameters of ADME components,
were used as the screening criteria for active ingredients in
this study. In this section, we used TCMSP to collect active
compounds and their ADME properties. And then the active
compounds that meet “OB≥ 30%, DL≥ 0.18” were selected
as potential active ingredients.

2.4. Prediction of Targets. SwissTargetPrediction and HIT
databases were used to collect the drug targets. In addition,
TTD, DrugBank and DisGeNet databases were used to

search for DKD targets by entering the key words of “di-
abetic kidney disease” and “diabetic nephropathy.” Further,
we matched SZF targets with DKD targets to obtain com-
mon targets.

2.5. Network Construction and Analysis. PPI network of
common targets was obtained using STRING. Furthermore,
the PPI network topology analysis was carried out using
Cytoscape 3.2.1 software and then key targets were obtained.
To further explore the interactions between the active in-
gredients and their related targets at a system level, a “SZF-
key targets-DKD” network was constructed by
Cytoscape3.2.1.

2.6. GO and KEGG Analysis. GO analysis is widely used for
gene function classification and mainly includes the mo-
lecular function (MF), biological processes (BP), and cellular
components (CC) [21]. In this step, we used the DAVID tool
for GO and KEGG pathway analysis. /en, we used
Omicshare Tools for visual display.

3. Results

3.1. Screening of Candidate Components in SZF. /rough
TCMSP and TCMID database, a total of 87 active com-
pounds of Hedysarum Multijugum Maxim, 210 of Radix
Salviae, 35 of Hirudo, and 92 of Radix Rhei Et Rhizome were
obtained. /en by ADME (OB≥ 30%, DL≥ 0.18) screening,
a total of 101 active compounds were selected, including 20
active compounds of Hedysarum Multijugum Maxim, 65 of
Radix Salviae, and 16 of Radix Rhei Et Rhizome (in this
section, because Hirudo could not be found in TCMSP
database, its ADME parameters could not be obtained and
did not participate in screening). In addition, through lit-
erature mining, another 4 active compounds were collected,
including 2 active compounds of Hedysarum Multijugum
Maxim [22, 23], 1 of Radix Salviae [24], and 1 of Radix Rhei
Et Rhizome [25].

3.2. Target Prediction. After matching SZF targets with DKD
genes, a total of 182 common targets of SZF were obtained.
We only show 50 of them in Table 1. And full information of
182 common targets is displayed in Table 2.

3.3. Construction and Analysis of Network Maps. /e PPI
network of the 182 common targets was obtained using
STRING (Figure 1). /en, we used Cytoscape 3.2.1 to obtain
30 key targets by network topology analysis with inclusion
criteria of “degree≥ 2 times of the median, closeness cen-
trality≥median, betweenness centrality≥median” (Table 3).
Next, we constructed a “SZF-key targets-DKD” network by
Cytoscape3.2.1 (Figure 2).

3.4. GO and KEGG Analysis. /e DAVID was used to carry
out GO analysis. And the GO terms were visualized by the
Omicshare Tools (Figure 3). /e GO analysis results showed
that targets were mainly involved in positive regulation of
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Table 1: Common targets of SZF and DKD (50 of 182 targets).

Serial number Target Common name Uniprot ID
1 Aldose reductase AKR1B1 P15121
2 Acyl coenzyme A:cholesterol acyltransferase CES1 P23141
3 Signal transducer and activator of transcription 3 STAT3 P40763
4 Protein-tyrosine phosphatase 1C PTPN6 P29350
5 Vascular endothelial growth factor receptor 2 KDR P35968
6 Epidermal growth factor receptor erbB1 EGFR P00533
7 PI3-kinase p110-alpha subunit PIK3CA P42336
8 c-Jun N-terminal kinase 1 MAPK8 P45983
9 LXR-alpha NR1H3 Q13133
10 Estrogen receptor alpha ESR1 P03372
11 Testis-specific androgen-binding protein SHBG P04278
12 Cytochrome P450 2C19 CYP2C19 P33261
13 Protein-tyrosine phosphatase 1B PTPN1 P18031
14 Butyrylcholinesterase BCHE P06276
15 Vitamin D receptor VDR P11473
16 Glucose-6-phosphate 1-dehydrogenase G6PD P11413
17 Peroxisome proliferator-activated receptor alpha PPARA Q07869
18 Peroxisome proliferator-activated receptor delta PPARD Q03181
19 Peroxisome proliferator-activated receptor gamma PPARG P37231
20 UDP-glucuronosyltransferase 2B7 UGT2B7 P16662
21 11-Beta-hydroxysteroid dehydrogenase 2 HSD11B2 P80365
22 NADPH oxidase 4 NOX4 Q9NPH5
23 Tyrosine-protein kinase SYK SYK P43405
24 Glycogen synthase kinase-3 beta GSK3B P49841
25 Matrix metalloproteinase 9 MMP9 P14780
26 Matrix metalloproteinase 2 MMP2 P08253
27 Matrix metalloproteinase 12 MMP12 P39900
28 ATP-binding cassette sub-family G member 2 ABCG2 Q9UNQ0
29 P-glycoprotein 1 ABCB1 P08183
30 Arachidonate 12-lipoxygenase ALOX12 P18054
31 Cyclooxygenase-2 PTGS2 P35354
32 Insulin-like growth factor I receptor IGF1R P08069
33 Myeloperoxidase MPO P05164
34 Matrix metalloproteinase 3 MMP3 P08254
35 Serine/threonine-protein kinase AKT AKT1 P31749
36 Beta-secretase 1 BACE1 P56817
37 Tyrosine-protein kinase receptor UFO AXL P30530
38 NUAK family SNF1-like kinase 1 NUAK1 O60285
39 Aldehyde reductase AKR1A1 P14550
40 Plasminogen PLG P00747
41 PI3-kinase p110-delta subunit PIK3CD O00329
42 PI3-kinase p110-gamma subunit PIK3CG P48736
43 Hematopoietic prostaglandin D synthase HPGDS O60760
44 Serine-protein kinase ATM ATM Q13315
45 Cytochrome P450 24A1 CYP24A1 Q07973
46 Mineralocorticoid receptor NR3C2 P08235
47 Cannabinoid receptor 1 CNR1 P21554
48 Hepatocyte nuclear factor 4-alpha HNF4A P41235
49 C-C chemokine receptor type 1 CCR1 P32246
50 Histone-lysine N-methyltransferase EZH2 EZH2 Q15910
Organism: Homo sapiens. Only 50 potential targets’ information is shown here, and the whole is in Table 3.
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Table 2: A total of 182 common targets.

No. Target Common name Uniprot ID
1 Aldose reductase AKR1B1 P15121
2 Acyl coenzyme A:cholesterol acyltransferase CES1 P23141
3 Signal transducer and activator of transcription 3 STAT3 P40763
4 Protein-tyrosine phosphatase 1C PTPN6 P29350
5 Vascular endothelial growth factor receptor 2 KDR P35968
6 Epidermal growth factor receptor erbB1 EGFR P00533
7 PI3-kinase p110-alpha subunit PIK3CA P42336
8 c-Jun N-terminal kinase 1 MAPK8 P45983
9 LXR-alpha NR1H3 Q13133
10 Estrogen receptor alpha ESR1 P03372
11 Testis-specific androgen-binding protein SHBG P04278
12 Cytochrome P450 2C19 13 CYP2C19 P33261
13 Protein-tyrosine phosphatase 1B PTPN1 P18031
14 Butyrylcholinesterase BCHE P06276
15 Vitamin D receptor VDR P11473
16 Glucose-6-phosphate 1-dehydrogenase G6PD P11413
17 Peroxisome proliferator-activated receptor alpha PPARA Q07869
18 Peroxisome proliferator-activated receptor delta PPARD Q03181
19 Peroxisome proliferator-activated receptor gamma PPARG P37231
20 UDP-glucuronosyltransferase 2B7 UGT2B7 P16662
21 11-beta-hydroxysteroid dehydrogenase 2 HSD11B2 P80365
22 NADPH oxidase 4 NOX4 Q9NPH5
23 Tyrosine-protein kinase SYK SYK P43405
24 Glycogen synthase kinase-3 beta GSK3B P49841
25 Matrix metalloproteinase 9 MMP9 P14780
26 Matrix metalloproteinase 2 MMP2 P08253
27 Matrix metalloproteinase 12 MMP12 P39900
28 ATP-binding cassette sub-family G member 2 ABCG2 Q9UNQ0
29 P-glycoprotein 1 ABCB1 P08183
30 Arachidonate 12-lipoxygenase ALOX12 P18054
31 Cyclooxygenase-2 PTGS2 P35354
32 Insulin-like growth factor I receptor IGF1R P08069
33 Myeloperoxidase MPO P05164
34 Matrix metalloproteinase 3 MMP3 P08254
35 Serine/threonine-protein kinase AKT AKT1 P31749
36 Beta-secretase 1 BACE1 P56817
37 Tyrosine-protein kinase receptor UFO AXL P30530
38 NUAK family SNF1-like kinase 1 NUAK1 060285
39 Aldehyde reductase (by homology) AKR1A1 P14550
40 Plasminogen PLG P00747
41 PI3-kinase p110-delta subunit PIK3CD O00329
42 PI3-kinase p110-gamma subunit PIK3CG P48736
43 Hematopoietic prostaglandin D synthase HPGDS O60760
44 Serine-protein kinase ATM ATM Q13315
45 Cytochrome P450 24A1 CYP24A1 Q07973
46 Mineralocorticoid receptor NR3C2 P08235
47 Cannabinoid receptor 1 CNR1 P21554
48 Hepatocyte nuclear factor 4-alpha HNF4A P41235
49 C-C chemokine receptor type 1 CCR1 P32246
50 Histone-lysine N-methyltransferase EZH2 EZH2 Q15910
51 MAP kinase p38 alpha MAPK14 Q16539
52 Bromodomain-containing protein 2 BRD2 P25440
53 Aldehyde dehydrogenase ALDH2 P05091
54 Fatty acid binding protein adipocyte FABP4 P15090
55 Fatty acid-binding protein, liver FABP1 P07148
56 Acyl-CoA desaturase SCD O00767
57 MAP kinase ERK1 MAPK3 P27361
58 Short transient receptor potential channel 6 TRPC6 Q9Y210
59 Mitogen-activated protein kinase kinase kinase 5 MAP3K5 Q99683
60 Disintegrin and metalloproteinase domain-containing protein 17 ADAM17 P78536
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Table 2: Continued.

No. Target Common name Uniprot ID
61 Hexokinase type IV GCK P35557
62 Intercellular adhesion molecule-1 ICAM1 P05362
63 P-selectin SELP P16109
64 Leukocyte adhesion molecule-1 SELL P14151
65 Matrix metalloproteinase 1 MMP1 P03956
66 Matrix metalloproteinase 8 MMP8 P22894
67 Endothelin-converting enzyme 1 ECE1 P42892
68 Integrin beta-3 ITGB3 P05106
69 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform PIK3CB P42338
70 Sorbitol dehydrogenase SORD Q00796
71 MAP kinase ERK2 MAPK1 P28482
72 Vascular endothelial growth factor receptor 1 FLT1 P17948
73 Matrix metalloproteinase 7 MMP7 P09237
74 Type-1 angiotensin II receptor AGTR1 P30556
75 Glucose transporter SLC2A1 P11166
76 Nerve growth factor receptor Trk-A NTRK1 P04629
77 Tyrosine-protein kinase JAK1 JAK1 P23458
78 Tyrosine-protein kinase JAK2 JAK2 O60674
79 Sodium/glucose cotransporter 2 SLC5A2 P31639
80 Serine/threonine-protein kinase receptor R3 ACVRL1 P37023
81 Epoxide hydratase EPHX2 P34913
82 Cytochrome P450 11B2 CYP11B2 P19099
83 Endothelin receptor ET-A EDNRA P25101
84 Glutathione S-transferase Mu 1 GSTM1 P09488
85 Interleukin-1 beta ILIB P01584
86 Insulin receptor INSR P06213
87 Protein tyrosine kinase 2 beta PTK2B Q14289
88 Cyclooxygenase-1 PTGS1 P23219
89 Cytochrome P450 2C9 CYP2C9 P11712
90 Cytochrome P450 3A4 CYP3A4 P08684
91 Trypsin I PRSS1 P07477
92 C-C chemokine receptor type 5 CCR5 P51681
93 Dopamine D2 receptor DRD2 P14416
94 Cholesteryl ester transfer protein CETP P11597
95 Calcitonin gene-related peptide type 1 receptor CALCRL Q16602
96 Serotonin 2a (5-HT2a) receptor HTR2A P28223
97 Disintegrin and metalloproteinase domain-containing protein 10 ADAM10 O14672
98 TGF-beta receptor type I TGFBR1 P36897
99 Nitric-oxide synthase, brain NOS1 P29475
100 Cathepsin (B and K) CTSB P07858
101 Bradykinin B1 receptor BDKRB1 P46663
102 Potassium voltage-gated channel subfamily KQT member 1 KCNQ1 P51787
103 Leukotriene A4 hydrolase LTA4H P09960
104 Apoptosis regulator Bcl-2 BCL2 P10415
105 Kininogen-1 KNG1 P01042
106 Solute carrier family 22 member 2 SLC22A2 O15244
107 Plasma retinol-binding protein RBP4 P02753
108 Histone deacetylase 4 HDAC4 P56524
109 Dopamine D3 receptor DRD3 P35462
110 C-C chemokine receptor type 2 CCR2 P41597
111 Solute carrier family 22 member 12 SLC22A12 Q96S37
112 Glucagon-like peptide 1 receptor GLP1R P43220
113 Dual specificity mitogen-activated protein kinase kinase 2 MAP2K2 P36507
114 Death-associated protein kinase 2 DAPK2 Q9UIK4
115 Bile acid receptor FXR NR1H4 Q96RI1
116 Interleukin-6 IL6 P05231
117 Transcription factor AP-1 JUN P05412
118 Vascular endothelial growth factor A VEGFA P15692
119 Interleukin-10 IL10 P22301
120 Endothelin-1 EDN1 P05305
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Table 2: Continued.

No. Target Common name Uniprot ID
121 Nitric oxide synthase, endothelial NOS3 P29474
122 Urotensin II receptor UTS2R Q9UKP6
123 78 kDa glucose-regulated protein HSPA5 P11021
124 Galectin-3 LGALS3 P17931
125 Macrophage migration inhibitory factor MIF P14174
126 Serum paraoxonase/arylesterase 1 PON1 P27169
127 Kallikrein 1 KLK1 P06870
128 Rho-associated protein kinase 1 ROCK1 Q13464
129 Sphingosine kinase 1 SPHK1 Q9NYA1
130 Serine/threonine-protein kinase Sgk1 SGK1 O00141
131 Low affinity sodium-glucose cotransporter SLC5A4 Q9NY91
132 Neutrophil cytosol factor 1 NCF1 P14598
133 Antileukoproteinase SLPI P03973
134 Signal transducer and activator of transcription 1-alpha/beta STAT1 P42224
135 Protein kinase C beta type PRKCB P05771
136 Gap junction alpha-1 protein GJA1 P17302
137 C-X-C motif chemokine 11 CXCL11 O14625
138 Interleukin-8 CXCL8 P10145
139 Superoxide dismutase [Cu-Zn] SOD1 P00441
140 C-C motif chemokine 2 CCL2 P13500
141 Hypoxia-inducible factor 1-alpha HIF1A Q16665
142 Caveolin-1 CAV1 Q03135
143 Interleukin-1 alpha IL1A P01583
144 Nuclear factor erythroid 2-related factor 2 NFE2L2 Q16236
145 C-X-C motif chemokine 10 CXCL10 P02778
146 Plasminogen activator inhibitor 1 SERPINE1 P05121
147 Osteopontin SPP1 P10451
148 Bone morphogenetic protein 2 BMP2 P12643
149 Transforming growth factor beta-1 proprotein TGFB1 P01137
150 Cyclin-dependent kinase inhibitor 2A CDKN2A P42771
151 Transcription factor E2F1 E2F1 Q01094
152 /rombomodulin THBD P07204
153 Insulin-like growth factor II IGF2 P01344
154 Catalase CAT P04040

155 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and
dual-specificity protein phosphatase PTEN PTEN P60484

156 Pro-epidermal growth factor EGF P01133
157 ATP synthase subunit beta, mitochondria ATP5F1B P06576
158 NAD-dependent protein deacetylase sirtuin-1 SIRT1 Q96EB6
159 Angiotensin-converting enzyme ACE P12821
160 Matrix metalloproteinase 10 MMP10 P09238
161 Transketolase TKT P29401
162 Dipeptidyl peptidase IV DPP4 P27487
163 Nuclear factor NF-kappa-B p65 subunit RELA Q04206
164 Nitric oxide synthase, inducible NOS2 P35228
165 Protein kinase C alpha type PRKCA P17252
166 Tumor necrosis factor TNF P01375
167 Protein kinase C epsilon type PRKCE Q02156
168 Renin REN P00797
169 Axin1/beta-catenin CTNNB1 P35222
170 Fibronectin FN1 P02751
171 C-X-C chemokine receptor type 4 CXCR4 P61073
172 Heparanase HPSE Q9Y251
173 Glucagon GCG P01275
174 Tumor necrosis factor receptor superfamily member 11B TNFRSF11B O00300
175 Metalloproteinase inhibitor 1 TIMP1 P01033
176 Metalloproteinase inhibitor 2 TIMP2 P16035
177 Fibroblast growth factor 2 FGF2 P09038
178 Lipoprotein lipase LPL P06858
179 Coagulation factor V F5 P12259
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Table 2: Continued.

No. Target Common name Uniprot ID
180 Cyclic AMP-responsive element-binding protein 1 CREB1 P16220
181 Phosphatidylinositol 3,4,5-trisphosphate 5- phosphatase 2 INPPL1 O15357
182 Tumor necrosis factor ligand superfamily member 6 FASLG P48023

Figure 1: PPI network of the 182 common targets.

Table 3: /irty key targets obtained by network topology analysis.

Serial number Node Degree Closeness centrality Betweenness centrality
1 PIK3CA 40 0.49508197 0.09370214
2 STAT3 40 0.5 0.0863086
3 AKT1 35 0.49025974 0.15311921
4 KNG1 33 0.44023324 0.06128185
5 VEGFA 33 0.49185668 0.06953442
6 JUN 32 0.48089172 0.07229449
7 MAPK3 30 0.4617737 0.02240476
8 MAPK1 30 0.4689441 0.06714477
9 EGF 27 0.4617737 0.0336672
10 EDN1 27 0.46604938 0.05180077
11 EGFR 26 0.44023324 0.01794429
12 JAK1 26 0.44940476 0.02254905
13 IL6 26 0.45209581 0.02532622
14 CXCL8 25 0.43768116 0.03191743
15 RELA 24 0.45757576 0.04035241
16 FN1 23 0.4351585 0.01464828
17 JAK2 23 0.44940476 0.01620852
18 CTNNB1 23 0.45481928 0.06488997
19 TNF 22 0.44281525 0.0272631
20 TGFB1 21 0.44281525 0.03270724
21 MMP9 20 0.40921409 0.03200512
22 CXCR4 19 0.41032609 0.01402652
23 TIMP1 19 0.41712707 0.00798146
24 MAPK14 19 0.44411765 0.01628416
25 BDKRB1 18 0.3994709 0.00725308
26 PIK3CB 18 0.40921409 0.00732155
27 MAPK8 18 0.42296919 0.03099697
28 ITGB3 18 0.42296919 0.01050834
29 CCR5 16 0.39841689 0.00592392
30 PLG 16 0.40266667 0.02168017
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Figure 2: “SZF-key targets-DKD” network./e nodes were visualized with degree./e larger and the redder the node, the higher the degree
it was. M1-75 stand for the active ingredients whose full names are shown in Table 4.

Table 4: /e information of active ingredients.

No. Active ingredients Code name
1 Isoimperatorin M1
2 1,2,5,6-Tetrahydrotanshinone M2
3 5,6-Dihydroxy-7-isopropyl-1,1-dimethyl-2,3-dihydrophenanthren-4-one M3
4 (E)-3-[2-(3,4-Dihydroxyphenyl)-7-hydroxy-benzofuran-4-yl]acrylic M4
5 2-(4-Hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-3-benzofurancarboxaldehyde M5
6 Przewaquinone c M6
7 Cryptotanshinone M7
8 Dihydrotanshinlactone M8
9 Isotanshinone II M9
10 Miltipolone M10
11 Miltirone M11
12 Tanshinaldehyde M12
13 Danshenol B M13
14 Danshenol A M14
15 Deoxyneocryptotanshinone M15
16 Dihydrotanshinone I M16
17 Miltionone I M17
18 Miltionone II M18
19 Neocryptotanshinone ii M19
20 Neocryptotanshinone M20
21 Luteolin M21
22 Salvilenone I M22
23 Salviolone M23
24 Epidanshenspiroketallactone M24
25 Tanshinone iia M25
26 α-Amyrin M26
27 Dan-shexinkum d M27
28 Sclareol M28
29 Dehydrotanshinone II A M29
30 Baicalin M30
31 2-Isopropyl-8-methylphenanthrene-3,4-dione M31
32 Formyltanshinone M32
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transcription from RNA polymerase II promoter, inflam-
matory response, lipopolysaccharide-mediated signaling
pathway, positive regulation of peptidyl-serine phosphory-
lation, and other biological processes. As the top 20 GO
enrichment items listed, DKD is relevant to kinds of BP in
body abnormalities, and SZF is likely to regulate these items
and then play an anti-DKD role.

KEGG pathway enrichment analysis showed that a total
of 104 pathways were obtained. /e top 20 pathways are
displayed in Figure 4, which include TNF signaling pathway,
HIF-1 signaling pathway, Toll-like receptor signaling
pathway, FoxO signaling pathway, NOD-like receptor sig-
naling pathway, and so on.

4. Discussion

Previous studies have suggested that SZF has a therapeutic
effect on DKD [5,6]. However, the potential mechanisms of
SZF treating in DKD have not been fully explained. In this
study, we mainly applied network pharmacology to explore it.
Firstly, a total of 140 potential active compounds and 182
common targets of SZF and DKD were obtained after
screening of active compounds and mapping of targets. /en,
we constructed two networks, including the PPI network of 182
common targets and SZF-key targets-DKD network, and then
applying GO and KEGG enrichment analysis to explore the
regulation mechanism of SZF in treating DKD.

Table 4: Continued.

No. Active ingredients Code name
33 3-Beta-Hydroxymethyllenetanshiquinone M33
34 Methylenetanshinquinone M34
35 (2R)-3-(3,4-Dihydroxyphenyl)-2-[(Z)-3-(3,4-dihydroxyphenyl)acryloyl]oxy-propionic acid M35
36 (6S)-6-(Hydroxymethyl)-1,6-dimethyl-8,9-dihydro-7H-naphtho[8,7-g]benzofuran-10,11-dione M36
37 Tanshinone VI M37
38 Przewalskin b M38
39 6-o-Syringyl-8-o-acetyl shanzhiside methyl ester M39
40 Prolithospermic acid M40
41 (Z)-3-[2-[(E)-2-(3,4-Dihydroxyphenyl)vinyl]-3,4-dihydroxyphenyl]acrylic acid M41
42 Salvianolic acid g M42
43 Salvianolic acid j M43
44 Danshenspiroketallactone M44
45 1-Methyl-8,9-dihydro-7H-naphtho[5,6-g]benzofuran-6,10,11-trione M45
46 3,9-di-O-MethylnissolinM M46
47 (6aR,11aR)-9,10-Dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol M47
48 (3R)-3-(2-Hydroxy-3,4-dimethoxyphenyl)chroman-7-ol M48
49 Isorhamnetin M49
50 Kaempferol M50
51 Quercetin M51
52 Jaranol M52
53 Bifendate M53
54 Formononetin M54
55 Isoflavanone M55
56 Calycosin M56
57 Hederagenin M57
58 Sennoside E_qt M58
59 Toralactone M59
60 Palmidin A M60
61 Daucosterol_qt M61
62 Eupatin M62
63 Procyanidin B-5,3’-O-gallate M63
64 Rhein M64
65 Beta-sitosterol M65
66 Aloe-emodin M66
67 Lipase M67
68 Gardnerilin a M68
69 Hirudin M69
70 o-Desulfated heparin M70
71 Ursolic acid M71
72 Heparin M72
73 Genioisidic acid M73
74 Genipinic acid M74
75 Nadroparin M75
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/rough the SZF-key targets-DKD network, we could
know that most active ingredients were linked with no less
than one target, which indicated the character of multi-
target of TCM active ingredients. In the meanwhile, different
active compounds from different herbs acted on the same
targets, which demonstrated that SZF had a synergistic effect
in treating DKD. In addition, there were 8 active ingredients
whose degrees were greater than 2 times of average in SZF-
key targets-DKD network topology analysis. Interestingly, 3
of them had been proven to have kidney protection effect by
experiments. For example, quercetin liposomes had renal
protective effects of reducing oxidative stress, attenuating
AGE expression, and delaying the progression of DKD [26].
Luteolin attenuated DKD mainly via suppression of in-
flammatory response and oxidative response [27]. Ursolic
acid alleviated renal damage in type 2 diabetic db/db mice by
downregulating proteins in the angiotensin II type 1 re-
ceptor-associated protein/angiotensin II type 1 receptor

signaling pathway to inhibit extracellular matrix accumu-
lation, renal inflammation, fibrosis, and oxidative stress [28].
/ese results were coincident with our predictions, which
suggested that active ingredients with higher degree might
play an important role in the treatment of DKD. Meanwhile,
we discovered five active ingredients (M5, M27, M28, M60,
and M70) that were likely to have renal protection effect but
had not been verified up to now.

Moreover, the results of the SZF-key targets-DKD to-
pology analysis also showed that there were 5 targets whose
degrees were greater than 2 times of the average. Particularly,
3 of these had been proven to be closely related with DKD.
For instance, EGFR activation had a significant role in ac-
tivating pathways that mediate podocyte injury and loss in
diabetic nephropathy [29]. Downregulated expression of
MMP-9 could promote the process of DKD [30]. STAT3
inhibition could hinder the development and progression of
DKD in diabetic patients [31].
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Figure 3: Top 20 enrichments in GO analysis.
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As shown in GO analysis, the potential targets of SZF
acting on DKD were mainly associated with various bio-
logical processes, such as lipopolysaccharide-mediated sig-
naling pathway, inflammatory response, positive regulation
of cyclase activity, protein kinase B signaling, positive
regulation of MAP kinase activity, and response to estradiol,
which had a strongly direct correlation with the patho-
genesis of DKD [32–38].

Similarly, KEGG pathway enrichment analysis showed
that SZF took an anti-DKD effect by multiple pathways.
/rough further research, we found that some pathways
had been already verified to exert anti-DKD potential by
experiments, such as TNF signaling pathway [39], HIF-1
signaling pathway [40], Toll-like receptor signaling
pathway [41], FoxO signaling pathway [42], focal adhe-
sion [43], and NOD-like receptor signaling pathway [44].
/ese results were also consistent with what we predicted.

In addition, SZF might have potential therapeutic effects
on diseases such as cancer, hepatitis, influenza, leish-
maniasis, pertussis, and tuberculosis according to the
KEGG enrichment analysis. Just as it was reported that
different diseases had common or similar pathological
changes and could be treated with the same prescription
[45], the above results suggested that SZF concentrated
more on the systematicness of the body when treating
DKD. In other words, SZF possibly regulated the body to
reach the balance state, then reaching the aim of
treatment.

5. Conclusion

In conclusion, this study based on the network pharmacology
had preliminarily explained the anti-DKD mechanism of SZF
from the perspective of multi-active ingredients, multi-targets,
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Evidence-Based Complementary and Alternative Medicine 11



andmulti-pathway. In the future, we will further investigate its
mechanism by molecular docking, using in vitro or in vivo
studies.
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