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Abstract: The COVID-19 pandemic is one of the most devastating public health emergencies in
history. In late 2020 and after almost a year from the initial outbreak of the novel coronavirus
(SARS-CoV-2), several vaccines were approved and administered in most countries. Saudi Arabia
has established COVID-19 vaccination centers in all regions. Various facilities were selected to set
up these vaccination centers, including conference and exhibition centers, old airport terminals,
pre-existing medical facilities, and primary healthcare centers. Deciding the number and locations of
these facilities is a fundamental objective for successful epidemic responses to ensure the delivery
of vaccines and other health services to the entire population. This study analyzed the spatial
distribution of COVID-19 vaccination centers in Jeddah, a major city in Saudi Arabia, by using GIS
tools and methods to provide insight on the effectiveness of the selection and distribution of the
COVID-19 vaccination centers in terms of accessibility and coverage. Based on a spatial analysis of
vaccine centers’ coverage in 2020 and 2021 in Jeddah presented in this study, coverage deficiency
would have been addressed earlier if the applied GIS analysis methods had been used by authorities
while gradually increasing the number of vaccination centers. This study recommends that the
Ministry of Health in Saudi Arabia evaluated the assigned vaccination centers to include the less-
populated regions and to ensure equity and fairness in vaccine distribution. Adding more vaccine
centers or reallocating some existing centers in the denser districts to increase the coverage in the
uncovered sparse regions in Jeddah is also recommended. The methods applied in this study could
be part of a strategic vaccination administration program for future public health emergencies and
other vaccination campaigns.

Keywords: COVID-19; vaccine; vaccination centers; GIS analysis; spatial analysis; Saudi Arabia;
Jeddah

1. Introduction

Due to the rapid spread of the novel coronavirus disease (COVID-19), caused by
the novel severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), governments
worldwide started to take action to contain this pandemic. Within a year from the start of
the pandemic in March 2020 [1], the cumulative numbers of the reported COVID-19 cases
reached over 79 million in December 2020, with over 1.7 million deaths globally [2]. Severe
preventive measures were implemented to slow the spread of the disease across the world,
including travel restrictions, school closures, public lockdowns, and curfews. With the
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uncertainty regarding the virus’ epidemiology and the absence of valid vaccines, countries
were elevating and alternating between these various strict non-pharmaceutical measures.

Within the first few months of the spread of the novel coronavirus disease, several test
types and testing protocols for COVID-19 were approved and implemented [3]. Hence,
widespread testing for COVID-19 was proven to be an effective measure applied by most
countries. To maximize testing capacity, the testing for COVID-19 was administered
via medical facilities and drive-through and walk-in testing stations [4]. Mass testing,
as considered by the World Health Organization (WHO), is the best method to slow the
spread of the virus [5]. However, the development of a vaccine has been an essential step
in controlling this highly contagious disease.

Fortunately, after almost two years from the initial COVID-19 outbreak in December
2019 and with international vaccine-development efforts, the approval for the emergency
use of the first mRNA COVID-19 vaccine, Pfizer–BioNTech, was issued by the U.S. Food and
Drug Administration (FDA) on 11 December 2020 [6]. Since then, numerous vaccines have
been developed and approved, including Oxford–AstraZeneca, Moderna, and Johnson &
Johnson [7]. To combat the pandemic and protect high-risk groups, most countries began
initiating vaccination campaigns based on various vaccination strategies and used one or
more licensed COVID-19 vaccines.

According to the vaccine supply and the size of the population, public health au-
thorities in most countries prioritize the distribution of the vaccine by targeting high-risk
groups, such as healthcare workers, the elderly (over the age of 65 years), and individuals
with medical conditions who are more likely to die or suffer severely from COVID-19.
Additionally, as recommended by WHO [8], high-risk populations should be prioritized
for COVID-19 vaccinations to minimize the complications and deaths caused by COVID-19.
Figure 1 illustrates the distribution of the different vaccination policies worldwide [9],
where countries target one or more vulnerable groups.

Figure 1. COVID-19-vaccine-delivery policies based on the number of the targeted vulnerable groups
per country [9].

During health emergencies and disease outbreaks, such as the COVID-19 pandemic, it
is important to ensure a timely and equitable administration of medical care and health
services for all individuals in the affected community. A successful emergency response
requires identifying and managing locations or facilities accessible to the entire population
to deliver basic needs and health services at these points. Spatial analysis and geographic
information systems (GIS) technology can be successfully applied to assess the equitable al-
location of sites for PODs (points of dispensing), where medications, vaccinations, or other
health services can be provided for a large number of people during public health emer-
gencies.
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Since the discovery of COVID-19 and its rapid spread across the world, spatial analysis
has played a significant role in the study and mapping of the spread of the disease [10,11].
Several GIS tools and spatial-analysis techniques have been used to track COVID-19 at mul-
tiple levels [12–16]. Researchers have also studied the spatial distribution of COVID-19’s
incidence and mortality rates in relation to various aspects such as age, gender, and liv-
ing conditions [17,18]. As widespread testing has become one of the main preventative
measures in many countries to reduce the transmission of COVID-19, studies of the spatial
distribution of the epidemic’s progression and its correlation with the testing rates were
conducted [19].

In the case of mass COVID-19 vaccinations and the scale of the expected coverage, GIS
tools can help in planning the allocation of vaccine sites based on a set of potential candidate
locations that can serve as vaccination hubs. GIS technology can map the vulnerable
populations who might have problems reaching vaccination centers, such as people in
rural or remote areas [20,21]. Additionally, GIS analysis can be used to identify vaccination
rates in different geographical areas to ensure the fair and efficient distribution of the
vaccination centers [22]. Several research studies have focused on the spatial analysis of
COVID-19-vaccine administration in various countries and regions to assess the vaccination
rates and coverage [23]. GIS technology was also applied to optimize the distribution of
COVID-19 vaccines to vaccination centers [24].

The first confirmed case of COVID-19 in Saudi Arabia was reported on 2 March
2020 [25]. In Jeddah, a major city in Saudi Arabia, the initial cases of COVID-19 were
detected on 11 March 2020. According to the Department of Infectious Diseases at the
Directorate of Health Affairs in Jeddah, during the rapid spread of the COVID-19 outbreak
in Saudi Arabia, the highest number of confirmed COVID-19 cases reported in Jeddah was
20,069 by the end of August 2020. Along with other preventative measures, such as limiting
public gatherings, lockdowns, and curfews, enforced throughout the country, large-scale
COVID-19 testing effectively contributed to the containment of the outbreak. Several fixed
and mobile COVID-19-testing centers were established in Jeddah by the end of July 2020.

Saudi Arabia was one of the first countries to establish COVID-19 vaccination admin-
istration on 17 December 2020 using Pfizer–BioNTech, AstraZeneca, and, more recently,
Moderna, with a target to vaccinate 70% of the adult population, including citizens and
residents in the country [26]. Close to the end of 2021, more than 65% of the population of
Saudi Arabia was fully vaccinated, with 48 million doses administered. Due to being one
of the major cities with a high population, Jeddah was prioritized in the first phase of the
vaccine-distribution plan in Saudi Arabia. The vaccination centers in Jeddah include public
and private healthcare facilities, old airports, stadiums, and shopping malls.

The goal of this study was to analyze the spatial distribution of the COVID-19 vaccina-
tion centers in Jeddah. In particular, it aimed to examine vaccination centers in Jeddah using
GIS tools and methods to provide insight into the effectiveness of the current locations of
the COVID-19 vaccination centers in terms of accessibility and coverage. An evaluation of
the spatial distribution of the COVID-19 vaccination sites will facilitate the decision-making
process for adjusting the number and locations of these designated centers to fulfill the
expected vaccination rates for the entire population in Jeddah.

The rest of the paper is organized as follows: Section 2 provides details on the area
under study, the collected data, and the GIS methods applied to achieve the objective of our
study. In Section 3, the results obtained are presented and analyzed. Finally, we conclude,
in Section 4, with a discussion and future directions.

2. Materials and Methods
2.1. Study Area

Jeddah is one of the major cities in the region of Makkah, which is one of the 13
administrative provinces of Saudi Arabia. The city of Jeddah is located in the western
region of the Kingdom (Figure 2); its central location is longitude E 39◦11′52.69′′ and
latitude N 21◦32′32.57′′, at an elevation of 15 m above sea level [27]. The geographical
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area of the province is approximately 1765 km2. In 2016, the population of Jeddah was
around 4.08 million, accounting for one-eighth of the entire population of Saudi Arabia.
It is now the country’s second-largest metropolis after the capital city Riyadh. Over time,
the city’s services have grown in several sectors such as transportation, communication,
health initiatives, and public utilities, including water, power, and other utilities [28].

Figure 2. Location map of the city of Jeddah.

The annual population growth rate has risen to 3.5%, mainly due to job opportunities
in the city as well as its proximity to the busiest international airport, the largest seaport
in the region, and the Holy City of Makkah [28]. The average household size in Jeddah
is 5.2 people, and 41% of the population is under the age of 23, with only 3% being 65 or
older. Health services are supplied by multiple sectors, including the Ministry of Health’s
network of primary healthcare facilities and hospitals across the city, in addition to other
public institutions and the private sector [29].

2.2. Data

In addition to being one of the major cities in Saudi Arabia, Jeddah was chosen for
this study mainly due to the availability of the required data and the significant population
expansion over the last decade. The data acquired from the Jeddah Municipality and
used in this study include population and district data. The numbers and locations of the
COVID-19 vaccination centers in Jeddah were obtained from the published data provided
by the Saudi Ministry of Health (MoH) in 2020. These data for the vaccination centers
were updated for the additional vaccination centers established in 2021. All collected
data were first imported into the ArcGIS platform and then projected to the Universal
Transverse Mercator (UTM) 37 N coordinate system for further investigation. The data
were preprocessed using a GIS environment to remove outliers, yielding a new weighted
point feature class, used as input for the subsequent spatial-analysis phase. Table 1 provides
a summary of the data used in this research work.
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Table 1. A description of the spatial data for COVID-19 vaccination centers in the city of Jeddah.

Data GIS Data Type Data Format Source

Jeddah base map Pixel Raster Esri, Maxar, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community

Vaccination centers Point Vector Saudi Ministry of Health
Population distribution Polygon Vector Jeddah Municipality
Districts distribution Polygon Vector Jeddah Municipality

2.3. Analytical Approach

The methodology of this research work consists of five steps. First, spatial data were
first imported into ArcGIS (ArcGIS; Esri; Redlands, CA, USA) for data processing. Then,
in the second step, kernel density estimation (KDE) was employed to determine the hotspot
locations of the vaccination centers established in 2020 in Jeddah. KDE is a powerful GIS
approach used to comprehend and potentially indicate the patterns of a spatial event [30].
In the third step, incremental spatial autocorrelation (ISA) was used to measure the strength
of spatial clustering for each distance of the vaccination centers. Next, we used hotspot
analysis (Getis–Ord) to determine the statistical significance of the hotspots and assess
their incident intensity according to the problem under study. Then, in the final step,
the population and district maps were used to determine the total number of districts that
were not served by the vaccination centers. Further analysis was performed for additional
vaccination centers established in 2021 to compare the spatial distribution of the COVID-19
vaccination centers in 2020. Figure 3 illustrates the workflow for the proposed methodology
in this research work. The following sections provide a detailed description for each step of
the methodology.

Figure 3. The workflow of the applied methodology.

2.3.1. Kernel Density Estimation (KDE)

Kernel density estimation is a statistical method that is classified as a technically
advanced approach in point–pattern analysis. KDE is generally used to map and evaluate
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hotspots, which helps in the visualization of results. The main purpose of KDE is to
comprehend and potentially indicate the patterns of a spatial event [30]. By implementing
the KDE technique, the entire region was first split into a set number of cells [31]. Spatial
analysis using KDE represented the intensity of specific areas to identify the study area’s
spatial pattern densities, including high- and low-density regions [32]. The density was
computed by superimposing a smooth Gaussian curve over each zone and by calculating
the distances between the observation and the reference points (locations of interest) using
a mathematical formula known as the kernel function. The reference points in this study
mainly represent the locations of COVID-19 vaccination centers.

The KDE technique calculates the density for each zone or district by changing the
values within the search radius for that reference point. The density is the greatest at the
reference point location, reduces with distance, and converges to zero at the specific radius
when the distance decay effect is taken into consideration [31]. The following Formula (1)
is the general equation for KDE [31]:

λτ(s) =
n

∑
i=1

1
τ2 k(

s− si
τ

) (1)

where λτ(s) is density evaluation at position s, n is the λτ(s) number of positions or lo-
cations, si is the (x, y) position of the ith vaccination center, τ is the bandwidth, and k
is the kernel algorithm, which is a function of the bandwidth and distance [33]. Vari-
ous spatial-analysis studies have proposed different kernel functions, such as Gaussian
functions [34–36].

Regardless of the nature of the kernel function, the selection of the suitable grid size
and bandwidth is significant for calculating accurate results [35,37]. An undersmoothed
density map can be generated using a narrow bandwidth, which is useful for detecting local
impacts, but a high bandwidth produces a smoother density estimate with less fluctuation.
Hence, an appropriate cell size and bandwidth must be determined for the study depending
on the computational time requirements, sample size, and data [38–42].

The bandwidth and cell size are the two most important elements that influence
KDE analysis. The KDE’s output is often shown in a raster dataset, which consists of
a grid of pixels. To simulate a cluster that is observed in reality, the cell size must be
appropriately determined. In addition, the size of the cluster depends on the computational
time, sample size, and amount of data to store. Larger grid cell sizes speed up processing;
however, information is more likely to be averaged over a larger area, which may lead to
oversmoothing and the loss of valuable hotspot information. On the other hand, selecting
a small grid size may make it time consuming, rendering the analysis process burdensome.

2.3.2. Incremental Spatial Autocorrelation (ISA)

The spatial connection model used in this study to estimate G∗i is the fixed distance
band (FDB), which uses an appropriate distance (threshold) to select which areas are to
be included. To establish an appropriate threshold distance, we used the ISA method.
The Spatial Autocorrelation (Global Moran’s I) tool was used to employ the ISA technique
in the GIS to assess the intensity of spatial clustering throughout a sequence of increasing
distances. Moran’s I index is a spatial autocorrelation coefficient. A Moran’s I around +1
denotes clustering, whereas a number near −1 denotes dispersion. Z-scores and p-values
were calculated to assess the statistical significance of the Moran’s I value [43]. The Z-score
indicated clustering intensity. The ISA process is as follows:

1. To estimate the spatial autocorrelation, first, a default minimum distance is chosen.
The ISA technique then evaluates the distance between features to ensure that each
segment has a neighbor. In this research, 2 km (kilometers) was set as the default
distance for the ISA technique. The spatial autocorrelation values are then computed
by increasing the distance incrementally.
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2. The ideal threshold distance is the one with the highest Z-score. The threshold
distance in this investigation was determined to be 2 km. This determined distance
was utilized in the spatial mechanisms to generate clustering in the data.

Moran’s I index is denoted as follows [31]:

I =
∑n

i=1 ∑n
j=1 Wij(Xi − X̄)(Xj − X̄)

σ2 ∑n
i=1 ∑n

j=1 Wij
(2)

where Xi and Xj refer to the number of variables at vaccination locations i and adjacent
locations j. n refers to the numbers of vaccine locations, and Wij is a set row of standardized
weights, representing associations between locations i and nearby locations j. σ represents
variance, which can be calculated as follows.

σ2 =
∑n

i=1(Xi − X̄)2

n
(3)

The threshold distance acquired was then used in the hotspot technique (Getis–Ord)
to determine the statistical significance of the hotspots detected by KDE.

2.3.3. Hotspot Analysis

Getis and Ord (1992) developed the G∗i statistical approach for detecting statistically
significant geographical groupings of high value, i.e., hot spots, and low values as coldspots.
The G∗i statistic indicates the degree of association between a concentration of regression
points and the rest of the event points based on a specific radius or threshold. It is not
uncommon for KDE and G∗i to provide visually identical results. The kernel density
function and the Getis–Ord G∗i statistic, on the other hand, are two entirely separate
analyses. While KDE tries to find high-value clusters in data, the G∗i statistic not only finds
but also understands the geographic clusters of the phenomena under investigation [32].
The following equation represents the G∗i statistic [31].

G∗i (d) =
∑j wij(d)xj

∑j xj
where j 6= i (4)

G∗i is a number that describes the spatial dependence of the location i across all n
vaccination positions, d is the assigned distance, xj is the number of vaccination centers at
position j, and wij is a spatial weight that represents the association between two vaccination
center positions, i and j, using the fixed distance band [31].

The hotspot method was utilized to perform the G∗i statistical significance test. This
technique determines whether a cluster of high-intensity data is surrounded by high-
intensity values. A coldspot occurs when low-intensity values surround low-intensity
values. The statistical significance test provides G∗i z scores and G∗i p values. A high
positive G∗i z score represents high-value clusters, indicating hotspot areas. A lower
negative z score indicates a concentration of low values, known as coldspots. A G∗i z near 0
denotes a random distribution [31].

2.3.4. Hotspot Selection Criteria

The outcomes take the form of a color-coded map. There is no rule of thumb or set
of specific values to use as a guideline in evaluating whether regions are hotspots or not.
A subjectively determined cut-off value can be used to screen for places with comparatively
high risk throughout a study region. As an example from a different context, let us consider
the overall average of the estimated production output as the cut-off. When the predicted
production output at a given place exceeds this threshold, the site is then designated as a
hotspot. In the real world, however, other factors (the availability of financial resources,
policies, and regulations) might be at play, affecting the production activities at different
groups of sites. An alternate approach utilized in this study is the quantile approach, which
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classifies the predicted values into distinct groups. In this approach, groups of zones are
generated and divided evenly across the classifications, resulting in an equal number of grid
cells in each zone, as shown in Figure 4. Each cell indicates the number of locations (e.g.,
locations of medical facilities or vaccination centers) [44,45]. The hotspots are subsequently
identified as the spots with the highest numbers of locations of interest—for this study,
the COVID-19 vaccination centers.

Figure 4. An illustration of the spatial distribution of the cells and zones in a geographical area,
where the letter H indicates medical facilities or vaccination centers.

2.3.5. Weighted Overlay

The weighted overlay uses numerous layers to solve the multicriteria issues using
a standard measurement scale according to importance. After preparing input layers,
including the population distribution map, KDE map, and hotspot distribution map, all
layers were then reclassified in the same scale. Figure 5 provides an example of the weighted
overlay of selected layers in this study. The weighted overlay was performed for all layers.
Given the weighted overlay, we then generated the output map, i.e., the spatial distribution
of the COVID-19 vaccination centers across the city of Jeddah.

Figure 5. An example of the overlay analysis of selected layers.

3. Results and Discussion
3.1. Spatial Analysis of COVID-19 Vaccination Sites in the Year 2020 in Jeddah

The population map in Figure 6a represents the population distribution in Jeddah
city based on the data collected in this study. The colored or shaded areas in the map
represent the distribution of the population at the district level, where the green area has
the highest population (up to 230,000) and the white-colored area has the lowest population
(up to 23,000). Based on the spatial analysis of the locations of the vaccination centers in
Jeddah, the population map was used to determine the number of people not covered
by the vaccination centers. The district map in Figure 6b illustrates the officially listed
neighborhoods of Jeddah city. Using the district map, we were able to represent the
coverage of the vaccination centers based on the location of these centers at the district level.
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This will help in identifying which districts are fully covered by the vaccination centers
and which districts need more vaccination centers.

(a) (b)

Figure 6. The spatial distribution of the population in Jeddah by district (a) and a map of districts in
the city of Jeddah (b). (a) Population distribution map. (b) District distribution map.

The locations of the vaccination centers in 2020 were spatially digitized using the
ArcGIS platform, as shown in Figure 7a. Density was high at the vaccination centers’
locations, as shown in Figure 7b. The KDE value decreased with distance and converged
to zero at a radius of 2000 m. The spatial locations of the vaccination centers were then
analyzed using KDE and hotspot distribution analysis by considering population levels
and districts.

KDE analysis (Figure 7b) was conducted for the vaccination centers listed in 2020 in
the city of Jeddah. To determine the density of the point features and their surrounding
raster data, we utilized the kernel density for the point features tool. The tool’s algorithm
fitted a nicely curved surface over each point (vaccination center location). As described in
Section 2.3.1, the bandwidth and size influence the KDE results as these two parameters
determine the size of the search region. The bandwidth of the normal kernel function
is equal to the normal distribution’s standard deviation. The radius of the interpolated
search area is the bandwidth of the triangular, quartic, uniform kernels. The choice of
bandwidth is entirely subjective [39,46–48]. A smaller bandwidth interval frequently results
in an acceptable mesh density covering all higher and lower levels; a wider bandwidth
interval produces a flatter distribution and, consequently, is more likely to allow the
detection of minor variations between locations. Although smaller bandwidths indicate
more distinction across regions, the statistical accuracy of the estimate must also be taken
into account. Brimicombe [49] suggested a bandwidth that is six, nine, or twelve times the
median distance between nearest neighbors.
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(a) (b)

Figure 7. The spatial distribution of COVID-19 vaccination centers in 2020 in Jeddah (a) and the KDE
analysis over all the initial 12 vaccination locations in Jeddah in 2020 (b). (a) Spatial distribution map
of the vaccination centers in 2020. (b) KDE analysis of vaccine locations in 2020.

Overall, experimenting with fixed intervals to determine which findings make the
most sense is recommended [46]. Previously, numbers ranging from 20 to 1000 m (meters)
were utilized in different studies [35,38,40,50,51]. In our study, we considered two different
bandwidth levels: 2000 and 2500 m. The bandwidth sensitivity of the hotspot pattern
was examined at 2000 m. As mentioned previously, the density value of the surface is
highest at the regression point and drops as one moves away from it. At the search
radius distance (bandwidth) from the location, density converged to zero. In the absence
of user input, the program automatically determines bandwidth based on the provided
dataset. The search radius units are dependent on the linear unit of the output spatial
reference’s projection.

A total of 12 vaccination centers were observed in our study area of the Jeddah districts
as shown in Figure 8b. It was observed that one center almost covered a 3–5 km radius
around it. Due to the limited number of centers, many people lack access to vaccines,
and the vaccination centers did not cover the study area we selected. Some people do not
even have any access to vaccination centers due to the high volume of individuals. The blue
and light-blue areas are those within a 2 km radius where people can obtain vaccines.
The color red denotes medium coverage within a 3 km radius; similarly, the light-yellow
and yellow colors denote places that are 5 km or more away from vaccination facilities.

Overlay analysis was performed using the KDE output according to the locations
of the vaccination centers in Jeddah in 2020 with the population and district distribution.
The results show that most populated regions were not covered by vaccination centers,
as shown in Figure 8a,b, zones A, B, and C. Similarly, numerous districts were not covered
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by the 12 vaccination centers. The zones A, B, and C showed that almost 50% of the study
area was not covered based on the distribution of the established vaccination centers.

(a) (b)

Figure 8. The overlay analysis of KDE with respect to (a) population data and (b) district data based
on the spatial distribution of the COVID-19 vaccination centers established in 2020 in the city of
Jeddah. The A, B, and C zones highlight the highly populated regions. (a) KDE analysis map in
relation to population data. (b) KDE analysis map in relation to district data.

When KDE was overlaid with Jeddah districts, it was observed that, out of 90 districts,
only 50 districts were covered or had access to vaccination centers, as shown in Figure 9a.
The vaccination centers cover only 36% of the total districts in Jeddah; people from the
city’s total population were served. However, more than 2 million people (68% of the total
population) were not served, as shown in Figure 9b. The results show that large districts,
including Al Safa, Berryman, Al Rughamah, and Al Mountazahat, with populations more
than 60,000 people are not covered by the vaccination centers. On the other hand, districts
such as South of Obhur, North of Obhur, Al Mohammadeyyah, and Al Naeem with fewer
than 40,000 people are among the 36% of the districts covered by the vaccination centers.
In summary, it was observed that the set of 2020 vaccination centers was not enough to
cover the population of Jeddah. Clearly, there was a need for more vaccination centers,
as not all districts and populations were covered, in addition to the shortage of vaccines
during the early stages of the vaccine-production ramp-up.

3.2. Statistical Significance Analysis for Spatial-Pattern Discovery

Kernel density analysis could show where the clusters in our data were located.
However, we could not determine whether these clusters were formed randomly or as a
consequence of an underlying spatial mechanism. Therefore, we conducted a subsequent
analysis to both discover patterns and assess their significance. This subsequent analysis
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enabled us to discover underlying patterns, assess their significance, and ensure that
conclusions were drawn based on reliable resources other than human visual perception.

(a) (b)
Figure 9. The percentage of (a) district coverage and (b) population coverage based on the locations
of the COVID-19 vaccination centers established in 2020 in the city of Jeddah. (a) Percentage of the
covered districts. (b) Percentage of the served population.

The Getis–Ord Gi approach is one of the analytical tools used to determine spatial
dispersion. This statistical tool mainly relies on hotspot and coldspot analyses to determine
the spatial distribution of data. To check for the hotspots and coldspots in the coverage of
the vaccination centers, a hotspot-analysis algorithm was used. We used hotspot analysis
to determine the groups of low and high points in the data. With the p- and z-values
obtained, we then assessed how statistically significant these clusters were, with 99, 95,
or 90 percent confidence.

The main feature (vaccination center location) in the entire dataset was considered in
hotspot analysis. This feature is assigned a value when the components are aggregated
together. The value represents their count inside the aggregation region. A neighborhood is
a collection of elements that surround a feature, including the feature itself. Although a high-
value trait is intriguing, it may or may not be statistically significant. A component with a
high value must be surrounded by another high-valued feature to be statistically significant.
A statistically substantial z-score is obtained when a feature’s sum and neighbors are
proportionally associated with the total number of features.

A statistically significant z-score is calculated when the local sum differs considerably
from the expected local sum. Such a significant difference is considered to be too high to be
caused by randomness. When the data have more clustering of high values, the z-score for
statistically significant positive z-scores becomes high. The denser the clustering of low
values, the smaller the z-score for the statistically significant negative z-scores (coldspot) as
shown in Figure 10. Since our dataset was a point-pattern dataset, we utilized hexagonal
bins to aggregate the data.

Figure 10 illustrates the spatial autocorrelation bell curve for the vaccination centers.
The curve showed clustering and a positive Moran’s I index at 0.7. The results showed a
significantly low p-value, which is lower than 0.05. The pattern for the vaccination centers
is not random; it has clustered at the assigned threshold distance.

A statistically considerable z-score is calculated when the local sum differs signifi-
cantly from the expected local sum. The difference is too high to be a consequence of
random choice. When the data have increased clustering of high values, the z-score for
statistically significant positive z-scores becomes high. The denser the clustering of low
values, the smaller the z-score for statistically significant negative z-scores (coldspot). Due
to our data containing points, we utilized hexagonal bins to aggregate them.

The main objective of hotspot analysis is to determine if values are high or low.
The results of the Getis–Ord Gi approach show that the red area in Figure 11a represents
a region of hotspots, implying that this area is covered by vaccination centers. The white
region is considered as a coldspot, i.e., an area without vaccination availability. Hotspot
density was calculated, as shown in Figure 11b.



Int. J. Environ. Res. Public Health 2022, 19, 3526 13 of 19

Figure 10. The spatial autocorrelation bell curve for vaccination centers.

(a) (b)

Figure 11. The regions of hotspots and coldspots in the study area (a) and the regions of significant
and insignificant z-score values (b) based on the distribution of the COVID-19 vaccination centers
established in 2020 in Jeddah. (a) Hotspot and coldspot map. (b) Spatial z-score map.
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Hotspot density analysis is a geographical analysis and mapping approach that focuses
on detecting the grouping of spatial phenomena. These spatial phenomena are represented
on a map as points that correspond to the locations of events or objects. The regions of
nominal values suggest that the lowest densities are dark blue and light blue. The areas
with high-density values, i.e., hotspot zones, are red and light red.

Figure 12a,b shows hotspot density maps compared with district and population data.
The results confirmed that several districts, such as Al Safa, Berryman, Al Rughamah,
and Al Mountazahat, were not covered by any vaccination center. Based on the location
of the vaccination centers, only a few neighborhoods are covered in the city of Jeddah.
The hotspot analysis provides almost the exact results of KDE, i.e., showing that vaccination
centers cover only 36% of the total districts in Jeddah. Thus, increased vaccination sites are
needed. It is necessary to establish more vaccination centers to serve the remaining 64%
uncovered districts.

(a) (b)

Figure 12. Hotspot density map compared with (a) population and (b) district data based on the
spatial distribution of the COVID-19 vaccination centers established in Jeddah in 2020. (a) Hotspot
density vs. population. (b) Hotspot density vs. districts.

3.3. Results Validation

In 2021, the Saudi Ministry of Health established 30 new COVID-19 vaccination centers
in the city of Jeddah. The locations of these new vaccinati using KDE and Getis–Ord Gi
approaches was recommended to enhance the usefulness of the results. However, in this
study, we only performed KDE analysis for the new vaccination centers in 2021, mainly
because the spatial analysis of the vaccination centers in 2020 showed 95% similarity for
both KDE and hotspot analysis. The KDE analysis for the vaccination centers in 2021
indicates that the blue areas are within a radius of 2 km (almost 40 districts), which have
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full access to vaccines and vaccination centers. The coverage of the vaccination centers was
notable and shows enhancements compared to the 2020 coverage of vaccination centers.
However, it was observed that a few areas (almost 20 districts) from our study area were
still left uncovered by vaccination centers. Figure 13b represents the KDE 2021 analysis for
all 42 vaccination locations of Jeddah’s districts.

We note that the vaccination locations are mainly concentrated in the vicinity of the
city center, as shown in zone A in Figure 13b. However, the vaccination centers did not
cover the east, west, and some of the city’s southern parts, as shown for zones B, C, and
D in Figure 13b. The industrial area of Jeddah city is mainly located in the Southern part
of the city (zone D). This area is characterized by large populations of industrial workers
working in groups; thus, there is a high demand to have vaccination centers. Likewise,
zones B and C reflect high demand points within uncovered regions.

(a) (b)

Figure 13. The spatial distribution of the COVID-19 vaccination centers in 2021 in Jeddah (a) and
the KDE analysis for all 42 vaccination locations in Jeddah in 2021 (b), where zone A highlights the
city center and zones B and C and D high demand points within uncovered regions. (a) Spatial
distribution map of the vaccination centers in 2021. (b) KDE analysis of vaccination locations in 2021.

The KDE analysis of the vaccination centers for the year 2021 was compared with the
population, which showed that 42 vaccination centers covered almost all of the highly pop-
ulated areas. Still, low-to-medium-populated areas remained uncovered. The maximum
population coverage is attained by these 42 vaccination centers, as shown in Figure 14b.
When comparing the KDE analysis map with the district distribution, we observed that
two-thirds of the districts in Jeddah were covered by vaccination centers, as shown in
Figure 14a. When we compared the results for both years, we found out that a total of
42 vaccination centers were in operation in 2021, which was a significant improvement
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on 2020 (only 12). In 2020, more than half of the population was not covered by vaccina-
tion centers, but in 2021, two-thirds of the total population of Jeddah was covered. Thus,
with the additional 30 vaccination centers in 2021, more people have access to vaccines and
vaccination centers.

Based on the spatial analysis of the vaccination centers’ coverage in 2020 and 2021, cov-
erage deficiency would have been addressed earlier if the GIS analysis methods presented
in this study had been used by authorities while increasing the number of vaccination
centers gradually (for example, in batches of 10 or 15 centers at a time). Of course, the cur-
rent approaches do not consider other factors in determining the optimal locations of the
vaccination centers, such as time constraints and cost. However, the spatial analysis applied
in this study would show the missed opportunity between the initial 12 vaccination sites in
2020, the intermediate 22 or 27 sites, and the current 42 vaccination locations in 2021.

(a) (b)

Figure 14. KDE analysis map with respect to (a) population and (b) districts according to the
distribution of the COVID-19 vaccination centers in Jeddah in 2021. (a) KDE analysis map in relation
to population data. (b) KDE analysis map in relation to district data.

4. Conclusions

The COVID-19 pandemic negatively impacted many aspects of life, including travel,
education, the healthcare system, and the livelihoods of many people. Vaccination is the
most effective approach to rapidly eradicating the pandemic’s effects. Due to the rapid
spread of the disease, it is necessary to establish vaccination facilities outside hospitals
to maximize vaccine coverage. Saudi Arabia, similarly to many countries, developed a
COVID-19 vaccination plan to establish vaccination centers across the entire country. In this
research work, we examined the significance of the locations of COVID-19 vaccination
centers in the city of Jeddah.
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KDE analysis was conducted for the vaccination center data for 2020 and 2021 using
district and population data for the city of Jeddah. Then, a hotspot analysis was conducted
to identify the significant hotspots and coldspots and to determine clustering information
and validate KDE analysis. The results revealed a lack of coverage based on the vaccination
centers established in 2020. A significant improvement was observed upon repeating the
analysis with the additional vaccination centers established in 2021.

This study aimed to inform policymakers and other stakeholders about the regions in
Jeddah that are in need of new or additional vaccination facilities. However, other factors,
such as time constraints and cost, also need to be considered to optimally determine the
locations of vaccination centers. Based on the results of this study, we recommend that the
Ministry of Health in Saudi Arabia evaluate the assigned vaccination centers to include
less-populated regions to ensure equity and fairness in the vaccine distribution. It is also
recommended to add more vaccine centers or reallocate some existing centers in the denser
districts to increase coverage in the uncovered sparse regions of Jeddah.

The methods applied in this study could be used in the implementation of a strategic
vaccination administration program. The various evaluation maps created using these
methods could be used to determine the requirements for establishing vaccination centers.
The scientific evaluation of vaccination locations using GIS technologies is crucial, especially
during the spread of highly contagious diseases such as COVID-19. The work presented
in this study could be a starting point for further research to apply location-allocation
algorithms to suggest optimal or nearly optimal sites for vaccine centers in Jeddah to
ensure the coverage of the entire population.
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