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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a newly emergent member of the Coronaviridae 
family and belongs to the Betacoronavirus genus and 

Sarbecoronavirus subgenus [1-3]. SARS-CoV-2 consists of a 
single-stranded, linear, and non-segmented positive-sense 
RNA core encased within a helical capsid and encompassed 
by a lipid envelope [4]. The SARS-CoV-2 RNA genome is 
roughly 29.89 kb in size and shares 82% and 50% nucleotide 
sequence identity with the severe acute respiratory syndrome 
coronavirus (SARS-CoV) and Middle East respiratory syn-
drome coronavirus (MERS-CoV), respectively [4].

SARS-CoV-2 causes coronavirus disease-19 (COVID-19) 
is the most widespread pandemic disease of the 21st century. 
As of March 1, 2021, it has affected over 113 million people and 
has been responsible for more than 2.5 million deaths globally 
[5]. The presentation of COVID-19 can range from subclin-
ical, mild symptoms, including fever, fatigue, and cough, to 
life-threatening symptoms, such as dyspnea and acute respi-
ratory distress syndrome (ARDS) [6-8]. The pathophysiology 
of COVID-19 depends on the virus’s ability to manipulate the 
host immune responses [9,10]. SARS-CoV-2 can modulate the 
host immune system in its favor by blocking antiviral immu-
nity and promoting tremendous inflammatory reactions that 
have been associated with illness severity [11,12]. Therefore, 
understanding the mechanisms through which SARS-CoV-2 
commandeers the immune response will improve current 
efforts toward drug design and development.

Two-thirds of the SARS-CoV-2 genome encodes nonstruc-
tural proteins that are required for viral RNA transcription and 
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ABSTRACT

Coronavirus disease-19 (COVID-19) is an extremely infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) that has become a major global health concern. The induction of a coordinated immune response is crucial to the elimination of any 
pathogenic infection. However, SARS-CoV-2 can modulate the host immune system to favor viral adaptation and persistence within the host. 
The virus can counteract type I interferon (IFN-I) production, attenuating IFN-I signaling pathway activation and disrupting antigen presen-
tation. Simultaneously, SARS-CoV-2 infection can enhance apoptosis and the production of inflammatory mediators, which ultimately results 
in increased disease severity. SARS-CoV-2 produces an array of effector molecules, including nonstructural proteins (NSPs) and open-reading 
frames (ORFs) accessory proteins. We describe the complex molecular interplay of SARS-CoV-2 NSPs and accessory proteins with the host’s 
signaling mediating immune evasion in the current review. In addition, the crucial role played by immunomodulation therapy to address 
immune evasion is discussed. Thus, the current review can provide new directions for the development of vaccines and specific therapies.
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count [17,24]. Thus, a clear and thorough understanding of the 
molecular interplay that occurs between SARS-CoV-2 and 
the immune system can inform the design and development 
of better therapeutic interventions.

Immunomodulatory SARS-CoV-2 nonstructural 
proteins

SARS-CoV-2 encodes 16 NSPs, designated NSP-1 through 
NSP-16, which are necessary for viral replication [14]. The 
interactions between some of these SARS-CoV-2 NSPs and 
components of host cell signaling pathways for the manipula-
tion of defense mechanisms have been explored.

NSP-1, expressed by Betacoronavirus species, can nega-
tively regulate the biosynthesis of host proteins by mediat-
ing the post-transcriptional degradation of mRNAs [25,26]. 
However, the SARS-CoV-2 NSP-1 was shown to blocks host 
mRNA translation by binding firmly to the mRNA entry 
channel in the 40s ribosome rather than inducing mRNA 
degradation [27]. The expression of SARS-CoV-2 NSP-1 in 
human embryonic kidney-derived HEK293T cells potently 
abolished IFN-I, IFN-III, and IL-8 secretion upon challenge 
with Sendai virus, which is a retinoic acid-inducible gene-1 
(RIG1) signaling agonist. The SARS-CoV-2 NSP-1 can also 
hijack the IFN-mediated transcription of the IFN-stimulated 
response element (ISRE), which is crucial for the expression of 
IFN-stimulated genes (Figure 1). SARS-CoV-2 NSP-1 has been 
shown to target 18 S rRNA in the 40s ribosome, leading to the 
complete blockage of host mRNAs translation and the inhibi-
tion of type I IFN signaling [28]. NSP-1 can also disrupt type 
I IFN signal transduction by inhibiting the phosphorylation 
and nuclear translocation of signal transducer and activator 
of transcription (STAT1) and STAT2 (Figure 1) [29]. SARS-
CoV-2 appears to be a more potent antagonizer of type I IFN 
signaling than either SARS-CoV or MERS-CoV [29].

Papain-like protease (PLpro) is an NSP-3 domain with deu-
biquitinating and deISGylating activities that target compo-
nents of the host’s innate immune signaling pathways. SARS-
CoV PLpro consistently suppresses the antiviral innate immune 
response by antagonizing IFN regulatory factor 3 (IRF3) and 
the nuclear factor kappa B (NF-κB) signaling pathways [30,31]. 
SARS-CoV-2 and SARS-CoV PLpro share approximately 
83% amino acid homology and feature conserved ubiqui-
tin-1 (Ub-1)-binding residues. However, they feature differing 
Ub-2-binding residues, which results in a decrease in the deu-
biquitinating activity of SARS-CoV-2 PLpro relative to that of 
SARS-CoV PLpro. The ectopic expression of SARS-CoV-2 
PLpro in HEK293T cells weakly suppress type I IFN produc-
tion upon treatment with a RIG-1 agonist compared with the 
activity observed for SARS-CoV PLpro [32]. However, Shin et 
al. revealed that the expression of SARS-CoV-2 PLpro in HeLa 
cells suppressed the type I IFN response by directly cleaving 

translation [13,14]. Several other open-reading frames (ORFs) 
accessory proteins that are not necessary for viral replication 
but contribute to immune evasion and pathogenesis [15]. 
The current review describes the current state of knowledge 
regarding how the SARS-CoV-2 nonstructural and accessory 
proteins mediate the hijacking of the host immune response.

Immune response dysregulation in COVID-19 
patients

SARS-CoV-2 is a distinct respiratory pathogen that has 
developed several strategies to evade the immune response, 
allowing the virus to remain and replicate in human respira-
tory tissue. SARS-CoV-2 can cause a severe deficiency in type 
I interferon (IFN-I) production and activity, which has been 
significantly associated with increased viral load, inflamma-
tory reactions, and disease severity [16]. COVID-19 patients 
present with the significantly impaired and delayed secretion 
of IFN-I and IFN-III compared with flu patients. High lev-
els of IFN-III reduce viral loads and hasten the clearance of 
infection, and higher concentrations of IFN-III relative to the 
concentrations of IFN-I can relieve critical illness in COVID-
19 patients. Proinflammatory cytokines, such as tumor necro-
sis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1, and IL-8, 
have been significantly associated with severe COVID-19 
cases [17,18]. Surprisingly, increased levels of IFN-I have been 
directly linked to disease progression and acute respiratory 
injury [16,18,19].

SARS-CoV-2 infection promotes apoptosis, which can 
augment the acute inflammatory reaction and compromise 
the lymphocytic response. High levels of apoptotic lung cells 
and inflammatory cell infiltration were observed in the lung 
sections collected from postmortem COVID-19 cases [20]. 
SARS-CoV-2 can induce the apoptosis of pneumocytes 
and endothelial cells, resulting in tremendous levels of lung 
destruction [17]. Several pro-apoptotic genes were found to 
be significantly upregulated in peripheral blood mononu-
clear cells (PBMCs) derived from COVID-19 patients with 
reduced lymphocyte counts, which suggests a potential 
role for apoptosis in lymphocytopenia among COVID-19 
patients [21]. The levels of apoptosis mediator proteins, such 
as caspase-8 and TNF superfamily member 14 (TNFSF14), 
were significantly higher in COVID-19 patients than those in 
healthy control [22].

SARS-CoV-2 can also manipulate both the cellular and 
humoral immune responses. In severe COVID-19 cases, 
delayed virus elimination was significantly correlated with an 
impaired antigenic presentation and the severe dysfunction of 
cytotoxic T lymphocytes (CTL), natural killer (NK) cells, and 
B lymphocytes (B cells) [23]. In addition, critically ill COVID-
19 individuals showed a significant decrease in CTL and 
CD4+ helper T cells, accompanied by an increased neutrophil 
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SARS-CoV-2 NSP-6 is a vacuolar ATPase that can inter-
act with the host sigma factor, leading to the modulation of 
the endoplasmic reticulum (ER) stress response [37]. NSP-6 
antagonizes type I IFN production by blocking IRF3 activa-
tion. The overexpression of NSP-6 in HEK293T cells can sup-
press RIG-1 signal-mediated IRF3 phosphorylation by target-
ing TBK-1 (Figure 1) [29].

SARS-CoV-2 NSP-10 is a master regulator of RNA repair 
and viral mRNA capping activity through the promotion of the 
3-exoribonuclease and methyltransferase activities of NSP-14 
and NSP-16, respectively [38]. In the study by Li et al., NSP-10 
could mediate IL-8 activation by targeting NF-κB repressing 
factor (NF-κBRF; Figure 1) [39]. IL-8 is a crucial inflammatory 
mediator that can enhance the recruitment of polymorpho-
nuclear (PMN) leukocytes to the site of infection, which can 
enhance disease severity by promoting inflammatory reactions 
and lung epithelial cell destruction [40]. SARS-CoV-2 NSP-13 
is an enzyme with RNA helicase and nucleoside triphosphate 
hydrolase (NTPase) activities [41]. NSP-13 plays a decisive 
role in SARS-CoV-2 pathogenesis by manipulating type I IFN 
production and signaling. The ectopic expression of NSP-13 
in HEK293T cells was able to suppress RIG-1-mediated IFN-β 

ISG15 from IRF3, thereby blocking IRF3 nuclear translocation 
(Figure 1). The expression of PLpro can reduce the phosphoryla-
tion of TANK-binding kinase (TBK-1), which results in the sup-
pression of both the IRF3 and NF-κB pathways. The inhibition 
of PLpro activity can reduce SARS-CoV-2 replication and the 
induction of cytopathic effects [33]. Furthermore, SARS-CoV-2 
PLpro can deISGylate melanoma differentiation-associated pro-
tein 5 (MAD5), resulting in a significant reduction in the tran-
scription levels of IFN-β and regulated upon activation, normal 
T lymphocyte expressed and secreted (RANTES) [34]. SARS-
CoV-2 PLpro can also promote the extracellular release of ISG15 
when co-expressed with a plasmid expressing FLAG-ISG15 in 
HEK293 T cells. Extracellular ISG15 can bind to the integrin 
lymphocyte function-associated antigen-1 (LFA-1), resulting in 
IFN-γ production by natural killer 92 (NK-92) cells [35]. The 
recombinant ISG15-mediated stimulation of PBMCs from 
healthy donors results in the upregulation of proinflammatory 
cytokine secretion, particularly IL-1, IL-6, IFN-γ, and TNF-α, in 
addition to several chemokines [36]. These findings suggested 
that PLpro is a SARS-CoV-2 virulence factor that can inhibit the 
antiviral innate immune response and promote proinflamma-
tory cytokine production (Figure 1).

FIGURE 1. Cross-talk between SARS-CoV-2 nonstructural proteins (NSPs) and host cell signaling pathways mediates immune 
modulation. SARS-CoV-2 NSP-1, PLpro, and NSP-13 interfere with type I IFN signaling by mediating the inhibition of STAT1 and 
STAT2 phosphorylation, the deISGylation of IRF3, and the suppression of STAT2 phosphorylation, respectively. SARS-CoV-2 PLpro, 
NSP-6, and NSP-13 reduce TBK1 (TANK-binding kinase) phosphorylation, leading to the blockade of the RIG-1 pathway’. PLpro 
can also interfere with RIG-1 signaling through the deISGylate of MAD5 (melanoma differentiation-associated protein 5). NSP-14 
and NSP-15 abolish IRF3 nuclear translocation, leading to the inhibition of type I IFN expression. SARS-CoV-2 PLpro and NSP-10 
can enhance the proinflammatory response, and PLpro can enhance the extracellular release of ISG, which can trigger proin-
flammatory mediator production following binding with the LFA-1 receptor. NSP-10 can block NF-κB repression, promoting NF-κB 
pathway activation and IL-8 production. NSP-1 can suppress IFN-β, IFN-λ, ISRE, and IL-8 secretion by blocking mRNA translation.
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expression by inhibiting the nuclear translocation of IRF3 [32]. 
NSP-13 can abolish the phosphorylation of TBK-1, which can 
directly affect IRF3 activation (Figure 1). NSP-13 can also 
interfere with IFN-α/β downstream signaling by preventing 
STAT2 phosphorylation [29].

SARS-CoV-2 NSP-14 and NSP-15 are an exoribonucle-
ase and endoribonuclease, respectively. The expression 
of NSP-14 or NSP-15 in HEK293T cells can downregu-
late IFN-β transcription by inhibiting the nuclear trans-
location of IRF3 following activation of RIG-1 signaling 
(Figure 1) [32]; however, the mechanisms through which 
NSP-14 and NSP-15 inhibit IRF3 nuclear translocation 
remains unclear.

Immunomodulatory SARS-CoV-2 accessory 
proteins

Nine ORFs accessory proteins including ORF3a/b, ORF6, 
ORF7a/b, ORF8, ORF9b/c, and ORF10, are predicted to be 
encoded by the SARS-CoV-2 genome [13]. These proteins 
are unnecessary for viral replication and vary in number and 
sequence from those encoded by SARS-CoV [15], which may 
explain the uniquely enhanced virulence and pathogene-
sis of SARS-CoV-2. SARS-CoV-2 ORFs are thought to play 

a master role in pathogenesis by negatively regulating the 
immune response.

ORF3a is an ion channel protein with a high binding affin-
ity for chloride ions [42]. The ectopic expression of SARS-
CoV-2 ORF3a can significantly promote apoptosis in multi-
ple cell types, including HEK293T, HepG2, and VeroE6 cells. 
ORF3a can trigger the extrinsic apoptotic pathway by promot-
ing the cleavage and activation of caspase-8 (Figure 2) [43]. 
In vivo study performed in human angiotensin-converting 
enzyme 2 (hACE2) transgenic mice demonstrated that SARS-
CoV-2 infections could induce caspase-8 activation, leading 
to lung epithelial cell apoptosis and the increased secretion 
of proinflammatory cytokines [20]. Therefore, the role played 
by SARS-CoV-2 ORF3a in the activation of the inflammatory 
process needs to be addressed.

SARS-CoV-2 ORF3b is an immunodominant protein that 
has been shown to induce high levels of antibody produc-
tion during COVID-19 infections [44]. The gene encoding 
ORF3b has high variability, ranging from a short ORF with a 
premature stop codon [13] to the loss of the premature stop 
codon [45], and the complete loss, which has been observed in 
the circulating SARS-CoV-2 strains identified in several coun-
tries [46]. The expression of the short SARS-CoV-2 ORF3b 

FIGURE 2. Mechanisms through which SARS-CoV-2 accessory proteins hijack the immune system. SARS-CoV-2 ORF6 can prevent 
type I IFN signaling pathway by blocking nuclear import system. ORF9c can also abrogate type I IFN response by downregulating 
several IFN pathway components. SARS-CoV-2 ORF3b, ORF6, and ORF8 can block the RIG-1 signaling-mediated expression of 
type I IFN, ISREs, and ISGs. ORF3b and ORF6 inhibit IRF3 translocation to the nucleus. SARS-CoV-2 ORF9c can promote the 
expression and translation of proinflammatory mediators, such as IL-6, MAPK, and NF-κB. SARS-CoV-2 ORF3b can enhance the 
apoptosis process through the activation of caspase-8. SARS-CoV-2 ORF8 and ORF9c can interfere with the antigenic presenta-
tion process through the downregulation of MHC class I expression.
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protein in a human lung epithelial (A549) cell line was shown 
to be more efficient for the inhibition of type I IFN production 
following Sendai virus infection than that encoded by SARS-
CoV (Figure 2). Interestingly, the long SARS-CoV-2 ORF3b 
protein variant was found more potently block the type I IFN 
production than the shorter variant. The SARS-CoV-2 strain 
possesses an elongated ORF3b variant that has been associ-
ated with more severe COVID-19 illness [45]. Further exper-
iments remain necessary to determine how SARS-CoV-2 
ORF3b blocks IRF3 nuclear translocation.

ORF6 has been found to be expressed in human lung 
epithelial cells, suggesting its potential role in the cross-talk 
between SARS-CoV-2 and host signaling pathways [47]. 
Consistently, HEK293T cells that express SARS-CoV-2 ORF6 
exhibit significantly lower transcription levels of IFN-β, ISREs, 
IFN-stimulated genes (ISGs), and NF-κB upon exposure to 
Sendai virus infection or recombinant IFN-β compared with 
cells transfected with a control vector (Figure 2) [48]. SARS-
CoV-2 ORF6 can also strongly suppress IFN-I and IFN-III 
transcription and translation in HEK293 T cells in response 
to a RIG-1-inducer or Sendai virus (Figure 2) at levels compa-
rable to those mediated by SARS-CoV ORF6 [32]. Moreover, 
the ectopic expression of SARS-CoV-2 ORF6 in HEK293 T 
cells can prevent RIG-1, MAD5, mitochondrial antiviral sig-
naling protein (MAVS), and IRF3-mediated activation of 
IFN-β expression. SARS-CoV-2 ORF6 has also been shown 
to inhibit the expression of antiviral immune mediators by 
blocking the nuclear translocation of IRF3 and STAT1 lead-
ing to antagonize IFN-I signaling [49], which a recent study 
suggested was directly mediated by the interaction between 
SARS-CoV-2 ORF6 and the nuclear importer karyopherin-α 
2 protein (KPNA2) [29]. SARS-CoV-2 ORF6 also appears to 
disrupt the nuclear import system by directly targeting the 
nuclear pore complex to suppress STAT1 nuclear localiza-
tion (Figure 2), interacting with nucleoporin 98 (Nup98) at 
the nuclear membrane, preventing the interactions between 
Nup98 and KPNA1 and 2 [50].

SARS-CoV-2 ORF8 is a secreted protein that can be 
detected in the cultured supernatant of SARS-CoV-2-infected 
A549 and HEK293T cells and in the serum of COVID-19 
patients [51]. High levels of ORF8 expression and secretion 
have been reported in a SARS-CoV-2 in vitro infection model 
in Vero CCL-18 cells [52], suggesting a potential role for ORF8 
in the immune evasion process to promote viral growth. The 
ectopic expression of SARS-CoV-2 ORF8 in HEK293T cells 
can prevent IFN-β and RIG-1 pathway-mediated ISRE, ISG, 
and NF-κB transcription (Figure 2) [48]. ORF8 can also reduce 
the CTL killing capacity by interfering with the viral antigenic 
presentation. The ectopic expression of ORF8 in HEK293T 
cells was shown to downregulate the expression of major his-
tocompatibility (MHC) class I molecule (Figure 2) [52,53].

SARS-CoV-2 ORF9c is a small membrane-anchored 
protein that plays an indispensable role in the suppression of 
the host immune response. The overexpression of ORF9c in 
A549 cells induces an imbalance in the immune response by 
downregulating signaling-mediated antigenic presentation, 
and the type I IFN response. It upregulates the expression of 
proinflammatory mediators, such as IL-6, mitogen-activated 
protein kinase (MAPK), and components of the NF-κB path-
way (Figure 2) [54]. An in-depth study remains necessary to 
explore the underlying mechanisms through which SARS-
CoV-2 ORF9c affects innate immunity.

Immunomodulation as an attractive therapeutic 
option for COVID-19

The deleterious consequences associated with COVID-19 
have placed considerable strain on global healthcare sys-
tems. Accordingly, extensive studies have been performed 
to explore the vast range of potential therapeutic approaches 
and modalities to address COVID-19, although no single drug 
has yet been identified as efficacious for the clinical manage-
ment of COVID-19 patients [55]. The attempted approaches 
can conveniently be classified as follows: (i) the exploration 
of known antiviral drugs, such as IFNs; (ii) the screening of 
existing compound libraries for those with potential inhibi-
tory effects against viral replication, including compounds 
that modulate signal transduction pathways, protein process-
ing, and DNA synthesis or repair; and (iii) the development 
of new chemical entities (NCEs) based on the structural and 
functional characteristics of the virus, including small mole-
cules that target viral enzymes [56,57]. Generally, all of these 
approaches have been explored simultaneously to address the 
pandemic and can be empirically divided into virus-based and 
host-based approaches [56]. The immune evasion of SARS-
CoV-2 infections involves the following mechanisms: (i) pro-
voking a cytokine storm; (ii) blunting interferon responses; 
and (iii) suppressing antigen presentation by MHC class -I 
and class-II proteins. A better understanding of the immune 
evasion mechanisms that contribute to SARS-CoV-2 sustain-
ability in the host will guide the rational, target-based design of 
efficient and specific immunomodulatory therapeutics [58]. 
Because the SARS-CoV-2 encoded nonstructural and acces-
sory proteins play potential and critical roles in the immune 
evasion processes, targeting those proteins could be exploited 
to enrich drug discovery processes. Although any NSP could 
be considered a potential therapeutic target, the availability of 
crystal structures, the description of co-crystallized ligands, 
and their roles in viral pathogenicity could accelerate drug 
discovery [59]. Many studies have been performed to explore 
nonstructural and accessory proteins as potential therapeutic 
targets [60,61]. For example, drugs designed to target NSP-1 
should aim to interact directly with the NSP-1 molecule or 
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to target biological processes that are directly involved in the 
interactions between NSP-1 and host cells. Unlike the direct 
targeting of viral proteins, targeting downstream processes 
can diminish the potential emergence of mutational resis-
tance, which could diminish the impacts of direct protein 
interactions, and likely increasing the success of identified 
therapeutic modalities [62]. Papain-like protease (PLpro), a 
domain found in NSP-3, represents an essential viral compo-
nent that contributes to the downregulation of inflammatory 
and antiviral signaling processes. Accordingly, the modula-
tion of PLpro activity could impair viral replication and, con-
sequently, impede its role in host immune response evasion, 
making it a promising therapeutic target [63]. In addition, 
Shin et al. have reported that the lead compound GRL-0617 
could inhibit SARS-CoV-2 PLpro, resulting in multiple thera-
peutic effects, including (i) viral pathogenicity inhibition; (ii) 
sustained antiviral interferon release; and (iii) reduced cellular 
viral replication. Therefore, targeting SARS-CoV-2 PLpro can 
suppress SARS-CoV-2 infection and improve antiviral immu-
nity [64]. The macromolecular drug discovery approach to 
the development of SARS-CoV-2 PLpro inhibitors appears to 
have been more useful than the small-molecule drug discov-
ery approach in terms of selectivity and potency. However, 
small-molecule inhibitors appear to be advantageous in 
terms of physicochemical properties and ADME (absorp-
tion, distribution, metabolism, and excretion) profiles [65]. 
The SARS-CoV-2 NSP-6 protein is known to interact with 
the sigma receptors involved in the regulation of the ER stress 
response and contribute to immune evasion through the 
inhibition of type 1 IFNs [48]. Small molecules targeting those 
receptors have been reported to inhibit virus replication and 
growth, blunting immune evasion events [66]. NSP-10 has 
been documented to play critical roles in the stimulation of 
the 3` -to-5` exoribonuclease and 2`-O-methyltransferase 
activities of NSP-14 and NSP-16; therefore, the targeting of 
NSP-10 could significantly blunt the immune evasion mecha-
nism. However, little data is available regarding the structure 
of NSP-10, which limits the application of structure-based 
design to the development of potential leads [38]. Another 
important component in the immune evasion process is 
NSP-13 (helicase), which has multiple functionalities and 
interferes with IFN-α/β downstream signaling. The atomic 
structure of SARS-CoV-2 NSP-13 is currently unavailable, and 
no single published structural homolog has been identified 
that is suitable for virtual screening approaches [67]. Further 
studies remain necessary to develop new therapeutic strate-
gies that are capable of targeting the SARS-CoV-2 accessory 
proteins involved in immune evasion. Given the urgency of 
the current pandemic and the limited available resources, 
repurposing existing drugs is an appropriate solution to the 
identification of a timely and effective therapy. Immune 

modulation has been demonstrated to be a useful strategy for 
the clinical management of previous viral outbreaks [59]. A 
growing body of literature has recognized the usefulness of 
immune-modulatory therapy for the management of severe 
clinical cases of COVID-19 [68,69].

Glucocorticoids

Corticosteroids are synthetic steroidal hormones that 
were widely used to address the SARS and MERS out-
breaks and are currently being applied to the management 
of COVID-19 [70]. Glucocorticoids represent an attractive 
therapeutic option for the management of ARDS-associated 
respiratory failure caused by the direct or indirect destruction 
of pulmonary tissues [64]. ARDS development involves a cas-
cade of events that results in a massive inflammatory response 
and fluid accumulation in the alveolar space, which is a classic 
hallmark of ARDS [71]. Corticosteroid therapy can dampen 
the exaggerated pulmonary inflammatory response, inhibit-
ing immune responses [72]. However, recently reported data 
has been insufficient to determine the effects of corticosteroid 
treatment on all-cause mortality or the duration of mechani-
cal ventilation [73].

Limited data available in the literature has supported 
the efficacy of corticosteroid therapy in coronavirus infec-
tions [74]. Recently, the corticosteroid dexamethasone has 
been documented to reduce the mortality rate of COVID-19 
patients by 20%–35% [75]. Dexamethasone appears to be 
25-fold more potent than other corticosteroids, and this 
potency might justify its use in COVID-19 patients [70]. The 
immunomodulatory properties of dexamethasone are medi-
ated by a cascade of reactions that involve both genomic 
and non-genomic mechanisms, resulting in the increased 
expression of anti-inflammatory molecules (such as IL-10 and 
annexin-1) and the decreased expression of proinflamma-
tory cytokines (IL-2, IL-6, and TNF-α), eventually blunting 
the virus-induced cytokine storm (Figure 3) [76]. However, 
the inhibitory effects of dexamethasone on T and B cells, and 
the resulting immune repression, limit its use as a life-sav-
ing agent in severely ill COVID-19 patients [77]. Currently, 
dexamethasone is considered to be a front-line strategy that 
has been shown to decrease mortality in COVID19 patients. 
The currently updated World Health Organization (WHO) 
guidelines for COVID-19 drug therapy provide the following 
recommendations: (i) a strong recommendation for systemic 
corticosteroid therapy in severely or critically ill COVID-19 
patients and (ii) a conditional recommendation against the 
use of systemic corticosteroid therapy in mild-to-moderate 
COVID-19 patients. The exact role played by corticosteroids 
in the immune modulation of COVID-19 remains unclear, 
and further clinical studies remain necessary to identify the 
specific immunomodulators [76].
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Anticancer drugs

The clinical course of tumorigenesis involves three primary 
manifestations: (i) hyperinflammatory responses; (ii) a dys-
functional immune system; and (iii) an Imbalanced coagulation 
state [78]. Similar disease manifestations have been identified in 
COVID-19 patients, offering a rationale for the potential appli-
cation of anticancer drugs to the management of COVID-19 
pathogenesis to improve overall clinical outcomes [78]. Several 
modes of action have been proposed for the pharmacological 
actions of anticancer therapies in COVID-19, including (i) the 
inhibition of structural protein translation (dactinomycin); (ii) 
the inhibition of the Janus kinase (JAK)-STAT pathway (rux-
olitinib); and (iii) the blockade of the SARS-CoV-2 main pro-
tease (carfilzomib) [79]. However, these therapies represent 
double-edged swords that can slow viral clearance in addition 
to impairing humoral and cellular immunity, increasing the 
likelihood of secondary infections [80]. Therefore, immense 
attention should be paid to the clinical use of these therapies 
to avoid the oversuppression of the immune system and the 
development of subsequent complications among hospital-
ized COVID-19 individuals. Moreover, additional clinical trials 
remain necessary to support the usefulness of anticancer drugs 
for COVID-19 therapy [81].

IL-6 inhibitors

IL-6 plays a significant role in the development of cytokine 
storm and is overexpressed during the severe inflammatory 
response associated with SARS-CoV-2 infection. IL-6 inhib-
itors, such as tocilizumab (monoclonal antibodies), inhibit 
the IL-6 transduction pathway and may represent a potential 

therapeutic choice for the COVID-19 associated with an exag-
gerated inflammatory response [82]. Current international 
guidelines suggest that IL-6 inhibitors might have therapeutic 
value if implemented in severely ill COVID-19 patients [83]. 
Clinical trials in multiple countries are currently ongoing to 
examine the use of the IL-6 inhibitors tocilizumab, siltuximab, 
and sarilumab in COVID-19 patients [69]. However, addi-
tional clinical studies are recommended to ensure the safety 
and efficacy of these potentially life-saving drugs [75].

IL-1 inhibitors

Proinflammatory cytokines that belong to the IL-1 family 
have been reported to act as key regulators of IL-6 produc-
tion [84]. Anakinra is a bio-engineered analog of the naturally 
occurring interleukin-1 receptor antagonist (IL-1ra) [85] that 
has been approved by the US FDA for the management of 
rheumatoid arthritis. Anakinra blocks IL-1β and IL-1α from 
binding to their receptors, resulting in diminished IL-1 activ-
ity [86]. However, the efficacy of anakinra for the treatment 
of COVID-19 has not yet been tested in controlled clinical tri-
als [75]. Thus, its use should be limited to critical COVID-19 
cases due to potential drug safety issues [85].

Chloroquine and hydroxychloroquine

Chloroquine (CQ) is widely used in malaria treatment 
and prophylaxis. Its more water-soluble analog, hydroxychlo-
roquine (HCQ), is primarily used due to its immunomodula-
tory properties [87]. HCQ has exhibited efficacy in lowering 
the COVID-19 mortality rate [88]. The immunomodulatory 
properties of HCQ have been ascribed to interference with 

FIGURE 3. Mechanisms of dexamethasone as an immunomodulator in COVID-19, acting principally through three main path-
ways: diminishing the transcription of proinflammatory cytokines; promoting the transcription of anti-inflammatory cytokines; and 
dampening the general inflammatory response. All of these pathways contribute to the suppression of cytokine storm, eventually 
resulting in the reduction of disease mortality.
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lysosomal activity, resulting in the decreased expression of 
MHC-II and impaired antigen presentation, which subse-
quently reduces the release of a vast range of key proinflam-
matory cytokines [82]. Despite promising in vitro antiviral 
activity, no data support the efficacy of CQ and HCQ in the 
treatment of COVID-19 [89,90], and the latest largest inter-
national randomized controlled clinical trials, which were 
organized by the WHO to explore COVID-19 treatments, 
revealed no compensatory reductions in overall disease mor-
tality following CQ or HCQ treatment [91].

Intravenous immunoglobulins (IVIG)

Intravenous immunoglobulins (IVIG) are preparations 
comprised of a large pool of human antibodies, including a 
serum IgG fraction, which serves as a major component and 
consists principally of IgG1 and IgG2 subclasses, combined 
with smaller proportions of IgA, and IgM [92]. Initially, IVIG 
was developed as replacement therapy for cases of primary 
antibody deficiencies, and IVIG has been shown to exhibit 
modulatory effects on excessive immune system activation, 
involving both innate and adaptive immunity; therefore, IVIG 
has been used to treat a vast range of inflammatory-autoim-
mune disorders [93]. Several studies have reported the useful-
ness of IVIG therapy for the clinical management of various 
viral infections due to the effective reduction of accompanying 
exaggerated inflammatory responses [94,95]. IVIG has been 
documented to display beneficiary effects in patients with 
COVID-19. However, given the quality of available evidence, 
meaningful conclusions regarding the therapeutic efficacy of 
IVIG for the treatment of patients with COVID-19 cannot yet 
be drawn. Although the exact mode of action through which 
IVIG exerts effects in COVID-19 is not yet fully understood, 
the observed reduction in inflammatory mediators following 
IVIG administration in severely ill COVID-19 patients might 
explain the clinical value of this treatment. This anti-inflam-
matory effect could be attributed to various aspects, including 
(i) the inhibition of innate immune cells and effector T cell 
activation, (ii) complement cascade inhibition, and (iii) the 
expansion of the regulatory T cell (Treg) population [96]. The 
reported data indicate that passive viral neutralization may 
not be involved in the IVIG efficacy observed in COVID-19. 
Because IVIG contains antibodies capable of reacting with 
SARS-CoV-2 antigens, IVIG could inhibit superantigen-me-
diated T cell activation and cytokine release [97]. Passive virus 
neutralisation appears to be not responsible for the beneficial 
effects of IVIG.

Serotherapy

Serum therapy describes passive antibody therapy, which 
has been successfully applied to the eradication and control of 

infectious diseases since the 19th century [98]. However, over 
the last five decades, substantial advancements in the discov-
ery of potent antimicrobial drugs and effective vaccine devel-
opment have significantly reduced the use of this strategy. Due 
to the limited therapeutic options available for COVID-19, the 
steadily increasing number of COVID-19-related deaths, the 
financial difficulties faced by some regions that may limit vac-
cine acquisition, and vaccine hesitancy, serotherapy may rep-
resent a viable therapeutic option for improving the clinical 
outcomes [99]. Despite limited data supporting the efficiency 
and safety of serotherapy for COVID-19 patients, evidence 
has indicated the potential usefulness of this strategy for crit-
ically ill patients [100,101]. The use of convalescent plasma 
rich in antibodies against SARS-CoV-2 has been suggested to 
neutralize the pathogen and provide passive immunomodu-
latory mediators, which assist the recipient in the control of 
excessive inflammatory cascades induced by the infectious 
agent  [102,103]. Convalescent plasma shares similar modes 
of action as IVIG, including (i) direct virus neutralization, 
(ii) control of the hyperactive immune system (complement 
activation and cytokine storm), and (iii) immunomodulatory 
effects on the hypercoagulable state. Therefore, serotherapy 
might also demonstrate beneficial effects if administered to 
non-critically ill COVID-19 patients [103].

Monoclonal antibodies (mAbs)

Monoclonal antibodies (mAbs; passive immunotherapy) 
have been used to prevent a wide range of infectious diseases 
and is considered to represent a new modality in the field 
of infectious diseases. Because mAbs are designed to target 
one specific substance in the human body, they are thought 
to provide efficient, safe, and specific interventional therapy 
compared with serotherapy [104]. Therefore, the inhibition of 
cytokine storm through the use of therapeutic mAbs might 
be effective for the COVID-19 associated ARDS [105]. During 
the COVID-19 pandemic, more than 50 clinical trials have 
been performed to examine the use of mAbs capable of tar-
geting a vast range of cytokines; however, few have reached 
Phase III or IV [106]. The actions of mAbs are mediated by 
two key mechanisms: (i) a reduction in the viral load due to 
the inhibition of viral entrance into cells due to the binding 
of mAbs with either viral spike proteins or host cell receptors 
and (ii) the immunomodulatory properties that result in the 
suppression of uncontrolled and excessive immune responses 
by the host [106]. Because higher levels of IL-6 have been 
associated with disease severity and serve as an indicator of 
poor outcomes, most of the mAbs under clinical investiga-
tions are IL-6 inhibitors intended for use in moderate-to-se-
vere COVID-19 patients [105]. Among existing mAb candi-
dates, extensive clinical studies are ongoing for tocilizumab 
(Actemra®, Genentech), a recombinant monoclonal antibody 
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that targets the IL-6 receptor and suppresses the signal trans-
duction mechanisms thought to exacerbate cytokine storm 
[107,108]. Therefore, tocilizumab is expected to play a pivotal 
role in the future management of COVID-19-associated cyto-
kine storm [105]. Other IL-6 inhibitors, including sarilumab, 
and siltuximab, are also being studied in clinical trials for their 
potential outcomes in the management of COVID-19 [109]. 
In addition, other mAbs are being investigated for possible 
effects on targets other than cytokines, which may be applied 
for prophylaxis and the management of COVID-19-related 
consequences [105].

Anti-TNF therapy

An exaggerated inflammatory response is the primary 
driver of poor COVID-19 outcomes, and higher levels of TNF, 
a proinflammatory cytokine, have been linked to increased 
COVID-19 mortality [110]. Clinical observational data sup-
ports a potential therapeutic role for anti-TNF therapy in the 
treatment of COVID 19 [111], which could minimize the pro-
duction of many proinflammatory cytokines, such as IL-1 and 
IL-6 [112]. The inhibition of cytokine production in COVID-19 
patients might reduce the hyperinflammatory response and 
improve the clinical outcomes [110]. Further, anti-TNF therapy 
might reduce COVID-19-induced thrombosis, which could 
be attributed to the depletion of D-dimer and pro-throm-
bin fragments. Two off-patent anti-TNF agents, infliximab 
and adalimumab, are currently undergoing clinical trials for 
COVID-19 treatment.

In some patients, COVID-19 causes multiorgan fail-
ure; however, anti-TNF therapy has a wide margin of safety 
because it is eliminated from the body via the reticuloen-
dothelial system, requiring no dose titration steps [110]. 
Secondary bacterial and fungal infections might be of concern 
during treatment with anti-TNF therapy; therefore, this treat-
ment is contraindicated in individuals with latent tubercu-
losis [113,114].

IFNs

The expression of IFN differs widely across coronavirus 
infections, with SARS-CoV-2 being less potent than other 
coronaviruses for the induction of IFN, signifying the pivotal 
role of IFN in COVID-19 (Figure 4). IFNs are protein-based, 
broad-spectrum, antiviral, and anti-inflammatory cytokines 
that interact with cell surface receptors to stimulate the 
JAK-STAT signaling pathway, which ultimately leads to the 
production of the antiviral enzyme RNase L and the proin-
flammatory chemokine CXCL10 [68]. The proinflammatory 
responses mediated by type I and II IFNs are induced by stim-
ulating the expression of a vast array of immune cell genes. 
The activated immune cells kill infected cells or deactivate the 

viruses. Therefore, the maintenance of a satisfactory level of 
the antiviral type I IFNs is essential to sustaining the innate 
and adaptive human immune response [115]. Studies have 
revealed that IFN-α could reduce viral load during the early 
stages of SARS-CoV-2 entry, contributing to symptom relief 
and shortening disease duration [116].

IFN-β-1a has been reported to be effective and safe for 
the management of a variety of viral diseases, such as SARS-
CoV. Due to the similarities between SARS-CoV and SARS-
CoV-2, IFN-β-1a was added to the antiviral therapy against 
COVID-19 [68]. A recent study demonstrated the ability of 
IFN-β-1b to restrain the replication of SARS-CoV-2, which 
also resulted in its inclusion in antiviral combination thera-
pies [117]. IFN-β-1a and -1b have been reported to be highly 
effective in COVID-19 patients [118,119], which may be par-
tially attributed to their positive roles in lung tissues, where 
they are involved in endothelium maintenance and the eleva-
tion of anti-inflammatory adenosine levels [120].

The IFN-γ (type II IFN)-mediated stimulation of gene 
transcription has been shown to eventually inhibit viral mul-
tiplication. Moreover, an improvement in the overall immune 
response has been documented due to the ability of IFN-γ to 
stimulate MHC class II receptors [68]. IFN-γ demonstrates the 
weakest ISG response but could promote the surface expres-
sion of ACE2 [121]. The safety of IFN-γ treatment has previ-
ously been demonstrated, but its effectiveness for COVID-19 
treatment remains limited and requires confirmation. IFN-λ 
is a type III IFN that stimulates epithelial cells and reduces 
the macrophage-mediated activity of IFN-α and -β [68]. 
Currently, pegylated IFN-λ1 (peg-IFN-λ1) is the only thera-
peutic form available on the market [122]. IFN-λ exhibited an 
enhanced response against SARS-CoV-2 when tested in vitro, 
and it exerts its therapeutic effect primarily through the inhi-
bition of viral infection via the promotion of antiviral immu-
nity; after infection, IFN-λ can also reduce viral production 
and diffusion [122,123]. The most important characteristic of 
IFN-λ in the context of COVID-19 is the general ack of proin-
flammatory activity in the lungs compared with that induced 
by type I IFNs. Though IFN-λ might be more efficacious than 
type I IFNs for COVID-19 therapy, additional studies remain 
necessary to assess its safety profile [68]. Unlike type I IFNs, 
which are widely used in clinical settings, type III IFNs have 
yet to be approved for therapeutic applications. However, 
the distinctive properties of the type III IFN response, such 
as (i) specific, (ii) long-lasting, and (iii) non-proinflammatory 
effects, indicate that IFN-λ may represent an attractive thera-
peutic option for COVID-19 [124].

Reductions in the viral load and clinical symptoms of 
COVID-19 have been achieved by the early use of IFNs [68]. In 
a clinical trial examining 446 COVID-19 patients, the admin-
istration of IFN-α2b during the early phase of COVID-19 
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resulted in promising clinical outcomes. By contrast, IFN-α2b 
administration during late-stage COVID-19 has been shown 
to increase mortality [125]. Clinically silent neutralizing auto-
antibodies against type I IFNs are present in at least 10% of 
critically ill COVID-19 patients and might contribute to their 
therapeutic failure [126].

CONCLUSION

The COVID-19 situation has worsened during the second 
wave in many countries, particularly in low-income countries. 
Several studies have reported that the severity of COVID-
19 was associated with a reduced type I IFN response and 
the increased production of proinflammatory mediators. 
Therefore, understanding the molecular interactions between 
SARS-CoV-2 and the host defense machinery is crucial for 
improving treatment interventions and the development of an 
effective vaccine. SARS-CoV-2 NSPs and accessory proteins 
can engage in the strategies that result in the modulation of 
the host immune response, depending primarily on the block-
ade of type I IFN production and the ensuing signaling path-
way. Some NSPs, including PLpro and NSP-10, and accessory 
proteins, including ORF3a and ORF9c, may promote inflam-
matory reactions. Immunomodulatory therapy has been 
successfully applied to the treatment of COVID-19 patients, 
which further indicates the critical role of immune evasion as 
a key regulator of morbidity and mortality associated with this 
disease. Further studies remain necessary to explore the role 
played by SARS-CoV-2 NSPs and accessory proteins in the 
regulation of proinflammatory mediators. Additional study 
remains necessary to establish the best approaches to block 
the ability of SARS-CoV-2 to hijack the type I IFN response.
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