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Abstract: Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress
tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants
under various abiotic stress conditions. Improved physiological outcomes are associated with higher
photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of
CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects
secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major
impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of
metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants,
primarily CA’s involvement in the control of physiological and molecular processes in plants under
abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic
stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic
networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other
secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review
summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas
where additional research is needed.

Keywords: citrate; heavy metal stress; drought stress; antioxidant; reactive oxygen species; salinity;
aluminum toxicity

1. Introduction

Abiotic stresses such as drought, flooding, high temperature, low temperature, salinity,
and heavy metals (HM) inhibit plant growth and lower yield potentialities in crops [1]. As
climate change leads to less predictable and more extreme weather events, environmental

Int. J. Mol. Sci. 2021, 22, 7235. https://doi.org/10.3390/ijms22137235 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0197-2990
https://orcid.org/0000-0002-1757-1198
https://orcid.org/0000-0002-7423-9984
https://orcid.org/0000-0002-2652-9485
https://orcid.org/0000-0001-7855-6293
https://orcid.org/0000-0001-7240-9014
https://orcid.org/0000-0001-6640-4495
https://orcid.org/0000-0003-3470-6100
https://orcid.org/0000-0002-4114-6909
https://orcid.org/0000-0002-7864-1903
https://doi.org/10.3390/ijms22137235
https://doi.org/10.3390/ijms22137235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22137235
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22137235?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 7235 2 of 26

stresses have become a major threat to food security [2]. About 90% of arable lands are
prone to one or more environmental stress [3] and abiotic stresses already account for up to
50% yield loss in many major crops [1]. Abiotic stresses cause changes in plant metabolism,
growth, and development and in extreme cases lead to plant death [4,5]. The exogenous
application of protective plant metabolites like citric acid or citrate (CA) has emerged as an
effective approach to improve plant resilience to environmental stresses and thus sustain
food production.

Citric acid, a 6-carbon tricarboxylic acid synthesized by the citrate synthase (CS)-
catalyzed condensation of oxaloacetate (OAA) and acetyl-CoA, is an intermediate of the
mitochondrial tricarboxylic acid (TCA) cycle [6,7]. In the glycolytic pathway, glucose is
converted to pyruvate, which is transported to the mitochondria and is either oxidized to
produce acetyl-CoA or carboxylated to form OAA. Alternatively, OAA can be formed by
the catalysis of phosphoenolpyruvate (PEP), an intermediate in glycolysis, by phospho-
enolpyruvate carboxylase (PEPC) [8]. OAA serves as a substrate for CA biosynthesis in
the TCA cycle [8,9]. In plant cells, CA is also a metabolic intermediate of glyoxylate cycle,
which occurs in specialized peroxisomes called glyoxysomes [6] (Figure 1). After being
transported into the cytosol, the CA can be utilized by the cell immediately or stored in the
vacuole to maintain the cytosolic pH [9,10] (Figure 1).

Figure 1. A simplified model showing the biosynthetic pathway of CA in plant cells. CA biosynthesis occurs in the TCA
cycle in the mitochondria or via the Glyoxylate cycle in the glyoxysome. CA is exported to the cytosol where it can remain
or be stored in the vacuole. Citric acid/Citrate, CA; oxaloacetate, OAA.

More than a decade ago, it was reported that plants growing in alkaline soils exude
CA and malate from their roots and that this enables them to uptake essential nutrients
like phosphorus and iron by decreasing the pH of the rhizosphere [11]. Since then, several
studies have demonstrated that the positive effects of CA are not from the pH modulation
along, but that there are also many physiological responses by plants to exogenously
applied CA. In addition, application of CA improved physiological parameters in numerous
plant species such as Polianthes tuberosa [12], Lilium spp. [13], and Phaseolus vulgaris (common
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bean) [14]. Moreover, CA has also been used to mitigate drought, salinity, temperature,
and HM stresses in a variety of plant species [15–18]. This review discusses the current
understanding of the physiological and biological roles of CA in enhancing abiotic stress
tolerance to salinity, drought, HMs, alkalinity, and temperature.

2. Effects of Abiotic Stress on Endogenous CA Levels

Abiotic stresses trigger complex responses in plants involving diverse signaling events,
physiological adjustments and activation of defense mechanisms that together result in
changes to the biosynthesis, transport, and storage of many primary and secondary metabo-
lites (SMs). Various types of experimental evidence have demonstrated that abiotic stresses
can influence endogenous CA levels in plants (Table 1). In some plant species, such as He-
lianthus annuus (sunflower), Solanum lycopersicum (tomato), Acacia ampliceps, and Trigonella
foenum-graecum, CA increased after 7 days to 4 weeks of salinity exposure [19–22]. Tomato,
Gossypium hirsutum, Clusia sp. and Aptenia cordifolia, showed large increases in endogenous
CA levels under drought stress [23–26], whereas levels did not change in Solanum tubero-
sum (potato) [27]. In Festuca arundinacea, hybrid bermudagrass and Lolium arundinaceum,
endogenous CA levels increased under heat stress [17,28,29], whereas no change in CA
was observed in the tuber or leaf of potato nor in the leaf of Poa pratensis [26,28].

Various studies have reported that endogenous CA accumulates after exposure to HM
stresses. Exposure to cadmium (Cd) or nickel (Ni) causes CA accumulation in the roots of
Solanum nigrum, the shoots of Brassica juncea and Sesuvium portulacastrum and both the roots
and shoots of Amaranthus paniculatus, while causing a CA decrease in roots of Sesuvium
portulacastrum [30–33]. Another study showed that endogenous CA levels increased in
Oryza sativa (rice) after exposure to 50 µM chromium (Cr) for 8 days [34]. A large increase
in endogenous CA levels in root exudates from Secale cereale, Triticum aestivum (wheat),
Glycine max (soybean), rice, Zea mays (maize), Pisum sativum (pea), Hordeum vulgare (barley),
and Cassia tora has been observed under aluminum (Al) stress [35–39].

Table 1. Published effects of abiotic stresses on endogenous CA levels in plants.

Stress Treatment Plant Species Organ/Tissue Duration Endogenous
CA Level Reference

Salinity

50 to 250 mM NaCl Helianthus
annuus Shoot 7 days ↑ [19]

20 and 120 mM NaCl Solanum
lycopersicum Shoot 10 days ↑ [21]

100 and 200 mM NaCl Root exudates 4 weeks ↑ [20]
100 and 200 mM NaCl Acacia nilotica Root exudates 4 weeks ↑ [20]

25 to 200 mM NaCl Trigonella
foenum-graecum Seedling 5 days ↑ [22]

Drought

40, 70, and 100% FC Solanum
lycopersicum Fruit 120 days ↑ [27]

Irrigated and dryland Gossypium
hirsutum Leaf 108 days ↑ [23]

Withholding water Clusia sp. Leaf 16 days ↑ [24]

Withholding water Aptenia
cordifolia Leaf 10 days ↑ [25]

−20, −20 to −40, and
−40 to −60 kPa

Solanum
tuberosum Tuber 42 days = [26]
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Table 1. Cont.

Stress Treatment Plant Species Organ/Tissue Duration Endogenous
CA Level Reference

Heat

25/20 ◦C and 35/30 ◦C
(D/N)

Festuca
arundinacea Leaf 28 days ↑ [29]

22◦C and 30 ◦C
(daytime)

Solanum
tuberosum Tuber 42 days = [26]

20/15 ◦C and 35/30 ◦C Poa pratensis Leaf 18 days = [28]

30/25 ◦C and 45/40 ◦C Hybrid
bermudagrass Leaf 18 days ↑ [28]

25/20 ◦C and 35/30 ◦C
(D/N)

Lolium
arundinaceum Leaf 15 days ↑ [17]

HMs

50 µM CdCl2 Solanum nigrum Root 24 h ↑ [30]
0.6 mM CdCl2 Brassica juncea Shoot 7 days ↑ [33]

150 µM NiCl2.6H20 Amaranthus
paniculatus Leaf and root 1 week ↑ [32]

50 µM K2Cr2O7 Oryza sativa Root exudates 8 days ↑ [34]
100 µM K2Cr2O7 Oryza sativa Root exudates 8 days ↓ [34]
100 µM K2Cr2O7 Oryza sativa Root exudates 16 days ↑ [34]

50 µM AlCl3
Secale cereale
and Triticum

aestivum
Root exudates 12 h ↑ [37]

15 µM AlCl3.6H2O Glycine max Root exudates 24 h ↑ [39]

50 µM AlCl3
Brachiaria
brizantha Root exudates 12 h ↓ [36]

30 µM AlCl3 Cassia tora Root exudates 9 h ↑ [35]

↑ CA increase; ↓ CA decrease; = CA unchanged; FC, Field Capacity; D/N, day/night.

In general, endogenous CA levels tend to increase in response to salinity, drought,
heat, and HM stresses. The degree and longevity of increased CA are specific to the plant
species and the type of abiotic stress. Exogenous application of CA appears to improve the
tolerance of plants to abiotic stress [17,18,40,41]. Despite the growing number of scientific
investigations, our understanding of the effects endogenous CA or exogenously applied
CA on abiotic stress tolerance in plants remains limited. In the following sections, we
describe the roles of exogenous CA application in ameliorating plant stress responses to
various abiotic stresses.

3. Exogenous CA for Mitigation of Abiotic Stress
3.1. Salinity Stress

Exogenous application of CA can increase the salinity tolerance of plants and ulti-
mately increase growth and yield (Table 2). Carica papaya (papaya) seeds primed with
a CA solution showed improved germination under salt stress conditions [42]. A foliar
spray with CA reduced the sensitivity of G. barbadense to salt stress, improving growth and
yield, and led to higher total soluble sugars (TSS), total soluble protein (TSP), total phenolic
compounds (TPCs), free amino acids (FAA), and proline content [18]. Moreover, El-Hawary
and Nashed [43] reported that the foliar application of CA in combination with ascorbic or
salicylic acid enhanced the growth and productivity of maize under salt stress conditions.
Application of CA in combination with ascorbic acid and thiamin improved salinity toler-
ance by upregulating the non-enzymatic antioxidants (TPCs and proline accumulation) and
decreasing enzymatic antioxidants [CAT, POX, and phenylalanine ammonia lyase (PAL)]
in H. sabdariffa and Melissa officinalis (lemon balm), a response related to the maintenance
of the cellular redox state [44,45]. Several studies have shown that CA application can
increase the activity of antioxidants, including superoxide dismutase (SOD), peroxidase
(POX), catalase (CAT), glutathione peroxidase (GPX), polyphenol oxidase (PPO), and ascor-
bate peroxidase (APX) in cotton, maize, Beta vulgaris (sugar beet), Hibiscus sabdariffa, and
Leymus chinensis (Chinese ryegrass) [18,43,45–47]. Essential oil components (monoterpene
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hydrocarbons and oxygenated sesquiterpenes) of lemon balm under salt stress conditions
were increased by CA treatment [44]. The application of CA in sugar beet individually or
in combination with peel extracts of banana and/or tomato improved tap roots yield in
saline soil [47].

3.2. Drought Stress

Application of exogenous CA improved drought tolerance and increased productivity
of Lilium Cv. Brunello and cotton plants [13,15]. Accumulation of some OAs including
CA is associated with improved drought tolerance in G. barbadense [48]. Exogenous ap-
plication of CA improved the growth of Brassica oleracea var. capitata (cabbage) seedlings
in drought-affected areas by alleviating oxidative stress [49]. Additionally, in cabbage,
CA was shown to increase phosphorus uptake and decrease hydrogen peroxide (H2O2)
accumulation [49]. In common bean plants, exogenous application of CA increased the
relative water content (RWC) and chlorophyll (Chl) content of leaves, leading to increased
growth and productivity [14]. Several morphological and yield-related traits, metabolite
concentrations, (Chl a, Chl b, Chl a+b, carotenoid, and proline), and antioxidant enzyme
activities (CAT, POX, and APX) were increased by exogenously applied CA in Gossypium
barbadense [15].

Table 2. Effectiveness of exogenous CA on mediating salinity and drought stress tolerance.

Plant Species Stress
CA Treatments and

Method of
Application

Effects Outcomes References

Gossypium barbadense
(Cotton)

Salt (205, 135, and 35
mM NaCl)

Foliar spray of 2.5 g
L−1 potassium citrate

Increased growth, yield,
and photosynthetic

pigments. Increased TSS,
TSP, TPC, FAA, and proline.
Enhanced CAT, POX, and

SOD activities.

Improved growth
and yield but no
effects on fiber

properties.
Increased salt

tolerance.

[18]

Carica papaya
(Papaya) Salt (NaCl)

Seed soaking with
CA (500 mg L−1) as

sildenafil citrate
Increased germination rate.

Improved the
tolerance and

development of
papaya plants in

saline environments.

[42]

Phaseolus vulgaris
(Common Bean) Drought Spraying of CA (0.5,

1.0, 1.5, and 2 g L−1)

Increased relative water
content (RWC) and Chl.

Increased plant growth and
productivity.

Application of CA at
1.5 g L−1 was most

effective for drought
alleviation.

[14]

Zea mays
(Maize)

Salt (NaCl)
(4.2–4.6 dSm−1)

Foliar spray of CA
with ascorbic acid
and salicylic acid
(100 or 200 ppm)

Increased leaf area index,
net assimilation rate,

growth rate, and
photosynthetic pigments.

Enhanced CAT, POX, PPO,
and PAL activities.

Decreased proline and Na+.
Increased K+.

Improved tolerance
to salinity.

Enhanced growth
and yield.

[43]

Leymus chinensis
(Chinese ryegrass)

Salt (200 mM NaCl)
and alkaline stress
(100 mM Na2CO3)

Irrigation with CA
(50 mg L−1)

Increased growth and CA
exudation. Increased RWC
and CO2 assimilation rate.
Enhanced MDA content,

CAT, APX, and SOD
activities.

Improved tolerance
to saline and alkaline

stress.
[46]

Gossypium barbadense
(Cotton) Drought Foliar spray of CA

(500 ppm)

Increased growth, number
of fruiting branches,

number of open bolls per
plant, seed index, boll

weight, lint percentage, and
seed cotton yield. Increased

Chl a, Chl b, Chl a+b,
carotenoid, and proline

contents in leaves.
Enhanced CAT and POX

activities.

Reduced drought
sensitivity but no

significant effects on
fiber properties.

[15]
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Table 2. Cont.

Plant Species Stress
CA Treatments and

Method of
Application

Effects Outcomes References

Hibiscus sabdariffa
(Roselle)

Salt
(75 mM NaCl)

Foliar spray of CA
(10 mM)

Increased TPC and proline
accumulation. Reduced
GSH content. Enhanced

SOD activity but decreased
CAT, POX, and PAL

activities

Improved flower
production under
salinity condition.

[45]

Brassica oleracea
(Cabbage) Drought Spraying of CA

(5 mM)

Increased P uptake.
Decreased hydrogen
peroxide production.

Alleviated
drought-induced
oxidative stress.

[49]

Melissa officinalis
(Lemon balm)

Salt (0.0, 1.6, 3.1, and
6.3 dSm−1)

Foliar spray of CA
(0.3 g L−1)

Increased levels of
α-pinene, β-bisabolene,

monoterpene hydrocarbons
(MCH) and oxygenated
sesquiterpenes (SCHO).

Improved growth. [44]

Beta vulgaris
(Sugar beet) Salt (12.50 dSm−1)

Soil application of
CA (300 mg L−1)

Increased K, N, and P when
added in combination with

tomato peel extract.
Increased CAT and POX
activity when added in

combination with banana
peel extract.

Banana extract and
CA reduced soil

salinity.
Increased root and

sugar yield.

[47]

3.3. Temperature Stress

High temperature stress results in decreased yield in many crops. However, it has
been reported that exogenous CA can alleviate heat stress in several plant species (Table 3).
Spraying of 20 mM CA on leaves of Lolium arundicaceum significantly improved photo-
synthetic efficiency, Chl biosynthesis, and activity of antioxidant enzyme such as SOD,
POX, and CAT. The enhanced antioxidant system alleviated cell membrane damage (lower
electrolyte leakage (EL) and malondialdehyde (MDA) content), ROS accumulation, and leaf
senescence [17]. In addition, foliar spraying of CA application at the rate of 2.5 and 5 g L−1

increased fruit setting and yield in tomato under heat stress [50]. There has also been at
least one report of CA application alleviating low temperature stress, as CA application
suppressed defoliation and increased leaf number in Hibiscus rosa-sinensis under cold stress
treatment [51].

Table 3. Effectiveness of exogenous CA on mediating temperature and alkaline stress tolerance.

Plant Species Stress CA dose Effects Outcomes Reference

Lolium arundinaceum

Heat stress:
(25/20 ◦C and

35/30 ◦C, day/night)
in growth chambers

Foliar spraying of
CA (0, 0.2, 2, and

20 mM)

Increased growth. Increased Chl
content, photochemical efficiency
(Fv/Fm) and SOD, POX, and CAT
activities. Decreased EL and MDA

content. Increased expression of
heat shock protein genes.

Alleviated growth
and physiological
damage caused by
high temperature

[17]

Lycopersicon
esculentum

Heat stress as
manipulated by late
summer sowing (air

temp up to 35 ◦C)

Spraying of CA (2.5
and 5 g L−1)

Increased yield and fertility of
pollen grains. Increased vitamin C
content, TSS, minerals. Increased

stem thickness, epidermis, phloem
and xylem tissues.

Enhanced POX, SOD, and CAT
activities.

Increased yield
during late

summer
[50]

Hibiscus rosa-sinensis Cold stress (<10 ◦C) CA (5 mM) in
nutrient solution

Increased the number of leaves
remaining on plants grown under

low-illumination.

Suppressed
defoliation [51]

Leymus chinensis Alkaline stress
(100 mM Na2CO3)

Spraying of CA
(50 mg L−1)

Increased growth, relative growth
rate, and photosynthesis. Enhanced

CAT, SOD, and APX activities.

Increased stress
tolerance [46]

Rosa roxburghii
Calcareous yellow

soil (pH higher than
8)

CA (40, 80 and
120 mg kg−1 soil)

Increased growth, total biomass,
root development, root-shoot ratio,

and total root surface area.
Increased nutrient contents.

Increased seedling
growth [52]
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3.4. Alkalinity Stress

It has been also reported that application of CA can ameliorate the effects of alkalinity
stress. Treatment of Chinese ryegrass with 50 mg L−1 CA increased alkaline stress tolerance,
improving growth, relative growth rate, photosynthesis and activities CAT, SOD, and APX
in plants grown in the presence of 100 mM Na2CO3 [46]. Another study showed that soil
treatment with CA at 40, 80, and 120 mg kg−1 significantly improved plant growth features
such as plant biomass, root development, root–shoot ratio, and total root surface area and
also increased soil nutrients of Rosa roxburghii seedlings under alkaline stress [52].

3.5. Heavy Metal Stress

Exposure to HMs causes plant stress and reduces plant growth and biomass produc-
tion. Application of exogenous CA has been shown to mitigate HM stress in numerous
instances (Table 4). Plants treated with CA had improved growth and biomass accumu-
lation, increased photosynthesis and Chl content, higher water use efficiency, and higher
antioxidant enzymes activity, and reduced ROS, MDA, and EL [53–55].

Table 4. Effectiveness of exogenous CA on mediating HM stress tolerance.

Plant Species HM Stress Treatments Effects Outcomes References

Brassica napus
Cu (50 and
100 µM as

CuSO4)

CA (2.5 mM) in
nutrient solution

Increased plant growth,
biomass, Chl content,

stomatal conductance, and
water use efficiency.

Enhanced POX, SOD, CAT,
and APX activities. Reduced

H2O2, MDA, and EL.

Minimized Cu
toxicity and
enhanced
biomass

production.

[56]

Brassica napus Cd (10 and
50 µM as CdCl2)

CA (2.5 mM) in
solution medium

Enhanced plant growth and
biomass, gas exchange

activities, and antioxidant
enzymes activity. Reduced

oxidative stress by reducing
H2O2 and MDA production

and decreasing EL.

Mitigated Cd
stress. [16]

Solanum nigram
Cd (50 mg

Cd2+ kg−1 dry
soil)

CA (20 mmol
kg−1 soil)

applied in soil

Promoted plant growth,
biomass, and antioxidative
defense e.g., SOD and POX

activity at initial stage.

Slightly reduced
Cd stress. [70]

Brassica juncea
Cd (0.6 mmol
kg−1 soil as

CdCl2)

CA (0.6 mmol
kg−1 soil)

applied in soil

Increased plant height, Chl
a+b, carotenoid, anthocyanins,

and flavonoids in leaves.
Non-significant increment of
the activities of SOD, POX,
CAT, and GPX. Reduced

MDA levels.

Alleviated
Cd-induced

toxicity.
[68]

Brassica juncea Cd (0.6 mM) as
CdCl2

Soil treatment
with CA

(0 and 0.6 mM)

Significantly increased Chl
a+b, carotenoid, and

polyphenols. Non-significant
increase in flavonoids,
anthocyanins and total
carbohydrate content.

Induced stomatal opening.
Reduced ROS production.

Alleviated Cd
stress. [33]
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Table 4. Cont.

Plant Species HM Stress Treatments Effects Outcomes References

Brassica napus Cr (100 and
500 µM)

Irrigated with
CA (2.5 and

5.0 mM)

Increased plant growth,
biomass, Chl a, Chl b, Chl a+b,

carotenoid, and soluble
protein concentrations.

Enhanced activities SOD,
POX, CAT, and APX. Reduced

MDA and EL.

Improved Cr
stress tolerance. [58]

Brassica juncea
Cd (0.5 mM Cd

and 1.0 mM
CdCl2)

CA (0.5 and
1.0 mM) in

nutrient solution

Increased plant growth, leaf
RWC, and Chl content.

Enhanced activities of APX,
MDHAR, DHAR, GR, GPX,

SOD, and CAT. Reduced
oxidative damage.

Enhanced Cd
stress tolerance
by regulating
antioxidant

defense.

[53]

Helianthus annuus
(Sunflower)

Cr (5, 10 and
20 mg kg−1 dry

weight)

CA treatment
(2.5 and 5.0 mM)

Increased plant growth and
biomass, Chl, carotenoid,

photosynthesis, gas exchange,
and soluble proteins.

Enhanced activities of
antioxidant enzymes.

Reduced production of ROS
and MDA.

Improved Cr
stress tolerance. [59]

Juncus effusus
Mn (50, 100 and

500 µM as
MnSO4)

CA (5 mM) in the
nutrient solution

Increased shoot length and
root number.

Alleviated Mn
toxicity and
enhanced
growth.

[71]

Germinating pea
seeds

Cu (as 200 µM
CuCl2)

Irrigated with
CA

(as 100 µM
Na-citrate)

Reduced oxidative stress.
Decreased H2O2, MDA,
carbonyl groups, lipid

peroxidation, and protein
oxidation.

Enhanced
growth and

reduced stress.
[67]

Zea mays (Maize) Cd as CdCl2
(300 mg kg−1)

Irrigation with
CA (0.25, 0.5, 1.0

and 2 g kg−1

soil)

Increased root and shoot
length, biomass. Reduced

bioaccumulation coefficient
and translocation factor.

Reduced Cd uptake.

CA
proved

inefficient for Cd
phytoextraction,

however,
ameliorated the
toxicity of Cd

[63]

Brassica juncea Cd (150 mg
Cd2+ kg−1 soil)

CA (10 and
20 mmol kg-1

soil)

Increased shoot phenolic
acids. Reduced ROS

production.

Improved Cd
stress tolerance. [66]

Brassica napus Pb as Pb(NO3)2
(50 and 100 µM)

CA (2.5 mM) in
solution media

Increased plant height, root
length, leaf growth, fresh and

dry weight, Chl content,
SPAD values, Pn, E, Gs, and
Pn/E. Enhanced SOD, POX,

CAT, and APX activities.
Prevented lipid membrane

damage. Reduced MDA and
H2O2 production.

Increased Pb
stress tolerance. [57]

Solanum
lycopersicum

Pb (10 µM as
Pb(NO3)2) and
As (10 µM as
Na2HAsO4)

CA (250 µM) in
nutrient solution

Increased Chl a and Chl b
content. Decreased Pb

accumulation, α-tocopherol
content, and MDA levels.

Increased Pb and
As tolerance. [69]

Roots of Vicia faba Pb (5 µM) as
Pb(NO3)2

CA (550 µM and
1000 µM) in

nutrient culture

Non-significant effect on
antioxidant enzyme activities

(i.e., SOD, GPX, APX, and
GR).

CA did not
mitigate Pb

toxicity
[73]
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Table 4. Cont.

Plant Species HM Stress Treatments Effects Outcomes References

Sedum alfredii Cd (100 µmol
L−1 CdCl2)

CA (0, 10, 50, 100,
500 µmol L−1) in
solution culture

Increased plant growth and
biomass.

Improved Cd
stress tolerance [74]

Corchorus olitorius
Cd (20 mg L−1)

as Cd(NO3)2.
4H2O

5 mM CA in
nutrient culture

Enhanced antioxidant enzyme
activity. Decreased Cd2+

uptake and accumulation.

Improved Cd
stress tolerance [62]

Salix variegate
Cd (50 µmol L−1)

as CdCl2·2.
5H2O

CA (100 µmol
L−1) in nutrient

solution

Increased biomass, carotenoid,
Chl a, Chl b and Chl a+b
content. Increased net

photosynthesis rate, stomatal
conductance, chloroplast size

and width.

Reduced stress
and enhanced

growth, biomass,
and

photosynthesis.

[55]

Brassica juncea Ni as NiSO4
(0.003 mmol L−1)

CA (0.5, 1.0, and
5.0 mmol L−1) in
nutrient solution

Reduced Ni uptake but had
no effect on Ni translocation.

Reduce stress by
reducing Ni

uptake.
[65]

Brassica juncea Cd (0.6 mM) Foliar spray of
CA (0.6 mM)

Increased plant growth.
Increased antioxidant activity.

Reduced ROS.

Enhanced
growth and
efficacy of

photosynthetic
machinery

[61]

Helianthus annuus
(Sunflower)

Cr (5, 10, and
20 mg kg−1)

Irrigation with
CA (2.5 and

5 mM)

Increased plant growth, Chl,
carotenoid, Pn, E, Gs, and

water use efficiency.

Increased
tolerance to Cr

stress.
[40]

Larix olgensis 100 mg kg−1 Pb
from Pb(NO3)2

Root irrigation
and foliar

spraying of CA
(0.2, 1.0, 5.0, and
10.0 mmol L−1)

Increased plant growth and
biomass, proline, total Chl,

and carotenoid content.
Enhanced SOD and POX

activities. Reduced Pb content
and MDA levels.

Improved
tolerance to Pb

stress
[54]

Oryza sativa (Rice) Cd as CdCl2
(25.0 µM)

CA (50.0 µM) in
nutrient solution

Increased GSH, Chl,
carotenoid, and anthocyanin

contents. Decreased Cd
content in leaves.

Enhanced Cd
tolerance and

promoted higher
biomass

production

[60]

Triticum aestivum
(Wheat)

20 µM Cd
(added as CdCl2)

Irrigation with
CA (10, 50, 100,

and 500 µM)

Increased index of tolerance,
root and shoot biomass.

Decreased Cd uptake, MDA
levels, and PCs-SH
production in roots.

Reduced
bioavailability of

Cd.
[64]

Medicago sativa
(Alfalfa)

100 µM Al in
nutrient solution

Foliar spraying
with 100 µM of

CA

Increased growth. Reduced
lipid peroxidation.

Alleviated Al
toxicity through

roots Al
detoxification

[75]

Typha latifolia Pb and Hg (1, 2.5
and 5 mM)

CA (5 mM) in
nutrient medium

Increased fresh and dry
biomass of root, stem, and leaf.
Increased Chl a, Chl b, Chl a+b,

carotenoid, soluble protein
contents, and SPAD values.
Decreased ROS, MDA, and

EL. Enhanced the activities of
SOD, POX, APX, and CAT.

Improved stress
tolerance with

increased
physiological
parameters.

[72]

Exogenous CA (2.5 mM) in the growth medium of Cu-stressed (100 µM) Brassica napus
increased shoot and root length, numbers of leaves, and leaf area [56]. Moreover, improved
growth and biomass of B. napus has been shown for CA-treated plants exposed to Cd
stress [16], Pb stress [57], and Cr stress [58]. Similarly, the application of CA at a rate of
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100 µmol L−1 in nutrient solution reversed the Cd stress-induced loss of root biomass in
Salix variegate [55].

It is well-known that Chl content is an important contributor to rates of photosynthesis
and that exogenous application of CA can mitigate HM stress by increasing Chl content
(Table 4). Addition of CA (5 mM) increased total Chl by 18% in Cr-stressed Helianthus
annuus (sunflower) plants [59], where supplementation with CA was also shown to increase
Chl a, Chl b, and Chl a+b contents grown under Cd stress [55], Cr stress [40] and Pb
stress [57]. Sebastian and Prasad [60] showed that exogenous CA (50.0 µM) enhanced Cd
stress tolerance in rice with increased Chl (54.0–64.0%) and carotenoid (40.0–53.0%) content.
Moreover, SPAD values (a measure of Chl content) increased by 35.2% with CA (0.6 mM)
foliar application to B. juncea under Cd stress [61]. Application of CA also led to a 17%
increase in carotenoid content in Salix variegate under Cd stress [55] and a 23% increase in
sunflower under Cr stress [59]. Kaur et al. [33] reported that soil treatment with 0.6 mM
CA ameliorated Cd stress in B. juncea with increased total Chl and carotenoid content.

Net photosynthesis rate (Pn) and stomatal conductance (Gs) generally increase in
CA-treated plants (Table 4). CA treatment (5 mM) of Cr-stressed (20 mg Cr kg−1) sunflower
increased Pn, water use efficiency (Pn/E), transpiration rate (E), and Gs by 21%, 53%,
26%, and 12%, respectively [59]. Furthermore, CA increased leaf RWC and reduced the
proline content, thereby improving the water status of treated plants [53]. Addition of
exogenous CA (2.5 mM) to growth media improved the Pn, E, Gs, and Pn/E of B. napus
grown under Pb stress (50 and 100 µM) [57]. Both root irrigation and foliar application
of CA improved the tolerance to Pb stress in Larix olgensis, a response associated with
increased proline [54]. Foliar spray of CA (0.6 mM) also increased the proline content (63%)
in leaves of B. juncea [61].

Furthermore, treatment of plants with CA has been shown to reduce HM accumulation
(Table 4). Inclusion of exogenous CA (5 mM) in the growth medium led to reduced Cd
uptake and mitigated the Cd stress in Corchorus olitorius [62]. CA application (0.25 g kg−1)
decreased Cd uptake by 83.9% in the Sahiwal-2002 maize variety [63]. Another study
showed that CA application in conjunction with other OAs such as malic acid or oxalic
acid or chelators such as EDTA or DTPA decreased Cd accumulation in wheat, thereby
reducing bioavailability of Cd and enhancing tolerance to Cd stress [64]. Sebastian and
Prasad [60] reported that addition of CA (50.0 µM) along with malate decreased the Cd
translocation (18.0–20.0%) in rice. Similarly, exogenous CA (5.0 mmol L−1) reduced Ni
uptake by roots in B. juncea (leaf mustard) and increased shoot/root ratio (the ratio of shoot
to root Ni concentration) and thereby conferred Ni stress tolerance [65].

Production of ROS is a known outcome of HM stress. Addition of exogenous CA
dramatically reduced ROS levels and improved stress tolerance in B. juncea and Pisum
sativum [66,67]. Inclusion of CA (2.5 mM) in growth media reduced H2O2 and MDA
contents in both leaves and roots of Pb-stressed B. napus [57]. Moreover, Kaur et al. [68]
reported that soil containing 0.6 mM CA reduced ROS production and ameliorated Cd
stress in B. juncea. Foliar spray of CA (0.6 mM) along with SA decreased H2O2 content by
19% in Cd-stressed B. juncea [61]. Kumar et al. [69] reported that exogenous CA (250 µM) in
a nutrient solution mitigated Pb stress in tomato, a response associated with decreased α-
tocopherol content and MDA levels. Several studies have shown that antioxidant enzyme
activities increased with CA treatment and that increased antioxidants improved the stress
tolerance in plants (Table 4). Antioxidant enzyme activities such as SOD, POX, CAT, and
APX were increased in B. napus when the plants were treated with 2.5 mM CA under
various HM stress conditions [56–58]. Soil treatment with CA (20 mmol kg−1) increased
antioxidant defense mechanisms and slightly reduced the sensitivity to Cd stress in Solanum
nigram [70]. Clearly exogenous CA application in plants can help mitigate the effects of
HM stress, apparently by improving osmotic balance, HM sequestration, photosynthetic
attributes, and antioxidant systems.

On the contrary, several studies have shown that CA application can enhance uptake
of HMs in plants such as Cr in B. napus [58] and sunflower [59], Cd in B. napus [16], Solanum
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nigrum [70], and B. juncea [53], Mn in Juncus effuses [71], Pb in B. napus [57], and Cu in B.
napus [56]. Although CA application increased HM uptake, there were no obvious toxicity
symptoms associated. Instead, CA treatment helped mitigate HM stress by promoting
enhanced growth and biomass, higher Chl content and photosynthesis, higher antioxidant
enzyme activity, lower ROS accumulation, and reduced membrane lipid oxidation [55,72],
all while accelerating phytoextraction of HMs from the soil [53,56,57,59].

4. Mechanisms of CA-Mediated Abiotic Stress Tolerance
4.1. Regulation of Heavy Metal Uptake and Sequestration

Plants have developed various strategies to withstand high concentrations of HMs
in the rhizosphere, which can impose adverse effects on the growth and physiological
processes [73,76]. Selective uptake or efflux of metals at the plasma membrane, chelation of
metals in the cytosol by peptides, and compartmentalization of metal ions in the vacuole
by tonoplast located transporters are all strategies to limit damage by HMs [76,77].

Exogenous application of CA can enhance HM stress tolerance through the detox-
ification of HMs by chelating them at the root surface, in the xylem, or in the cytosol
(Figures 2 and 3). There are a variety of plant-produced high-affinity HM ligands. In the
xylem sap, CA is one of the primary ligands for Fe, Cu, Ni, Cd, and Zn [78]. The secretion
of OAs, e.g., CA, oxalic acid, malic acid, increases under HM stress [79]. Generally, OAs,
including CA, have one or more carboxyl group which acts as a ligand for HMs, chelating
HMs and thereby affect their redox behavior by forming non-toxic compounds or prevent-
ing their uptake by plant roots [80]. When intercellular HM levels approach toxic levels
plants can store them into vacuoles [81]. However, the difference in HM concentration
between the vacuolar lumen and the cytosol can be high, presenting the possibility of
HM leakage from the vacuole into the cytosol. Most HMs are bound to chelators such as
CA inside the vacuole to reduce this risk [82]. After HM chelation in the cytosol or at the
root-soil interface, HMs are translocated to the shoot via xylem as non-toxic CA-chelated
complexes (Figure 2) [77]. According to Vatansever et al. [83], CA works as a chelator for
solubilized Ni, allowing transportation via cation transport systems such as Fe, Mg, Cu, Zn
as well as various proteins. Root exudates also have a role in HM tolerance. Root exudates
containing high levels of CA make HMs unavailable for plant uptake by forming HM-
citrate complexes (Figure 2) [80]. Salt et al. [84] reported that roots of Thlaspi sp. secreted
Ni-chelating exudates rich in CA and histidine in response to Ni stress, which resulted in
decreased Ni uptake. Moreover, Ma and Hiradate [85] showed that CA formed non-toxic
Al-citrate complexes in the symplasm of Hydrangea grown in the presence of Al. Similarly,
buckwheat grown in the presence of Al showed upregulation of genes involved in CA
release and increased CA in the xylem, where CA complexes with Al through a ligand
exchange reaction [85]. Another study showed that in soybean, Al resistance is promoted
exudation of CA by roots [86]. CA has a lower affinity for HMs like Cd, Ni, Co (Cobalt) and
Zn and comparatively a strong binding affinity toward Fe and Al [77,87]. The chelating
potential and plant growth-promoting role of CA has been reported under various HM
stresses, including Cr [58], Cd [16], Pb [57], and Cu [56].

The molecular nature of exogenous CA-mediated HM stress tolerance remains poorly
understood. In general, a specific tolerance mechanism is adopted by plants for a given
HM stress. It is possible that several mechanisms may be involved in reducing the toxicity
of HMs. From the above discussion, we can hypothesize exogenous CA application in
rooting media may promote HM stress tolerance by directly impairing the uptake of HMs.
Moreover, increased intracellular CA accumulation in cells resulting from exogenous appli-
cation likely improves HM tolerance by acting as an HM chelator, promoting sequestration
of HMs into vacuoles (Figures 2 and 3).

Another strategy to limit the uptake of metal ions by plants lies in modifying the
rhizosphere pH, which can result in precipitation and insolubility of HMs (Figure 2). One
mechanism behind modifying pH involves exudation of OAs like CA [88,89]. Root exudates
also serve to concentrate metal ions to the apoplast and help prohibit HMs from entering
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cellular spaces [90]. Root exudates of several plants including Secale cereale, wheat, soybean,
rice, maize, pea, and barley grown under Al stress contain high levels of CA [35–39].

The central vacuole is the principal metal ion storage compartment in the plant cell [91].
Several families of intracellular transporters located on the tonoplast membrane were
identified in plants experiencing HM stress and undergoing HM compartmentalization [91].
Metals enter cells via cation transporters with a wide range of substrate specificity [91,92].
Overall, it is quite clear that CA can regulate HM stress directly through phytochelation
and then store HMs in the vacuole, but very little is known about the movement of CA-HM
complexes across the tonoplast membrane via vacuolar transporters. More research is
needed to identify the role of the vacuolar transporters for CA-HM compartmentalization.
Similarly, little is known about the release of CA from the HM chelation complex or its
remobilization back outside the vacuole.

Figure 2. Mechanisms of HM stress tolerance mediated by citric acid (CA). In response to HM-
containing soil, (1) plant roots release exudate containing CA whereupon CA can detoxify HMs by
forming HM-CA complexes. (2) Moreover, organic acids like CA decrease the rhizosphere pH and
cause precipitation of HMs. (3) Sensing of HMs activates genes involved in CA release in the shoot
xylem. (4) HMs form HM-CA complexes through ligand exchange reactions with citrate. (5) Com-
plexes of HM-CA, once transferred from xylem to leaf cells through iron regulated/Ferroportin family
transporters or ABC transporters, undergo another ligand exchange reaction to reform HM-oxalate
complexes which are deposited in the vacuole. (6) HMs are sequestered in the cytosol through
phyotochelation and transplanted into tonoplast via transporters.
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Figure 3. Overview of cellular mechanisms for HM detoxification and stress tolerance involving citric
acid (CA). HMs enter cytosol after uptake through anion channels or metal transporters, for example,
ZIP (zinc/iron -regulated transporter) family members or NRAMPs (macrophage proteins associated
with natural resistance) family members or NIP aquaporin (nodulin-26-like intrinsic proteins of the
aquaporin family) etc. Cellular CA functions as high-affinity ligand, chelating HMs in the cytosol and
then binding together to form a stable chelation complex via the cytosol ligand exchange reaction.
The chelation complex is then transported into the vacuole via vacuolar transporters like ABC
(ATP-binding cassette) tonoplast transporter achieving HM sequestration. CA further aids vacuolar
compartmentalization or remobilization of HMs by buffering the concentrations of cytosolic HMs,
but the precise mechanism remains unclear. HMs induce oxidative stress in cells, leading to the
formation of ROS. Exogenous CA enhances antioxidant systems (e.g., glutathione (GSH), superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), etc.) to fine-tune ROS levels and
maintain normal cellular activities. High cellular CA also activates alternative oxidase (AOX) and that
detoxifies ROS. Exogenous CA also induces osmolyte synthesis (e.g., proline, glycine betaine (GB),
etc.) which regulates the osmotic balance and promotes ROS scavenging enzyme gene expression.
Finally, CA decreases the pH of the cell and increases the synthesis of total polyphenol compounds
(TPC) which directly scavenge ROS.
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4.2. Regulation of ROS and Antioxidants

Many recent studies have demonstrated that the application of exogenous CA can
provide protection against oxidative stress in plants through increasing the activity of
antioxidant defense systems [16,46,53,70,93]. Drought, flooding, heat, cold, salinity, and
HM stress can lead to elevated ROS levels and result in disturbance of the cellular redox
balance, leading to oxidative or nitrosative stress [94] and induction of antioxidant enzyme
activities [95,96]. Oxidative stress results in cellular damage through membrane lipid
peroxidation, natural antioxidant blockage, and reduced photosynthesis [97]. Antioxidant
enzymes work to scavenge ROS and limit oxidative damage in the plant. CAT and APX
directly detoxify ROS by converting H2O2 to water and oxygen [98], while SOD protects
plants from oxidative damage by converting O2

•− (superoxide anion) to H2O2 [4,5].
The non-enzymatic and enzymatic components of the antioxidant defense system

work together to scavenge ROS under stress conditions [5,98]. Build-up of CA due to redox-
dependent inhibition of aconitase (ACO) during hypoxia has been suggested to induce
metabolic changes as a stress adaptation strategy [99]. Plants react to stresses by activating
the enzymatic defense system [100], a process facilitated by CA accumulation [17,18,43,59].
In several studies, both under non-stress and various stress conditions, the role of CA in
promoting antioxidant enzyme activities has been reported [16,58,101–103]. CA functions
as an elicitor of phenylpropanoid-derived compounds and activates signaling cascades
to increase antioxidant activity [104]. Other interpretations of CA’s role in abiotic stress
tolerance have been proposed as well. Zhao et al. [105] reported that CA functions as
an antioxidant intermediate involving the defense pathways in response to abiotic stress.
A similar study reported endogenous CA functioned primarily as an antioxidant and
intermediate in respiration metabolism involving the defense pathways in response to high
temperature stress [105].

Alternative oxidase (AOX) facilitates lower ROS levels by augmenting the capability of
mitochondrial electron transport and inhibiting the production of O2

•− [106]. Importantly,
the most powerful inducer of AOX expression yet reported is CA [107]. It is possible
that higher endogenous CA, whether caused by metabolic engineering or exogenous
application, will limit ROS-induced damages by promoting higher AOX activity (Figure 3).
In support of this hypothesis, a recent study reported that ACO inhibition mediated
by higher CA induced AOX activity in Arabidopsis thaliana under hypoxia and limited
ROS production in mitochondria [99]. Moreover, a study on rice by Khatun et al. [7]
reported that the activity of antioxidant enzymes (such as glutathione reductase, GR; GPX;
SOD; CAT and glutathione S-transferase, GST) and antioxidant metabolites (such as GSH,
proline, and carotenoid) increased significantly after CA supplementation, suggesting the
active involvement of CA in ROS scavenging. CA can promote several enzymatic and
non-enzymatic antioxidants and AOX activity and thereby help ameliorate damage by
stress-induced ROS and enhance stress tolerance of plants (Figure 3).

4.3. Regulation of Osmoregulators and Secondary Metabolites

Plant cells accumulate osmolytes and SMs in part to protect cellular components
from osmotic and oxidative stresses [108,109]. The most abundant osmolytes in plant
cells are proline, glycine betaine, polyamines, and soluble sugars [109]. SMs including
phenolics such as flavonoids, anthocyanins, and lignins [108] play roles in protecting
plant cells from oxidative stress by scavenging free radicals [110,111]. There is insufficient
evidence regarding the potential of CA to regulate the production of SMs under HM
stress conditions, though at least three studies have reported an increase in SM synthesis,
primarily flavonoids, after the application of exogenous CA.

Plants experiencing environmental stress conditions accumulate proline in the leaves
and proline levels correlate with stress tolerance [109]. In several studies, CA has been
shown to stimulate synthesis of proline and other metabolites (including phenolic com-
pounds, flavonoids, tannins, and sugars) in plants experiencing abiotic stress condi-
tions [68,112,112,113]. In Arabidopsis thaliana, CA enhances the biosynthesis of amino
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acids such as proline, glycine, serine, leucine, and lysine [99]. HMs upset the water balance
in plants and lower water potential [68]. Proline stabilizes subcellular structures and
molecules experiencing osmotic stress conditions by working as a molecular chaperone,
maintaining the integrity of proteins [114,115]. It also serves as an antioxidant in its own
right [114,115]. Exogenous application of CA led to increased proline content in B. juncea
grown under Cd stress [61,68], thereby protecting against HM stress.

Phenolic compounds accumulate in cellular vacuoles through hydrolyzation and
decomposition of cellular components and cell walls [116,117]. Limón et al. [118] and
Li et al. [113] reported that CA increased cellular phenolic compounds by eliciting the degra-
dation of polyphenols (e.g., tannins) into simple phenols. Such phenols may have protective
benefits for plants under HM or other osmotic- or oxidative-stress inducing conditions.

Treatment with CA has also been shown to promote anthocyanin and flavonoid
accumulation [68,101]. A probable mechanism for this relationship was identified in Cd-
stressed B. juncea plants where exogenous CA treatment enhanced chalcone synthase (CHS)
gene expression [68]. Another study showed that in wheat sprouts treated with CA, signal
transduction pathways leading to increased secondary metabolites accumulation were
activated [101]. Exogenous CA lowered the pH which enhanced the release of flavonoids
and anthocyanins [119].

5. Genetic Engineering for CA-Mediated Abiotic Stress Tolerance

Genetic engineering offers a promising approach to modulate CA metabolism in plants
for improved abiotic stress tolerance (Table 5). A favored approach has been to increase CA
biosynthesis by overexpressing CA biosynthetic genes like CS, which converts OAA and
acetyl-CoA to CA during the TCA cycle [6], or PEPC, that produces OAA from PEP [8].
Several studies have demonstrated the utility of overexpressing CS-encoding genes in
overcoming Al stress. Transgenic tobacco, papaya, and Arabidopsis overexpressing CS
from Pseudomonas aeruginosa showed higher tolerance to Al-toxicity [11,120–122]. Likewise,
overexpression of CS from Malus xiaojinensis in tobacco led to higher CA content and im-
proved tolerance to Fe-stress [123]. However, overexpression alone is not always sufficient
to cause increased CA accumulation or HM tolerance [124]. Transgenics overexpressing
mitochondrial isoforms of CS (mtCS) have also been employed. Koyama et al. [121] over-
expressed carrot mtCS in Arabidopsis and showed a 60% increase in CA efflux and better
performance under toxic Al concentrations. Similar results were obtained in transgenic
canola overexpressing Arabidopsis mtCS, where increased CA exudation from roots was
shown to directly correlate with transgene expression [125]. Importantly, CS encompasses
only a small part of the complex system behind CA metabolism and genetic manipula-
tion of several metabolite enzymes at once (super expression strategies), such as malate
dehydrogenase (MDH), CS, and PEPC, may increase the synthesis and accumulation of
CA even more [125]. A contrasting strategy has been to down-regulate CA catabolism by
repressing ACO and isocitrate dehydrogenase (IDH) using an antisense approach, and
thus increase CA concentration and efflux from roots [125,126].

Another popular target for genetic manipulation has been anion channels in the
plasma membrane that play a major regulatory role in the transport of CA from roots [127].
Transporters for CA anions include members of the Al-activated malate transporter (ALMT)
and multidrug and toxic compound extrusion (MATE) families [128,129]. The FeMATE1 in-
volved in the Al-induced secretion of citrate in the roots, while FeMATE2 transports citrate
into the Golgi system for internal detoxification of Al in both the roots and leaves of Fagopy-
rum esculentum [130]. In ricebean (Vigna umbellata) grown under Al toxicity, VuMATE2
and VuMATE1 control the CA efflux from roots in the early phase and late phase growth,
respectively [131]. MATE transporters underlying aluminum-activated CA secretions have
been identified in various species, including ZmMATE1 (Zea mays) [132], ScFRDL2 (Secale
cereale) [133], OsFRDL4 (Oryza sativa) [134], AhMATE1 (Amaranthus hypochondriacus) [135],
and HvAACT1 (Hordium vulgare) [136]. Two genes, BdMATE and SbMATE obtained from
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Brachypodium distachyon and Sorghum bicolor, respectively, were overexpressed in Setaria
viridis and caused increased CA secretion from the apex of the root [137,138].

Table 5. Examples of transgenic plants overexpressing genes for CA biosynthesis and their phenotypic response to abiotic
stresses.

Gene(s) Origins Transgenic Plants Phenotype References

Citrate Synthase (CS) Pseudomonas aeruginosa Nicotiana tabacum Al stress tolerance [120]
CS Pseudomonas aeruginosa Papaya sp. Al stress tolerance [120]
CS Pseudomonas aeruginosa Tobacco plant Al stress intolerance [124]

AACT1 Hordeum vulgare Tobacco cells Al stress tolerance [136]
MATE Sorghum bicolor Arabidopsis thaliana Al stress tolerance [137]

CS Pseudomonas aeruginosa Medicago sativa Al stress tolerance [141]
CS Citrus junos Nicotiana benthamiana Al stress tolerance [142]

MATE1 Zea mays Arabidopsis thaliana Al stress tolerance [132]
MATE Vigna umbellate Solanum lycopersicum Al stress tolerance [134]
MATE Brachypodium distachyon Setaria viridis Al stress tolerance [138]

Mitochondrial Citrate
Synthase (mtCS) Arabidopsis thaliana Daucus carota Al stress tolerance [121]

mtCS Arabidopsis thaliana Brassica napus Al stress tolerance [125]

TIFY10a Glycine soja Medicago sativa Alkaline stress
tolerance [139]

PPCK3 Glycine soja Medicago sativa Alkaline stress
tolerance [140]

CS1 Malus xiaojinensis Nicotiana tabacum Fe stress tolerance [123]

Lastly, the role of CA in alkaline stress tolerance has also been a target of genetic
engineering. Zhu et al. [139] showed improved alkaline tolerance in transgenic M. sativa
overexpressing TIFY10a gene from Glycine soja. These findings suggested that the ability
to maintain cytosolic pH homeostasis through increased NADP-ME (NADP-dependent
malic enzyme) activity and CA content could alleviate high pH damage. Results from
Sun et al. [140] revealed that transgenic M. sativa produced through the overexpression of
the Glycine soja PEPC kinase 3 (PPCK3) gene exhibited higher levels of CA and performed
better under alkali stress.

Genetic engineering for enhanced CA accumulation can improve Al, Fe, and alkalinity
stress tolerance. The identification of genes regulating CA synthesis and transport, the
determination of their expression patterns in response to stress, and a deeper understanding
of their functions in stress adaptation will further enable genetic engineering and breeding
technologies for improved stress tolerance. Evidence for whether CA over-accumulation
can promote resiliency against other stresses is lacking and further studies are needed.

6. Metabolism of CA and Its Role in the Biosynthesis of Secondary Metabolites,
Signaling Molecules, and Phytohormones

Citric acid, the 1st intermediate of the TCA (Krebs) cycle, is central to numerous inter-
related metabolic networks that produce a myriad of SMs, amino acids, phytohormones
and OAs [6,143,144], many of which play roles in abiotic stress tolerance in plants [145].
During the TCA cycle, the condensation of OAA and acetyl-CoA yields CA [146,147], which
can then be utilized for the biosynthesis of γ-aminobutyric acid (GABA) [148], isoprenoids,
flavonoids, fatty acids, sugars, and hormones (Figure 4) [149].
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Figure 4. Schematic representation of CA metabolism in plants. Citrate derived from the TCA cycle
can be converted to acetyl-CoA. Acetyl-CoA carboxylase converts acetyl-CoA to malonyl-CoA, a
precursor for fatty acid and jasmonate biosynthesis via the octadecanoid metabolic pathway. Malonyl
Co-A also feeds into the mevalonate pathway and provides building blocks of phytohormones
(cytokinins, gibberellins, abscisic acid, brassinosteroids, and strigolactones) and vitamins (vitamin K
and vitamin A). Oxaloacetate (OAA) can be converted into glucose-6-phosphate via PEP caroxykinase
and phosphatases, providing a source of ascorbic acid as well as glucose, sucrose and fructose.
2-oxoglutarate can be converted into glutamate, feeding into GABA and amino acid biosynthesis.

Citric acid can be utilized for amino acid or GABA biosynthesis through the production
of glutamate [148,150]. ACO, IDH, glutamate synthase (GS), and glutamate decarboxylase
(GAD) are key enzymes involved in CA catabolism through the ACO-GABA pathway [9].
The citric acid cycle intermediates α-ketoglutarate (α-KG) and 2-oxoglutarate (2-OG) feed
into the ACO-GABA pathway [151]. An oxidative deamination process converts α-KG
to glutamate via glutamate dehydrogenase [152]. This glutamate can be utilized by two
alternative pathways, one involving the conversion of glutamate into glutamine and the
other processing glutamate through the GABA shunt [8,9,148,150,153]. Glutamate serves as
a precursor for many amino acids and amino acid-derived compounds including proline,
arginine, ornithine, thiamine, and lysine [154]. Elevated levels of CA in the cytosol have
been shown to enhance the activity of enzymes of the GABA shunt pathway in Citrus limon
callus and citrus fruits [8,150].

Another destination for CA is the acetyl-CoA pathway, alternatively known as the ATP
citrate lyase (ACL) pathway [151,155,156], which utilizes CA for biosynthesis of numerous
secondary metabolites via either the mevalonate (MVA) pathway or the non-MVA path-
way [9,151,157]. Acetyl-CoA produced from CA is primarily utilized for the biosynthesis of
isoprenoids and other SMs [149,158,159]. The mevalonate (MVA) pathway uses acetyl-CoA
to synthesize the universal isoprenoid precursor isopentenyl diphosphate, a substrate
for the biosynthesis of many important metabolites and phytohormones including GA,
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carotenoids, abscisic acid (ABA), strigolactones, cytokinins (CK), brassinosteroids (BR),
and tocopherols (Figure 4) [160–162]. In addition, acetyl-CoA is utilized for fatty acid
elongation which ultimately can lead to jasmonate biosynthesis through the non-MVA
octadecanoid pathway (Figure 4) [163].

Finally, OAA, another product of ACL catalysis and intermediate in the citric acid
cycle, can be utilized for gluconeogenesis to produce soluble sugars (sucrose, fructose,
and glucose) and for the synthesis of organic acids such as ascorbate and aspartic acid
(Figure 4) [9,154]. Furthermore, OAA is needed for ethylene biosynthesis in plants [151].

In summary, CA and other CA-derived TCA cycle intermediates are intimately in-
volved in the complex metabolic networks leading to the biosynthesis of many phytohor-
mones, amino acids, SMs, and OAs. Many of these compounds play roles in amelioration
of abiotic stresses including drought, salinity, light, temperature, air pollution, and HM
toxicity [144]. As discussed previously, amino acids including GABA, proline, arginine,
glutamine, and aspartic acid have been shown to contribute to osmotic and oxidative
stresses. Similarly, the major classes of phytohormones and related metabolites including
BR, GA, ABA, CK, carotenoid, strigolactones, ethylene, tocopherols, and thiamine have
been shown to play important roles in abiotic stress tolerance. Moreover, soluble sugars like
sucrose, fructose, glucose and glucose-6-phosphate-derived from ascorbic acid (AsA) also
contribute to abiotic stress adaptation. Therefore, the role of CA in abiotic stress tolerance
is complex and likely involves the biosynthesis of stress-mitigating phytohormones, SMs,
OAs, and sugars.

Several studies have corroborated the hypothesis that stress ameliorating effect of CA
may involve its position in secondary metabolism. For example, the GABA pathway is
associated with temperature stress response in Citrus sinensis (blood orange) [158,164]. Hot
air treatment of mandarin fruits led to degradation of organic acids including CA and the
accumulation of soluble sugars, a response involving the ACO-IDH-GAD cascade [165].
Alternatively, the ACL pathway utilizing CA for flavonoid biosynthesis is associated with
stress mitigation in cold-stressed blood oranges [164]. Additionally, overexpression of
ACLA-1 gene of Saccharum officinarum, associated with CA catabolism in the ACL pathway,
enhanced drought tolerance in tobacco [166]. Exogenous CA application ameliorated Cd
stress in B. napus, a response associated with higher total soluble sugars, Chl, and carotenoid
contents [16]. Crosstalk amongst stress-ameliorating OAs, SMs, phytohormones, and CA
likely contributes to CA-mediated stress tolerance as suggested by Ye et al. [167] and Sadak
et al. [168], each of whom showed increased levels of GA, BRs, indole acetic acid (IAA), and
decreased ABA content after AsA and CA treatment. However, more research is needed to
clarify the complex mechanisms and interactions between CA-dependent metabolites and
their individual and combined influences on stress tolerance in plants.

7. Conclusions and Future Perspective

It can be concluded from the above discussion that exogenous CA application by
foliar sprays or through rooting medium can effectively modulate various plant growth
responses under diverse environmental stress conditions. In sum, exogenous CA:

• Enhances growth, photosynthesis, and many physio-biochemical parameters that
promote crop productivity under abiotic stress conditions.

• Alleviates the abiotic stress-induced osmotic imbalance by increasing osmoregulators
and protecting membranes from damage.

• Reduces the severity of oxidative stress by upregulating non-enzymatic and enzy-
matic antioxidants.

• Accelerates the HM stress tolerance of plants by chelating and sequestering HMs and
improves HM phytoextraction from HM-polluted soils.

• Provides the substrate for a wide variety of metabolic pathways synthesizing stress
protectant metabolites including phytohormones, amino acids, organic acids, and
fatty acids.
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Still, the role of CA in abiotic stress tolerance has not yet been studied exhaustively and
additional research is needed. A number of important relationships between CA and stress
responses have not been examined. For example, the role of CA in cold stress tolerance
has not been reported. The influence of CA on plant growth regulators, such as auxins,
ABA, CK, GA, ethylene, salicylic acid, jasmonates, BRs, etc. are largely unknown. The
interaction between exogenous CA and AOX has not been shown. Moreover, malate, an
OA structurally similar to CA, can regulate anion channels in guard cells and involved in
stomatal signaling [169], but the role of CA in stomatal signaling remains unknown. Finally,
the effect of CA application on plant defense genes and interactions with biotic stresses
remains largely unexplored. With the development of advanced omics technologies,
more detailed research will emerge that explores CA-mediated stress tolerance at the
transcriptome, proteome, and metabolome levels.

The use of biostimulants and chemical protectants has potential to overcome abiotic
stress-caused losses on crops yields [170]. Many reports have shown that exogenous
application of naturally-occurring plant chemicals such as salicylic acid, hydrogen peroxide,
calcium, glutathione, ABA, jasmonic acid, polyphosphoinositides, nitric oxide, thiourea,
and others can mitigate various abiotic stresses [4,171–175].

CA is a weak OA that occurs naturally in plants and to particularly high levels in
citrus fruits. It is generally recognized as safe by the Food and Drug Administration
and has no associated health concerns. CA is inexpensive to synthesize and to apply
exogenously to crops, most cost-effectively by foliar spray along with post-emergent
herbicides, insecticides, or fungicides. Exogenous application of CA is a promising low-
cost approach to help alleviate abiotic stresses and promote crop yield.
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