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Abstract

Background: Adenosine kinase (ADK) is supposed to be a schizophrenia susceptibility gene based on the findings that ADK 
is an enzyme that catalyzes transfer of the gamma-phosphate from ATP to adenosine, which interacts with dopamine and 
glutamate neurotransmitters. However, no reports of schizophrenia cases with loss of function variants in the ADK region 
have been published. In our previous study investigating copy number variants in schizophrenia, we detected a copy number 
variant in the ADK region in 1 of 1699 schizophrenia patients.
Methods: We validated the ADK deletion by determining the breakpoint. Then, we compared the relative expression of 
ADK in 32 schizophrenia patients, including a schizophrenia patient with deletion of ADK, with 29 healthy controls using 
lymphoblastoid cell lines. Furthermore, we evaluated the clinical phenotypes of the schizophrenia with ADK deletion.
Result: We validated the copy number variants with Sanger sequencing and predicted that this copy number variant results 
in loss of function of ADK. Furthermore, expression analysis of mRNA from peripheral blood in this schizophrenia patient 
with the ADK deletion showed an extremely low level of ADK. Here we describe a case report of a patient with ADK deletion 
with phenotypes (schizophrenia, parkinsonism, epilepsy) that are predicted when ADK function is disrupted.
Conclusion: Considering that the patient had a low ADK mRNA level and showed a phenotype that may be related to ADK 
deficiency, the copy number variants in the region of ADK may be strongly related to the phenotypes described here, such as 
schizophrenia, Parkinsonism, and epilepsy.
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Introduction
Schizophrenia (SCZ), a devastating mental disease characterized by 
hallucinations and delusions, is a highly complex neurodevelop-
mental disorder with heritability of up to 80% (Sullivan et al., 2003; 
Lichtenstein et al., 2009). Recently, rare variants such as copy num-
ber variants (CNVs) (Malhotra and Sebat, 2012) and single nucleo-
tide variants (Kim et al., 2017) have been a focus of research because 

of their large effect size on increased susceptibility to SCZ and 
because of the possibility of elucidating the pathophysiology of this 
mental disorder and identifying new drug targets through func-
tional analysis of the discovered rare variants (Legge et al., 2016).

The genotype first approach (Stessman et al., 2014) is a gene-
centric methodology for complex disorders such as SCZ and 
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has been applied for subtyping this mental disorder and under-
standing the etiopathophysiology of SCZ. For example, loss of 
function variants in SETD1A, which encodes a subunit of histone 
methyltransferase and is related to the histone H3K4 methyla-
tion pathway, are associated with SCZ and are mutated in 0.13% 
of SCZ cases; carriers of these variants have common pheno-
typic features (Takata et al., 2014; Singh et al., 2016). Moreover, 
carriers of the disruptive variant of chromodomain-helicase-
DNA binding protein 8 (CHD8) show phenotypes such as autistic 
features, intellectual disability, insomnia, and gastrointestinal 
problems (Bernier et al., 2014; Kimura et al., 2016). Thus, discov-
ering variants associated with characteristic phenotypes and 
investigating the functional mechanism is a promising method 
for subtyping and elucidating the etiopathophysiology of neu-
rodevelopmental disorders.

In this study, we investigated the role of adenosine kinase 
(ADK) in the etiopathophysiology of SCZ. ADK converts adeno-
sine to adenosine monophosphate and is closely related to 
several physical phenotypes, such as liver dysfunction and dys-
morphic features (Staufner et al., 2016), and neurological pheno-
types such as epilepsy, Alzheimer’s disease, Parkinson’s disease, 
and sleep disorder (Boison and Aronica, 2015). Furthermore, ADK 
is a highly ranked haploinsufficient gene in the DECIFER data-
base (https://decipher.sanger.ac.uk/browser) (Firth et  al., 2009; 
Huang et al., 2010). In this database, 5 of 10 registered CNVs in 
the ADK region are de novo variants, and patients with a CNV 
in the ADK region have phenotypes related to neurodevelop-
ment such as intellectual disability, developmental delay, and 
seizures.

Adenosine modulates neurotransmission through activa-
tion of adenosine receptors at synaptic sites and is related to 
the pathophysiology of SCZ by regulating the release of both 
dopamine and glutamate (Boison et al., 2012). Extracellular lev-
els of endogenous adenosine in the brain mainly depend on the 
astrocyte-based adenosine cycle, which involves ADK (Boison 
et al., 2010, 2013). ADK deficiency in the brain may result in dys-
regulation of synaptic plasticity (Sandau et al., 2016). ADK trans-
genic mice show impaired attention, which is closely linked to 
SCZ. Augmentation of adenosine by pharmacologic inhibition of 
ADK ameliorates cognitive function and exerts antipsychotic-
like activity in mice (Shen et al., 2012). Furthermore, adenosine 
modulator adjuvant therapy is beneficial for treating the symp-
toms of SCZ (Hirota and Kishi, 2013).

Although ADK may contribute to SCZ susceptibility, no 
reports of SCZ cases with loss of function variants in the ADK 
region have been published. In our previous CNV analysis with a 
large number of Japanese individuals (Kushima et al., 2017), we 
discovered a deletion in the ADK region that was present in only 
one SCZ case and not in control samples.

Here we present a case study describing the details of this 
SCZ patient with ADK deletion. We identified a frame shift muta-
tion in ADK, resulting in low ADK mRNA. Moreover, this carrier of 

the ADK deletion had not only the SCZ phenotype but also other 
neurological phenotypes such as epilepsy and Parkinsonism 
that were previously suggested to be caused by ADK deficiency. 
Therefore, we conclude that the CNV in the ADK region could 
result in susceptibility to the phenotypes described in this case.

Methods

Sample and Clinical Assessments

In our previous genome-wide CNV analysis using high-resolu-
tion oligonucleotide array comparative genomic hybridization 
(Kushima et al., 2017), we identified a SCZ patient with deletion in 
the ADK region (Figure 1A) among Japanese cohort samples com-
prising 1699 SCZ and 824 controls (CON). The details of the patients’ 
profiles and the method of the CNV analysis are available else-
where (Kushima et al., 2017). This study protocol was approved by 
the Ethics Committees of the Nagoya University Graduate School 
of Medicine and other participating institutes and hospitals.

The Search for the Breakpoint for the Deletion at the 
Site of ADK

We performed PCR to search for the breakpoint of the deletion. 
We designed forward and reverse primers that aligned with the 
region of the breakpoint (supplementary Figure  1). Genomic 
DNA was extracted from peripheral blood using standard meth-
ods, and amplicons were generated using standard PCR condi-
tions. After PCR amplification, aliquots of PCR products were 
purified using Illustra Exonuclease I and alkaline phosphatase 
(GE Healthcare & Life Science) and sequenced using the Sanger 
method and a 3130XL Genetic Analyzer (Applied Biosystems).

mRNA Expression Analysis

To investigate the effect of deletion of ADK mRNA transcripts, 
we compared the relative expression of ADK in 32 SCZ patients 
(44.5  ±  11.5  years of age), including a SCZ patient with dele-
tion of ADK, with 29 healthy controls (43.9 ± 11.4 years of age) 
using lymphoblastoid cell lines (LCLs). LCLs were established 
by Epstein-Barr Virus transformation of lymphocytes and cul-
tured in RPMI-1460 medium containing 20% fetal bovine serum, 
penicillin, and streptomycin. Total RNA was extracted from 
LCLs using the RNAqueous kit (Invitrogen), treated with DNase 
using the TURBO DNA-free kit (Invitrogen), and then reverse 
transcribed to cDNA with the high-capacity RNA-to-cDNA kit 
(Invitrogen). Two housekeeping genes, beta-2-microglobulin 
(B2M) and glucuronidase-beta (GUSB), were selected as internal 
control genes to normalize the PCR. Real-time quantitative PCR 
was performed with predesigned probes from the TaqMan Gene 
Expression Assay (Hs01097293_ml for ADK, Hs99999907_ml for 
B2M, and Hs99999908_ml for GUSB; Applied Biosystems) using 
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Applied Biosystems 7900HT. Measurement of the cycle threshold 
was performed in duplicate. The data, including the amplifying 
efficiency and relative quantitative expression, were analyzed 
using the 2−ΔΔCT method (Livak and Schmittgen, 2001). The 
Mann-Whitney U test was used for the comparison of expres-
sion levels of ADK between SCZ patients and controls, because 
this test is robust when deviation from normal distribution is 
present. P < .05 (the P value of directional test) was considered 
significant.

Results

Search for the Breakpoint of the CNV Deletion

We validated the CNV in the region of ADK to evaluate the 
pathophysiology of the SCZ patient in detail. The results of the 
breakpoint search are presented in Figure  1 and supplemen-
tary Figure  1. The CNV regions were chr10: 74292670-chr10: 
74623062 according to the ensemble database (transcript ID 
ENST00000541550.5; human genome GRCh38.p7), and the 
deleted length was 390 392 bp. The deleted mRNA was predicted 
to result in a frame shift because exon 3 to exon 8 of ADK were 
deleted (supplementary Figure 2).

mRNA Expression Analysis

We analyzed ADK mRNA expression in peripheral blood 
(Figure 2). We found no significant association between ADK rel-
ative expression in the 31 SCZ and 29 CON. However, the mRNA 
transcript level of the patient with ADK deletion was lower than 
the first quartile of the 31 SCZ patients (Figure 2).

Case Presentation of the Patient with ADK Deletion

This patient was a 64-year-old Japanese female at the time of 
study recruitment. She was diagnosed with SCZ at 38 years of 
age based on auditory hallucinations, persecutory delusions, 

and psychomotor excitation. Her mother was also diagnosed 
with SCZ. Her developmental milestones were normal. After 
she graduated from junior high school, she worked in manu-
facturing. She was married and had 3 children. When she was 
38 years old, she suffered from persecutory delusions and audi-
tory hallucinations and was then diagnosed with SCZ, hospital-
ized, and started medication treatment with antipsychotics. An 
electroencephalogram abnormality was discovered during her 
first hospitalization, but she was not diagnosed with epilepsy at 
that time. She was hospitalized repeatedly after failing to report 
to the mental hospital and for discontinuing her medications. 
She was hospitalized for a long time after she was 52  years 
old, because she was abandoned by her family. Her psychotic 

Figure 1. The region of the ADK deletion and the result of the breakpoint search. (A) High-resolution array comparative genomic hybridization data of the schizo-

phrenia (SCZ) case with the adenosine kinase (ADK) deletion. The orange box (NCBI36/hg18) represents the copy number variants (CNV) detected in the present study. 

Results revealed a loss on the long arm of chromosome 10q22.2. (B) Information about the transcript isoform and genomic coordinates corresponding to transcript ID 

ENST00000541550.5; human genome GRCh38.p7. Red arrows represent the deleted exons of ADK (Chr10: 74292670-chr10: 74623062). The exonic region of ADK deletion 

in this study encompasses exons 3 to 8. (C) Breakpoint search by Sanger sequencing. The position of the breakpoint is marked with a red arrow.

Figure  2. The results of expression analysis with a patient of ADK deletion. 

Boxplot; box represents the middle 50% of observations. The middle bold line 

represents the median gene expression. Whiskers represent the minimum and 

maximum observations. Each dot represents the relative expression of an indi-

vidual sample calculated by the 2−ΔΔCT method.
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symptoms were improved by small amounts of antipsychot-
ics such as 2 mg risperidone. When she was 53 years old, she 
suffered from short-stepping gait, finger tremors, bradykinesia, 
and a dexterity movement disorder despite a reduction in the 
amount of risperidone. She was diagnosed with Parkinson’s dis-
ease and prescribed l-dopa. When she was 63 years old, she suf-
fered from an episode of unconsciousness and was diagnosed 
with epilepsy after electroencephalography, magnetic reso-
nance angiography, and brain magnetic resonance imaging. She 
was then prescribed the antiepileptic drugs valproic acid and 
clonazepam. However, the seizure discharges were not detected 
by electroencephalography. When she was 73 years old, she suf-
fered from sepsis with unknown etiology despite several diag-
nostic tests.

Discussion

To the best of our knowledge, this is the first case report of an 
SCZ patient with a loss of function variant in the ADK region 
identified in a whole-genome CNV study in a Japanese cohort of 
samples comprising 1699 SCZ and 824 controls (Kushima et al., 
2017). The search for the breakpoint revealed that 6 exons (from 
exon 3 to exon 8) were deleted and that deletion of ADK is a result 
of the loss of function variant (frame shift). The protein resulting 
from this deletion may be a nonsense protein that is degraded. 
Considering that ADK expression in this patient with ADK dele-
tion was low (Figure  2) and that the pattern of expression in 
the Human Transcriptome database (http://hbatlas.org/) (Kang 
et al., 2011) indicates that ADK is highly expressed from the pos-
terior brain regions in the human fetus to the adult human brain 
(supplemental Figure 3), ADK in this SCZ patient may not have 
been expressed from the early fetal period. Furthermore, con-
sidering that ADK had a high haploinsufficiency score (3.41) in 
the DECIFER database (Firth et al., 2009; Huang et al., 2010), the 
ADK protein may not be fully functional in this schizophrenic 
patient.

Interestingly, this patient with ADK deficiency pre-
sented with several phenotypes such as SCZ, epilepsy, and 
Parkinsonism. Therefore, considering the loss of function muta-
tion and the reduced expression of ADK mRNA, the phenotypes 
described here may have arisen in part because of this deletion 
in the region of ADK. The patient did not have a clear phenotype 
related to liver dysfunction as a former study about ADK defi-
ciency showed (Staufner et al., 2016).

Our study has several limitations. First, because this vari-
ant is rare, detecting a statistical association in the loss of 
function variant of ADK will be difficult. Second, we did not 
perform biochemical assays with samples from this patient 
with ADK deletion to evaluate the ability of the remaining 
ADK enzyme to convert adenosine to adenosine monophos-
phate (Staufner et al., 2016). Third, we did not have sufficient 
DNA from family members of the patient, which prevented 
us from analyzing segregation of the variant. Fourth, in the 
case summary of this carrier with the ADK deletion, we were 
unable to obtain detailed clinical information for the devel-
opmental period and electroencephalography data; therefore, 
we could not fully evaluate the effect of the discovered rare 
mutation.

In conclusion, we identified and reported a case with a loss of 
function variant of ADK with the same phenotypes predicted by 
a study of adenosine (Boison et al., 2012). For future studies, we 
should collect many more cases with the loss of function variant 
of ADK to subtype and elucidate the etiopathophysiology of this 
neuropsychiatric disorder.
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