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Central and peripheral mechanisms that modulate energy intake, partition and

expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy

expenditure through the control of basal metabolic rate and thermogenesis;

they also modulate food intake. TH concentrations are regulated by the

hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood

and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH)

neurons of the paraventricular nucleus of the hypothalamus integrate energy-related

information. They project to the external zone of the median eminence (ME), a brain

circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes,

other glial cells and capillaries. These capillary vessels form a portal system that

links the base of the hypothalamus with the anterior pituitary. Tanycytes of the

medio-basal hypothalamus express a repertoire of proteins involved in transport,

sensing, and metabolism of TH; among them is type 2 deiodinase, a source of

3,3′,5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes

subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes

intermingle with TRH varicosities and terminals in the external layer of the ME and

terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express

the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount

of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing

to TH negative feedback on HPT axis. Alterations in energy balance also regulate

the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for

energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which

mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet

contacts with the basal lamina adjacent to ME capillaries. These end-feet associations

with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity.

Thus, down-stream of neuronal control of TRH release by action potentials arrival in the
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external layer of the median eminence, imbricated intercellular processes may coordinate

the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical

cellular element for the somatic and post-secretory control of TRH flux into portal vessels,

and HPT axis regulation in mammals.

Keywords: thyrotropin releasing hormone (TRH), thyroid hormone, tanycyte, median eminence, thyrotropin

(TSH–thyroid-stimulating hormone), TRH degrading ectoenzyme, paraventricular (PVN), third ventricle

INTRODUCTION

Thyroid Hormones (TH) are pleiotropic hormones that regulate
body physiology throughout vertebrate life. TH are critical in
the perinatal period; anomalies in maternal thyroid status have
a severe impact on central nervous system development (1, 2).
Growth and adult life are dependent on energy homeostasis,
maintained by central and peripheral mechanisms modulating
energy intake, partition, and expenditure. When organisms are
challenged by novel environments, whether changing availability
of nutrients, climate, reproductive, or internal energy demands,
they use mechanisms of adaptation involving, among others,
adjustments of TH levels (3). In coordination with sympathetic
activation, TH play an important role in maintaining basal
metabolic rate and thermogenesis in homeothermic organisms
(4), they also control carbohydrate and lipid metabolism (3)
and have a direct influence on hypothalamic nuclei that
control energy intake and expenditure (5–8). Alterations in TH
homeostasis are accompanied by several pathologies related to
energy imbalances (9, 10).

The hypothalamus-pituitary-thyroid (HPT) axis of mammals
integrates TH negative feedback, nutritional-, metabolic-, stress-
related information, and other environmental, and social stimuli,
to set circulating and local concentrations of TH, generally
within narrow limits. This integration occurs in part at neurons
that synthesize Thyrotropin-Releasing Hormone (TRH, pGlu-
His-Pro-NH2) localized in the paraventricular nuclei (PVN) of
the hypothalamus (11), nuclei bilaterally situated in the dorsal
vicinity of the third ventricle (12). TRH neurons are localized
in almost all parvocellular subdivisions of the PVN but only
neurons present in the median and caudal regions of the PVN
in rat (only median in mouse) are hypophysiotropic; their
axons project to the external zone of the median eminence
(ME) (13–15), the ventral part of the hypothalamus that
connects it to the infundibulum. The median eminence forms
a highly irrigated interface which serves both as a sensory
and a secretory organ between the hypothalamus and the
circulation (16).

Indirect yet complementary techniques have shown that TRH
release from the median eminence is dynamic in multiple
contexts. As studies on electrophysiological traces of TRH
neuronal activity are scarce (17), many hypotheses on TRH
neuron activity have been based on measurements of Trh
mRNA levels (18, 19), and cFOS or phosphorylated cyclic-
AMP response element binding protein (pCREB) induction
in TRH neurons (10, 20, 21). Inferences about TRH release
from ME have been made by measuring rapid changes in

TRH content in ME (22). Information about the extracellular
concentration of TRH came from the use of in vivo push-
pull perfusion of the ME (23, 24) and surgical approaches
to sample micro volumes of portal blood (25). Detailed
descriptions of the inputs to TRH neurons, together with
receptor localization and pharmacological tools (10) have led
to a functional cartography of inputs onto TRH neurons, albeit
their time resolution is poor (at best various min), and many
unknowns remain.

Once released from hypophysiotropic nerve terminals into
ME extracellular space, TRH enter fenestrated primary portal
capillaries, which deliver it to the anterior pituitary pars distalis.
Upon reaching the thyrotrope in the distal part of the anterior
pituitary, TRH binds to TRH receptor 1 (TRH-R1), a G protein-
coupled receptor (GPCR) expressed in pituitary thyrotropes (26).
This interaction activates Gq/11, increases intra-cytosolic calcium
concentration and protein kinase C activity (27), and stimulates
synthesis and release of Thyroid-Stimulating Hormone (TSH).
TSH synthesis is regulated at levels of transcription and
translation of α- and β-TSH subunits, their glycosylation and
dimerization; bioactivity of released TSH depends on proper
glycosylation (28, 29). The circulating concentration of TSH has
been taken as a proxy for TRH secretion from ME, but the
existence of multiple regulators of TSH secretion make firm
conclusions difficult. Thus, Somatostatin (SRIF) neurons that
originate in the periventricular nucleus of the hypothalamus
(30) are other hypophysiotropic neurons involved in the central
control of the HPT axis. The interaction of SRIF with its
receptors, some of which are on thyrotropes (31), inhibits TSH
secretion (32, 33). Although SRIF output can be modulated in
ways consistent with a role in TSH control (34, 35), its function
will not be further reviewed.

TSH reaches follicular cells of the thyroid gland and binds
to the TSH receptor, a GPCR that stimulates the uptake of
iodine and the activity of enzymes involved in the biosynthesis
of 3,3′,5-triiodo-L-thyronine (T3) and thyroxine (T4); both are
secreted (36). A major fraction of circulating TH is reversibly
bound to carrier proteins in blood (37, 38), the small fraction
of free TH can bind to membrane bound receptors (39)
or enters cells through transporters (40). Multiple membrane
transporters have the capacity to carry TH from the extracellular
space into the cytosol, and vice versa. The most important is
the Monocarboxylate Transporter 8 (MCT8, gene abbreviation:
Slc16a2), which takes T4 and T3 from the extracellular space and
the Organic Anion Transporter Polypeptide 1c1 (OATP1c1, gene
abbreviation: Slco1c1), which has preference for T4 and reverse
T3 (rT3) uptake (41).
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T3 is the biologically active Iodo-Thyronine acting through
nuclear TH receptors (TR); binding to α1-, β1-, or β2-TR controls
transcription of multiple genes in almost all cell types (42). Local
T3 concentrations depend mostly on its conversion from T4 by
the tissue specific Deiodinases (D) type 1 and 2. D1 produces
T3 by removing an iodine atom from the outer ring of T4
but can also remove it from the inner ring forming rT3, and
deiodinates rT3 to T2. D2 catalyzes the transformation of T4
to T3. Finally, biologically inactive metabolites are produced by
Deiodinase 3 (D3), which removes iodine from the T4 inner ring
to produce rT3 or from T3 to produce 3, 3’-diiodothyronine,
products with no binding affinity for TR (43). Extra- and intra-
cellular carrier proteins, plasma membrane transporters and bio-
transformations not only shape the local concentrations of TH,
but also contribute to modulate their systemic effects (44).

Circulating TH generate negative feedback loops maintaining
their serum concentration between set limits, although these
limits can be changed according to metabolic challenges. A
negative correlation exists between serum TH levels and Trh
expression in the PVN (45–47). This negative correlation extends
to TRH concentration in the PVN neurons (48, 49) and in portal
vessels (25, 50, 51). The feedback depends on TH entering the
brain through theMCT8 andOATP1c1 transporters (52–55), and
on the interaction of β1-TR and β2-TR with T3 (28, 42), which
are expressed in TRH neurons (56).

The basic HPT axis hierarchy is embedded in multiple
regulatory circuits that adjust the local and global impact of
TH according to physiological influences, or physio-pathological
alterations (10, 11, 57, 58). A recently discovered level of
HPT axis control relies on tanycytes, specialized ependymal
cells present in sensory and secretory circumventricular organs
(CVO) of the brain (16, 59), including the floor and the
ventrolateral walls of the third ventricle (60–62).While astrocytes
supply T3 to brain cells, tanycytes that border the dorso-, ventro-
medial, and arcuate nuclei, as well as the median eminence,
referred here as medio-basal hypothalamus (MBH) tanycytes,
contribute to TH feedback on HPT axis, TH control of MBH
circuits involved in energy homeostasis (10), as well as regulation
of the amount of TRH entering the portal vessels (63, 64). We
focus this review on the bidirectional pathways linking MBH
tanycytes with TRH neurons activity and TRH entrance into
portal vessels in mammals. We summarize knowledge about
tanycytes and their phenotypic variation, demonstrate their
critical involvement in TH feedback and adjustment of HPT axis
activity according to energy related clues, introduce issues related
to tanycyte programing of HPT axis and finally state some of the
existing challenges in non-mammalian vertebrates.

MULTIPLE TYPES OF TANYCYTES LINE
THE VENTRAL AND LATERAL WALLS OF
THE THIRD VENTRICLE

As ependymocytes, tanycytes have a small body lining some
ventricle walls. In the MBH a long, basal process is directed to
the hypothalamic parenchyma or blood vessels; MBH tanycytes
have plenty of small and large protrusions full of endosomes

directed to the third ventricle, which may have a secretory or
transport function (60, 65). They express markers of caveolae-
and/or clathrin- dependent endocytosis in their apical and basal
domains, suggesting they can internalize molecules from the
cerebrospinal fluid (CSF) and/or median eminence extracellular
fluid (ECF) and transport some by transcytosis (66).

MBH tanycytes have been cataloged in 4 subtypes: α1-,
α2-, β1-, and β2-tanycytes, according to location, expression
of lineage and differentiation markers (67), as well as based
on mitochondria, tubular structures and secretory granules
abundance (62). However, single-cell transcriptome and
ultrastructural analyses suggest that each tanycyte subtype may
be further subdivided (62, 68–70). α1-Tanycytes extend their
process to dorsomedial and ventromedial nuclei (DMN and
VMN) of the hypothalamus, while α2-tanycytes are restricted to
the dorsomedial extent of the arcuate nucleus (ARC). At their
basal pole, α-tanycytes contact and ensheathe laterally located
blood brain barrier (BBB) vessels; cell bodies and initial segment
of α-tanycytes additionally contact dendrites from ARC neurons
(60, 62, 71). β1- and β2-tanycytes reside in the ventral limits of
the third ventricle and their end-feet are proximal to fenestrated
vessels of the ME; they form a barrier at their apical pole between
the CSF and the periphery (62, 72) (Figure 1). In addition,
β1-tanycytes delimit the borders of the adjacent ventromedial
ARC and the ME. Along their processes they show interchained
proteins, zonula occludens, and macula adherens, which join
β1-tanycytes in bundles. This arrangement may contribute to
a barrier that impedes the diffusion of molecules from the ME
into the ARC in basal conditions (60, 71, 72), but a definitive
functional evidence is lacking. Alternative mechanisms such as
forces emanating from vessels cannot be discarded.

Despite stunning morphological and molecular similarities
between radial glia and tanycytes, the latter are not radial
glia but their descendants (60). MBH tanycytes are generated
from hypothalamic progenitor cells in the last days of gestation
and the first 2 weeks of life of the rat (60, 73). They
express the intermediate filament proteins Nestin, Vimentin,
and Glial Fibrillary Acidic Protein (74), the Dopamine- and
cAMP-Regulated Phosphoprotein of 32 kDa (DARPP-32), a
dopaminoceptive phosphoprotein (75), and proliferation and
nuclear factors such as Antigen KI-67 and Sex Determining
Region Y-Box 2 (74).

TANYCYTES AND THE MEDIAN EMINENCE

The ME is enriched with varicosities and terminal buttons
from various hypophysiotropic neuron types, which release
hypothalamic releasing factors into fenestrated capillaries
directed to the pituitary. Furthermore, the ME harbors tanycytes,
astrocytes, microglia, oligodendrocyte precursors and blood
vessels (62, 76, 77) (Figure 2). Many interactions may occur
between neuron varicosities and terminals and other cellular
elements, either through juxtacrine or paracrine communication.
Although frequency and pattern of action potentials generated
in the hypophysiotropic neuron soma likely contribute to define
the amount and pattern of peptides/transmitters released into
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FIGURE 1 | Major types of tanycytes in the medio basal hypothalamus. MBH

tanycytes have been cataloged in 4 subtypes: α1-, α2-, β1-, and β2-tanycytes,

according to location, expression of lineage and differentiation markers as well

as based on mitochondria, tubular structures and secretory granules

abundance. α1-Tanycytes extend their process to dorsomedial and

ventromedial nuclei of the hypothalamus, while α2-tanycytes are restricted to

the dorsomedial extent of the arcuate nucleus (ARC). β1- and β2-tanycytes

reside in the ventral limits of the third ventricle.

the extracellular space of the median eminence external layer
(78), modulation of stimulus-secretion coupling, action-potential
independent secretion, post-secretory catabolism and barriers
to diffusion or bulk flow may in addition alter the output of
releasing factors into the portal vessels.

For Gonadotropin-Releasing Hormone (GnRH), strong
evidences indicate various glial cell types and endothelial cells
control its secretion in the lateral part of the median eminence.
Astrocytes control GnRH secretion through paracrine signals,
while GnRH secretion from neuron terminals proximal to the
endothelial cells of the portal capillaries is potently regulated
by nitric oxide produced by the endothelial cells. In addition,
β1-tanycytes projecting into the ME have distal processes that
terminate proximal to portal capillaries, with end-feet that can
cover GnRH terminals and form a physical barrier reducing
GnRH entry into portal vessels (62, 79–81).

β2-tanycytes line the base of the third ventricle, with a distal
process extended into the external zone of the medial part of
the ME, where fenestrated portal vessels directed to the anterior
pituitary are enriched. The apical process subdivides in a few
branches in the external zone, and ultrastructural studies show
these branches form numerous (100–200 per tanycyte) synaptoid
contacts with peptidergic and aminergic vesicle-containing nerve
buttons. Some β2-tanycytes have instead a basal process that
projects into the pars tuberalis of the pituitary (62). Horseradish

Peroxidase injected into the third ventricle diffuses freely into the
hypothalamic parenchyma and has no access to the ME (60). β2-
tanycytes are barriers between the ME and the third ventricle, as
they express tight junction proteins like Zonula Occludens 1 and
Occludin in their apical side, which form a honeycomb pattern
(60, 72), impeding the free exchange of substances coming from
the ME and the cerebrospinal fluid. Among tanycyte transcripts
highly expressed in the β2-clusters, Scn7a, and Col25a1 may be
useful as specific markers of this subtype, since they are much
less abundant in other tanycyte subtypes and glial cells (Figure 3).
About 80% of terminal buttons arriving into the medial part of
the external layer of the ME contain TRH (82), with an ample
rostro caudal distribution terminating in the infundibular stalk
(83). The antero-posterior and medio-lateral distributions of rat
β2-tanycyte processes and TRH varicosities and terminals in
the ME indicate a substantial spatial coincidence; in addition,
synaptoid contacts between both cell types are observed (14, 63,
83, 84), suggesting that functional interactions occur. We will
review the evidences that β2-tanycytes properties make them a
critical cellular element of the HPT axis.

A putative fifth subtype of tanycytes, γ-tanycytes (85),
previously identified as astrocytic or subependymal tanycytes
(65, 86, 87) is localized in the ME. These cells resemble
β2-tanycytes, including an abundant smooth and rough
endoplasmic reticulum, yet their apical side does not contact
the third ventricle, their processes are poor in microtubules
and organelles (62), they express distinctive markers, including
Propiomelanocortin (85), and contain lipid droplets in the
perikaryon, which may be a source of the median eminence
prostaglandins. It has been proposed that these tanycytes
should be reclassified as pituicytes; their position, ultrastructure
and contacts suggest they are relevant for neuroendocrine
control (62).

TANYCYTES AND NEUROGENESIS

Hypothalamic neurogenic niches have been observed in distinct
populations of cells surrounding the third ventricle of the MBH,
from ependymal cells to tanycytes. They act as progenitor
cells that can differentiate into neurons or glia. New ARC,
ventromedial and dorsomedial nuclei, and ME neurons may
derive from tanycytes in postnatal animals. Thus, tanycytes may
contribute to the programing/plasticity of adult hypothalamic
circuits according to energy and/or nutritional signals [reviewed
in Prevot et al. (81)]. Although unexplored, these events may
impact on HPT axis regulation, as these MBH nuclei control
hypophysiotropic TRH neurons.

TANYCYTES, THE HYPOTHALAMIC
AVAILABILITY OF THYROID HORMONES,
AND THE CONTROL OF TRH NEURONS
ACTIVITY

More than 80% of adult brain T3 comes from deiodination of
T4 (88–90). D2 is broadly distributed along multiple brain areas,
expressed mostly in astrocytes, which capture T4 from blood
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FIGURE 2 | Spatial relationships between hypophysiotropic TRH and SRIF neurons, and β2-tanycytes. Hypophysiotropic TRH neurons from the PVN integrate

multiple neuronal and hormonal inputs, which modify firing activity, TRH biosynthesis and receptor transduction pathways. SRIF neurons from the periventricular

nucleus do also terminate in the medial median eminence. β2-tanycytes are located at the base of the third ventricle, from where they modify the bioavailability of TRH

released from varicosities and terminal buttons, before entry into the lumen of the fenestrated capillaries. These capillaries transport TRH to the anterior pituitary, pars

distalis, inducing the synthesis and release of TSH.

vessels or CSF and deliver T3 to the neighboring neurons in
the parenchyma. However, the MBH of euthyroid rats has a
higher D2 activity than other brain areas (91). Cells expressing
this deiodinase correspond to tanycytes, and to a lower extent
to astrocytes (92, 93). In the ME, the transporters MCT8 and
OATP1c1 are present in tanycyte processes (94, 95). Experiments
with Dio2 knockout mice contributed to elucidate the relative
importance of the multiple cell sources of D2 for HPT axis
regulation. Global Dio2 knockout mice have elevated serum
T4 and TSH concentrations, consistent with the necessity of
this enzyme for negative feedback. However, Trh expression in
hypophysiotropic neurons of the PVN remains unchanged. Mice
with Dio2 knockout specific for astrocytes have no detectable
changes in thyroid axis hormones, demonstrating astrocyte
D2 is not critical for hypophysiotropic function (96). Mice

with a deletion of Dio2 expression specific for the pituitary
show high serum T4 and TSH concentrations, with unchanged
D2 activity in the hypothalamus. However, Trh expression
in PVN is decreased, indicating that remaining D2 tanycyte
is critical for HPT axis negative feedback (96). In addition,
immunohistochemical studies show a high expression of D3
in the median eminence; although mostly in GnRH axon
terminals (97), Dio3-KO studies support the proposal this
enzyme is necessary for normal HPT axis activity, in part through
hypothalamic mechanisms (98–100).

TH bioavailability in the cytosol may also be under the control
of µ-crystallin (CRYM), which binds with high affinity to T3
and T4 and functions similarly to serum TH transporters (101).
The transfection of a plasmid expressing Crym in cells expressing
MCT8 or MCT10 TH transporters increases the permanence
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FIGURE 3 | Heat map showing characteristic tanycyte markers in glial

elements of the arcuate nucleus and the median eminence. MBH tanycyte

clusters show an expression pattern enriched with structural genes (Vim, Nes),

DARPP-32 (encoded by Ppp1r1b gene) and transcription factors Sox2, and

Rax. β2-tanycytes are characterized by overexpression of Scn7a and Col25a1.

Data represent the highest gene expression fold-change value in a cluster

when compared to other neuronal and non-neuronal clusters of the arcuate

nucleus/median eminence. Some cell types are subdivided in sub-clusters,

since different expression patterns were found in that cluster. Data obtained

from single-cell RNA-sequencing and transcriptome analysis in adult mice

from Campbell et al. (69).

of T3 in the cytosol (102, 103). Interestingly, Crym relative
expression is higher in all subtypes of MBH tanycytes than in
other cellular elements of the ARC/ME (69, 104), with a lower
expression in β2-tanycytes. Differences in expression of Crym
could adjust the time-course of T3 interaction with TR or the
efflux of T3, and thus of target gene transcription. Figure 4
illustrates genes related with HPT axis regulation expressed in
tanycyte subtypes.

The pathway that TH use to feedback on Trh expression in the
PVN is still a puzzling matter. Although THmost probably reach
the PVN cells through the BBB and Dio2 mRNA is expressed
in the PVN (105), possibly by astrocytes, early studies indicated
that D2 is absent from PVN neurons (91, 92), and peripheral
administration of a dose of T3 restituting its physiological levels is
not enough to reduce Trh expression in the PVN in hypothyroid
rats, unless larger doses are used (47). It was therefore put
forward that after T4 entrance and T3 production by D2 in
tanycytes, a route of T3 transport from tanycytes to the PVN
was necessary for feedback regulation of TRH neurons. One
proposal is that T3 could be transported from tanycytes to

the third ventricle or parenchyma and bound to Transthyretin
(106) diffuse, and/or move by bulk flow, to parvocellular PVN
neuronal cell bodies. While ependymal cells proximal to the PVN
have intercellular spaces that allow entry into parenchyma of
practically all molecules from the ventricle, significant entry of
T3 generated by tanycytes through this route seems unlikely.
Tanycytes have 2 cilia (α-tanycytes) or 1 cilium (β-tanycytes), in
contrast with the multiciliate ependymal cells in contact with the
cerebrospinal fluid of the ventricles (107, 108). Tanycytes are poor
contributors of cerebrospinal flow, as ciliary beat is involved with
pulsatile motion of the cerebrospinal fluid from the ventricles
(109). This observation suggests that in tanycyte-rich regions
the CSF proximal to the ventricular walls is more static than in
the upper ventricular wall, which is enriched with multiciliate
ependymal cells; thus, molecules transported or generated by
tanycytes may have a paracrine impact limited to proximate
hypothalamic nuclei.

An alternate hypothesis takes into account that T3 exert
feedback effects exclusively in the hypophysiotropic TRH
neurons of the PVN located in middle and caudal zones, which
send their axons to the ME, but not in nearby TRH neurons of
the anterior PVN or lateral hypothalamus of the rat (15, 110).
Since MCT8 and OATP1c1 are present in β2-tanycyte processes
(95) and MCT8 is detected on axon varicosities of TRH neurons
contacting tanycytes (97), these varicosities may be a preferential
site of uptake for T3 by hypophysiotropic TRH neurons, followed
by retrograde axonal transport to the PVN (10). Whether T3
is indeed retrogradely transported in TRH neurons requires
further studies.

T3 generated from α-tanycytes may also interact with
hypothalamic nuclei that regulate energy balance. D2 expressing
α2-tanycytes may be in close relationship with AgRP neurons,
and T3 increases the mitochondrial density and uncoupling
activity in NPY/AgRP neurons of the ARC, actions related with
their firing frequency. This may contribute to the feedback
inhibition of TRH neuron activity, through the monosynaptic
ARC-PVN pathway (5, 93) but also to TH-induced increase in
food intake (111).

TANYCYTES, THYROID HORMONES
FEEDBACK AND THE CONTROL OF
MEDIAN EMINENCE TRH FLUX INTO
PORTAL VESSELS

Another actor of HPT axis regulation expressed in tanycytes is
pyroglutamyl peptidase II or TRH-degrading ectoenzyme
(TRH-DE), a membrane-bound omega zinc-dependent
metallopeptidase which catalyzes the hydrolysis of the pGlu-His
bond of TRH in the extracellular space. Multiple evidences
support the role of TRH-DE as the main regulator of TRH
turnover in the extracellular space. TRH-DE specificity is
narrow, hydrolysis being limited to pGlu-X-Y peptides (in
which X is an uncharged residue and Y Pro, Ala, Trp, Pro-
Gly, Pro-NH2, Pro-naphthylamide, or Pro-7-amino-4-methyl
coumarin), being TRH the only biological substrate (112, 113).
Trhde expression is mainly restricted to various brain regions,
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FIGURE 4 | Heat map of genes associated with HPT axis regulation in MBH tanycyte subtypes. Regional differences can be observed between tanycyte subtypes.

Deiodinases (Dio2 and Dio3), TH transporters OATP1c1 and MCT8 (encoded by Slco1c1 and Slc16a2, respectively), TH carrier Crym, receptors involved in HPT axis

feedback/regulation (Trhr, Tshr, Thra, Thrb, and Grik3) and the TRH degrading ectoenzyme (Thrde) are mostly enriched in β2-tanycytes. Data represent the highest

gene expression fold-change value of a tanycyte sub-cluster when compared to each non-neuronal cluster of the arcuate nucleus/median eminence. α1- and

β2-tanycyte transcriptomes are each divided in two sub-clusters, corresponding to cell subtypes with a different gene profile. Data obtained with single cell

transcriptome analysis in adult mice, from Campbell et al. (69).

being particularly rich at ME site (114). Vimentin-expressing
β2-tanycytes express Trhde in the cell body but possibly also
along their basal process; moreover, Trhde expression is more
intense in the external zone of the ME, where TRH neurons
release their contents close to portal capillaries, than in other
tanycytes domains (63). Single cell transcriptome analysis of
MBH confirms Trhde is particularly enriched in β2-tanycytes
(69) (Figure 4). The localization of Trhde mRNA to β2-tanycyte
processes suggests that local translation of TRH-DE is a major
source of TRH-DE activity in the intermediate and/or external
layers of the median eminence. However, although TRH-DE
activity is high in median eminence, coincident with Trhde
mRNA levels (63), it should be noted that there are at least 2
isoforms of TRH-DE, one of them being a shorter, dominant-
negative form; these isoforms are expressed in brain (115). Thus,
clarification of the precise localization of TRH-DE activity in the
β2-tanycyte domain awaits additional studies.

Functional evidence for TRH-DE relevance in regulating TSH
secretion comes from experiments showing that inhibition of
this enzyme enhances TRH recovery from incubation medium of
median eminence explants (63), or in which the intra peritoneal
(ip) injection of a brain-permeant inhibitor of TRH-DE (116)
enhances serumTSH concentration in response to a cold stress or
ip TRH (63). However, since the ip administration of the brain-
permeant TRH-DE inhibitor may have altered TRH-DE activity
in various tissues, definitive evidence for the importance of TRH-
DE activity in tanycytes in vivo is lacking. For example, a soluble
TRH-DE isoform generated in liver, termed Thyroliberinase
(117), circulates in serum and may contribute to regulation
of TSH secretion (118, 119). A link between TRH-DE and

metabolism was first noted when it was shown that the activity of
Thyroliberinase is positively correlated with body weight in man
(120). More recently, single nucleotide polymorphisms of Trhde
have been associated with differences in body weight and chest
girth in sheep (121), but the phenotypic relevance of tanycyte
Trhde is unknown.

TRH-DE activity is highly sensitive to TH levels in the median
eminence, as previously demonstrated for pituitary and serum
TRH-DE (122, 123). An ip injection of T4 to adult euthyroid rats
enhances the expression of Trhde in tanycytes and of TRH-DE
activity in the median eminence (63). Deiodination of T4 from
D2 is necessary to change Trhde expression in response to short-
term exposition (hours) to TH: in D2 knockout mice Trhde is
upregulated by T3 administration but not by T4 (124). Changes
in Trh mRNA levels in response to T3 are not as rapid as those
observed for ME Trhde expression, suggesting that the regulation
of Trhde expression in the median eminence by feedback may
be critical for short term adjustment of TRH output (124). TH
effects on Trhde expression are likely direct on tanycytes since
they express Thra [(69), Figure 4].

Since recent evidence suggests that control of β2-tanycyte
end-feet morphology impacts serum TSH concentration
(see section “Interactions between β2-tanycytes and
hypophysiotropic TRH neurons directly control the output
of TRH into portal vessels”), it seems appropriate to test whether
morphological changes in the end feet of tanycytes occur in
response to TH, and contribute to the feedback control of the
HPT axis in mammals.

Finally, because TH control proliferation and differentiation
of progenitor cells to a neuronal phenotype in adult rodents
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(125–127), and tanycytes have the molecular machinery needed
to integrate TH signaling, testing whether fluctuations in local
TH levels in the MBH may control the neuron precursor
potential of tanycytes is warranted (128). Apart from negative
feedback, other energy related cues regulating HPT axis activity
implicate tanycytes.

COLD EXPOSURE, HPT AXIS, AND
TANYCYTES

In response to cold exposure, catecholaminergic pathways from
the brainstem activate a large subpopulation of hypophysiotropic
TRH neurons leading to enhanced secretion of TRH and TSH
secretion, and TH synthesis (11, 18, 19, 51, 63, 129–131),
contributing to facultative thermogenesis, a critical event for
body thermoregulation. Although responses of the HPT axis to
cold have been attributed to regulation of TRH neurons activity,
additional events occurring in the median eminence level have
also been detected, including evidence that during a cold stress
an interaction between NA and TRH terminals (132) plays a
permissive role for TRH secretion (23, 133). Tanycytes may
also regulate the dynamics of TRH entry into portal capillaries
during a cold stress since the ip administration of a TRH-DE
inhibitor enhances serum TSH concentration induced by cold
exposure (63).

NEGATIVE ENERGY BALANCE, HPT AXIS,
AND TANYCYTES

The ARC exerts a well-known and critical influence on
homeostatic mechanisms of energy intake and expenditure.
The activity of ARC neurons expressing POMC/CART or
NPY/AgRP/GABA is regulated in opposite direction according
to nutritional status and energy balance, in direct response to
signals such as leptin, ghrelin, insulin, and glucose. ARC neurons
provide direct inputs onto hypophysiotropic TRH neurons, and
their messengers directly up- (αMSH, CART) or down-regulate
(NPY, AgRP) TRH neurons activity (10, 17, 134).

Fasting, Food Restriction, and
Voluntary Exercise
Fasting promotes a profound down regulation of HPT axis
activity, sparing energy use. This is driven by a reduction of
PVN TrhmRNA levels and TRH concentration in portal vessels,
leading to decreases in serum TSH and TH concentrations (10).
In this model, the reduction of TRH neurons activity has been
attributed in part to the effect of a decrease of circulating leptin
concentration (135), mediated by inhibition of the POMC/CART
neurons of the ARC and stimulation of the NPY/AgRP/GABA
neurons (10, 136, 137), and also by reduction of direct leptin
stimulation of TRH neurons (138, 139). On the other hand, high
levels of circulating ghrelin in fasted animals may also indirectly
inhibit the activity of TRH neurons (140, 141), although this is
not settled.

Leptin effects on the central arm of the HPT axis depend
on access to the hypothalamic parenchyma. Although the
ventromedial ARC has vessels whose permeability is regulated
by energy status (142), making part of this nucleus sensitive
to circulating peptides during fasting, peptide hormones do
not generally pass the BBB, suggesting additional mechanisms
of transport must operate (143). Thus, leptin enters the brain
bypassing the BBB across the choroid plexus (144), and
throughmedian eminence tanycytes. Transport of leptin through
tanycytes into the CSF depends on Extracellular Regulated Kinase
induction in tanycytes (145). Tanycytes may also transport
ghrelin from the median eminence into the CSF (146, 147).
Peptide hormones can easily diffuse from the ventral part of the
third ventricle, into the adjacent dorsomedial ARC, and possibly
via the parenchyma to the PVN. Thus, the function of critical
regulators of HPT axis activity likely depends, at least in part, on
the transport function of tanycytes.

During fasting, Dio2 mRNA expression and activity is
upregulated in tanycytes (148), in parallel with a local increase in
T3 concentration (5), albeit this increase is transitory, it coincides
with the lowest levels of Trh expression in the PVN (119),
consistent with a role of tanycyte D2 in the local regulation of the
HPT axis. Possibly because of this induction, an increase of ME
TRH-DE activity is detected in response to a prolonged (72 h)
fast in male rats; that may strengthen the reduction of HPT axis
activity (119).

Therefore, tanycyte D2, and TRH-DE coordinated regulation
during prolonged fasting likely contributes to maintain
inhibition of HPT axis activity (119). The increase in D2 activity
raises the local levels of T3 which feedbacks on TRH synthesis,
while up regulation of the expression of Trhde and its activity
in the tanycyte may reduce TRH access into the portal blood.
Fasting-induced increase in D2 activity could also regulate the
activity of ARC neurons, thus indirectly controlling the HPT axis
(5). However, since Dio2 expression in the PVN is upregulated
by fasting (105), other hypothalamic sources of T3 may also
contribute to regulate the activity of TRH neurons when energy
balance is negative.

Food reduction or restriction can also reduce the activity of the
HPT axis (149–152). Contrary to fasting, a strong food restriction
(gradually from 35 to 75% for 7 days) decreases Trhde expression,
but not TRH-DE activity, althoughD2 expression and activity are
increased in the MBH (152).

Compared to sedentary animals, 2 weeks of voluntary exercise
in male rats diminish food intake by 18% and markers of
the central activity of the HPT axis, increase the activity of
D2 in MBH but have no effect on Trhde expression in the
median eminence (153). Thus, as occurs during food restriction,
sustained but limited negative energy balance does not increase
the expression of Trhde in the ME, implying changes in Trhde
expression in the ME may depend on intensity and/or duration
of negative energy balance.

Non-thyroidal Illness Syndrome
Pathological conditions, as chronic infection or cachexia
produce the non-thyroidal illness syndrome (NTIS) generally
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characterized by normal basal TSH concentration, and low
thyroid hormone serum concentrations (154). Experimental
evidences indicate central and peripheral changes. The injection
of bacterial Lipopolysaccharide in animals, which mimics a
bacterial infection, suppresses hypophysiotropic Trh expression
and serum TH concentrations (10, 84, 148, 155). Unlike
fasting, endotoxin injection has a pronounced positive effect
on Dio2 expression in the α-tanycytes (84, 156), the peak in
Dio2 expression coincides with the maximum decrease of Trh
mRNA level in the PVN, suggesting that, apart from the β-
tanycytes, α-tanycyte T3 production is also critical for HPT axis
regulation (84, 148, 155).

INTERACTIONS BETWEEN β2-TANYCYTES
AND HYPOPHYSIOTROPIC TRH NEURONS
AND THE FLUX OF TRH INTO
PORTAL VESSELS

The previous sections have shown that tanycytes determine
local concentrations of TH, sense and transport energy related
cues, and may control TRH turnover in the extracellular space
of the ME, all of which influence directly or indirectly TRH
neurons activity and output into portal vessels. New evidences
suggest TRH neurons control tanycyte properties defining the
output of TRH into the portal capillaries, through mechanisms
which operate in the external layer at post-secretory levels.
While a hybridization signal for TRH receptors was not initially
detected in the median eminence (26), more recent evidence
indicates β2-tanycytes do express low levels of Trhr [(64, 69),
Figure 4]. Activation of TRH-R1 in β2-tanycytes induces Ca++

entry and an increase of TRH-DE activity in the median
eminence. This may enhance TRH hydrolysis before entry
into the portal vessels, a decrease in bioavailability which may
limit desensitization and/or downregulation of TRH-R1 in the
thyrotropes, and/or contribute to transient pulses of TRH.
These experiments also showed that TRH binding to TRH-
R1 promotes the extension of tanycyte basal processes between
TRH terminals and portal vessels, which may also reduce the
flux of TRH into the portal vessels. Therefore, TRH seems
to have the capacity to modulate its own entry into portal
vessels by two complementary mechanisms: modulation of TRH-
DE activity and end-feet contacts of β2-tanycytes with portal
capillaries (64). These evidences were obtained in part in models
in which Gαq/11 proteins were made inactive; however, the
functional demonstration that TRH-DE activity and/or end-feet
contacts of β2-tanycytes with portal capillaries are critical is
still lacking.

Apart from TRH, hypophysiotropic TRH neurons use
glutamate as a transmitter (157). The role of this pool of
glutamate is still under investigation, but it is interesting
to note that mRNA coding for 2 ionotropic glutamate
receptors, including the Glutamate Receptor Ionotropic Kainate
Type Subunit 3, are expressed by tanycytes [(69, 158, 159),
Figure 4], and that glutamate regulates TRH-DE activity in the
hippocampus (160), making it tempting to speculate glutamate
regulates TRH-DE activity in the ME.

PROGRAMMING OF HPT AXIS AND
TANYCYTE Trhde EXPRESSION

In the rat, the development of median eminence tanycytes, which
are first detected before birth (87) occurs in parallel with multiple
aspects of HPT axis ontogeny. Since tanycytes control the local
(hypothalamic) bioavailability of TH, the postnatal development
of tanycytes is probably critical for HPT feedback development,
as has been suggested in chicken (161).

Multiple determinants, which include nutrition, stress and
toxics exposure, during pre- or post-natal development can
program adult HPT axis function (162, 163). Some impacts
have been linked to hypophysiotropic TRH neurons and
tanycytes, although the mechanistic insights are still limited
(163). One of the best understood models of post-natal stress is
repeated maternal separation (MS) during lactation. MS causes
multiple long-term endocrine perturbations (164), including the
functional state of the HPT axis in adult rats in a sex related
manner. Pups separated from their mother for 3 h daily during
lactation have altered HPT axis activity. As adults, male rats
have decreased TSH and T3 serum concentrations and a higher
expression of Trhde in tanycytes ofME, compared to undisturbed
pups. MS males do not respond to fasting as expected: Trhde
expression is not enhanced and HPT axis activity inhibition is
blunted. These changes are not detected in MS females who
have higher (compared to undisturbed animals) fat mass and
Trh expression in PVN but normal serum concentrations of TH
and no changes in their reaction to fasting (165). The higher
susceptibility to MS of males compared to females has been
observed in other paradigms (166), but it is interesting that the
more intense change is in Trhde expression and is long-lasting
(165). The sex- specific programing of Trhde expression together
with TSH and T3 serum concentrations in this MS paradigm
reinforces the hypothesis that alterations in tanycyte properties
can have short- and long-term consequences on thyroid status.
Understanding the mechanisms programing tanycyte functions,
including Trhde expression, in response to stressors, nutrition
and toxic substances is warranted.

TANYCYTES AND HPT AXIS IN
NON-MAMMALIAN VERTEBRATES

The evolutionary origin of the TRH neuron-tanycyte interaction
is poorly understood. Except for teleosts, hypothalami of
vertebrates have a median eminence whose external layer
connects hypothalamus and pituitary via a portal system. As
in mammals, in most non-mammalian vertebrates, the external
layer also contains end-feet of glial-like cells, which cell body
is localized in the floor of the third ventricle (167). These glial-
like cells express vimentin and GFAP (therefore denominated
tanycytes) and contact portal vessels in most vertebrates (168–
170). Moreover, in non-mammalian vertebrates, tanycytes of
the median eminence have an anatomical position akin to
that seen in mammals, although their molecular signatures are
unknown. Since most non-mammalian vertebrates possess a
median eminence with tanycytes analogous to β2-tanycytes, they
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are probably fundamental to create an appropriate physical,
molecular and anatomical link between brain and pituitary, and
regulate the HPT axis.

Although Trh, and Trhr genes are detected in most non-
mammalian vertebrates, their functional roles are not always
related to the regulation of TSH secretion (171), and therefore
to the control of TH secretion. Thus, for example, the thyroid
status does not regulate TRH synthesis in the hypothalamus of
the fish brain (172, 173), in a site homologous to the mammalian
PVN. On the contrary, Corticotropin Releasing Hormone
(CRH) is a major Thyrotropin-Releasing Factor (TRF) in non-
mammalian vertebrates (174). Among the many unknowns
about non-mammalian vertebrates tanycytes and HPT axis, we

FIGURE 5 | A summary of events operated through β2-tanycytes and axon

terminals regulating TRH output from hypophysiotropic neurons. (A) Third

ventricle/extracellular medium T4 is internalized into β2-tanycytes by MCT8

and OATP1c1 transporters. (B) In β2-tanycytes, THs are bound to CRYM and

T4 is bio-transformed to T3 by deiodinase 2 (D2), an enzyme localized in the

endoplasmic reticulum. (C) Action potential arrival or local signals promote

TRH and glutamate release into the median eminence extracellular

compartment by exocytosis. TRH binds to TRH-R1 receptors localized on

β2-tanycyte end-feet, increasing TRH-DE activity and tanycyte end-feet

expansion. (D) Membrane bound TRH-DE hydrolyses TRH. Both actions (C,D)

control TRH bioavailability and output to the anterior pituitary. (E) T3 is

transported out of tanycytes into the extracellular space and may be captured

through MCT8 and OATP1c1 into TRH terminal buttons/varicosities;

retrograde transport of T3 may in turn inhibit Trh synthesis at somatic level. (F)

Binding of T3 to tanycyte nuclear TR may increase the expression of Trhde. (G)

Noradrenaline stimulates TRH secretion through α1-adrenergic receptors,

possibly localized on TRH varicosities/terminal buttons.

can pinpoint the following: could the local production of T3
regulate hypothalamic CRH synthesis, as it does for TRH in
mammals? Are morphological changes of tanycytes regulating
TRF availability? Is an hydrolase analogous to TRH-DE operating
for another TRF?

PHOTOPERIOD AND THE CONTROL OF
TANYCYTE-DERIVED T3

In avian and mammalian species sensible to photoperiod,
photoperiod effects on neuroendocrine axes critically depend on
tanycytes. Melatonin, which transduces photoperiod, interacts
with the melatonin 1 receptor expressed in secretory pars
tuberalis specific thyrotropes, a cell phenotype different from the
pars distalis thyrotropes, and induces rhythmic TSH secretion
from the pars tuberalis linked to the regulation of seasonal
breeding (175, 176). Exposure to long days enhances TSH
secretion from the pars tuberalis (177–179), followed by a
later stimulation of Dio2 and a decrease of Dio3 expression in
tanycytes (180, 181). Although all tanycyte subtypes express Tshr
(Figure 4), TSH-induced expression of Dio2 occurs mostly in
α1-, α2-, and β1-tanycytes (177–179). As a result, MBH T3 levels
are raised in long day seasons (180). This in turn influences
the morphology of tanycytes end-feet in the lateral median
eminence, increasing GnRH terminals access to the basal lamina
and release into the portal circulation (182, 183). Pars tuberalis
thyrotrope interactionwithMBH tanycytes and reproductive axis
consequences have been reviewed recently (184).

Although TSH-induced expression of Dio2 during seasonal
cycles is limited to α- and β1-subtypes, it may still influence
Trh transcription in the PVN if β2-tanycytes are not critical
for T3 effects on the HPT axis (see for example sub section
“Non-thyroidal illness syndrome”). Nevertheless, photoperiod has
no effect on Trh expression in Siberian hamster or F344 rats
(185, 186). Furthermore, TSH production from the pars tuberalis
is not affected by thyroid hormones nor TRH (175) and even
if pars tuberalis-derived TSH can bind to TSH receptors, it is
not active in the thyroid gland (187). Thus, TSH released from
the pars tuberalis has only a local action in the MBH, and there
is no evidence that it regulates the HPT axis activity according
to photoperiod. The lack of coupling between TSH receptor
activation and Dio2 expression in β2-tanycytes may result in
uncoupling of the HPT axis from photoperiod information (184).

CONCLUSIONS

In the external layer of the median eminence, various imbricated
inter- and intra-cellular processes may coordinate the flux of
TRH into the portal capillaries, down-stream of the enhancement
of TRH release by action potentials arrival. Tanycytes are
critical cells that link HPT axis activity to physiological status
through molecular and cellular and adaptations. Thus, although
TH negatively regulate hypophysiotropic TRH neurons activity,
this role depends on biotransformation of T4 in tanycytes.
Furthermore, the post-secretory availability of TRH may also
be TH dependent, regulated by tanycyte TRH-DE activity and
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possibly the physical barrier that the end-feet make near the
portal vessels. These advances suggest that tanycytes, in particular
β2-tanycytes, are critical for feedback control of the HPT axis
(Figure 5). An interesting question remaining to be solved is the
relative importance for TRH output in mammals of the barrier
function of the end-feet and of TRH-DE activity.

Another remarkable aspect is that TRH, and possibly
glutamate, released from TRH terminals, regulates TRH
accessibility to portal vessels through a dynamic and reciprocal
interaction with tanycytes. This interaction rapidly regulates
the activity of the TRH-DE and the end-feet contacts with
median eminence capillaries. On the other hand, tanycytes
may also feedback on TRH secretion, interactions that together
may contribute to generate cycles of TRH release, and/or
may rapidly regulate it in response to physiological stimuli,
such as during cold exposure. Median eminence tanycytes are
thus an additional critical level of control of the HPT axis,
sensitive to energy balance clues, and impacting on TRH output.
The efficiency of this control point may be programmed by
developmental challenges.

Other aspects of HPT axis control at median eminence
level still requiring investigation are putative interactions of
SRIF terminals and tanycytes, since there is an ample rostro
caudal distribution of SRIF varicosities that terminates in the
infundibular stalk (30). These and other local mechanisms may
also have a significant effect on the control of the thyroid axis.

Finally, although knowledge about the relation of tanycytes
and HPT axis function is still limited, it is tempting to think that

clinical applications may be considered in the future, since the
ME compartment is outside the BBB. Sex dimorphism should be
investigated, because of its physiological and clinical relevance.
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