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Abstract: Repetitive sequences represent about half of the human genome. They are actively tran-
scribed and play a role during development and in epigenetic regulation. The altered activity of
repetitive sequences can lead to genomic instability and they can contribute to the establishment
or the progression of degenerative diseases and cancer transformation. In this work, we analyzed
the expression profiles of DNA repetitive sequences in the breast cancer specimens of the HMUCC
cohort. Satellite expression is generally upregulated in breast cancers, with specific families upregu-
lated per histotype: in HER2-enriched cancers, they are the human satellite II (HSATII), in luminal
A and B, they are part of the ALR family and in triple-negative, they are part of SAR and GSAT
families, together with a perturbation in the transcription from endogenous retroviruses and their
LTR sequences. We report that the background expression of repetitive sequences in healthy tissues
of cancer patients differs from the tissues of non-cancerous controls. To conclude, peculiar patterns of
expression of repetitive sequences are reported in each specimen, especially in the case of transcripts
arising from satellite repeats.

Keywords: breast cancer; repetitive sequences; HERV; endogenous retrovirus; satellite repeats;
centromeres; telomeres; SVA; LINE1; transposons

1. Introduction
1.1. Breast Cancer Classification

Breast cancer is still the leading cause of mortality among the female population in
developed countries. In post-menopausal women, it accounts for 23% of all cancer deaths [1].
Breast cancers can be classified following anatomical, histological and molecular features [1],
and their classification is a dynamic process, as stated in the last World Health Organization
classification of tumors of the breast [2], and novel entities are added to the classification
year by year following the increase in the knowledge of the disease [3]. Breast cancer is as a
heterogeneous disease with different clinical and pathological features, variable therapeutic
approaches and responses and with different outcomes even within the same class of
breast cancer, suggesting that the current classifications are far from exhaustive. In order
to follow the original classification of the cohort used in this study [4,5], the breast cancer
specimens have been classified as: luminal-A, luminal-B (HER2-negative), luminal-B (HER2-
positive), HER2-enriched and triple-negative breast cancers. This classification is based on
immunohistochemical-relevant markers and was recommended by the St. Gallen Expert
Consensus [6] and it has become a standard in routine clinical analysis since then [6–8]. For
detail reviews, please refer to Hennigs et al. [8] and Prat et al. [9].

1.2. Non-Coding RNA in Mammals

The mammalian genome is pervasively transcribed and only a small portion of the
transcriptional output has protein-coding potential [10]. The non-coding RNAs (ncRNAs)
can be categorized using sizes and function, such as small-nuclear RNAs (snRNAs), small-
nucleolar RNAs (snoRNAs), long non-coding RNAs (lncRNAs) and many others. The most
well-studied class of ncRNAs is probably represented by microRNAs (miRNAs). Many
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studies have identified or suggested their role in human health and diseases, aging [11], can-
cer [12,13], diagnostic or prognostic purposes [14,15] and as therapeutic agents [16], either
per se or in complex networks of cross regulation by the name of competing endogenous
RNAs (ceRNAs) [17–24]. An abundant class of ncRNAs with variable functions that are still
not fully understood is represented by transcripts arising from non-coding DNA sequences
that are repeated along the genome in multiple copies. Even if the transcription from a
single copy can be negligible, the sum of transcripts arising from thousands or millions of
copies can be massive. A detailed description of them is given in the following paragraphs.

1.3. Repetitive DNA Sequence Classification

A multifaceted category of ncRNAs, of growing interest due to their roles in human
health and diseases, is represented by the transcripts arising from repetitive DNA sequences
(RS), i.e., DNA sequences that are present in multiple copies in the genomes, with low
or nonexistent coding potential. RS represent about 45% of the human genome and are
differentially transcribed in many tissues [25]. In mammals, RS have many roles in develop-
ment and epigenetic regulation, but also in diseases such as cancer transformation [26–30]
and degenerative diseases [31], but they are notoriously difficult to study [32]. Due to
their nature, length and origin, RS can be roughly classified as: (i) Satellite repeats: a
tandem array of simple or complex sequence repeats, abundant in heterochromatic re-
gions, including alpha satellite repeats that represent the main DNA component of human
centromeres. (ii) Long interspersed nuclear elements (LINEs): retrotransposons devoid
of long terminal repeats (non-LTR) including some that are still able to retrotranspose.
(iii) Small interspersed nuclear elements (SINEs): non-autonomous retrotransposons in-
cluding the Alu elements in humans, which are often involved in genomic rearrangements.
(iv) Integrated LTR retroviruses, mainly represented by the human endogenous retrovirus
(HERV) families. (v) Additionally, the families of DNA transposons, that are usually not
active in humans (Figure 1). The role of RS is starting to be properly understood. E.g., in
the human brain LINE-1 retrotransposons are actively transcribed and mobilized and they
are suggested to play a role in shaping the adult human brain [33], there is also a suggested
role of RS in a model of aging of human brain [34].

1.4. Repetitive DNA Sequence and Cancer

Increased levels of heterochromatic repetitive satellite-coded RNAs in mammary
glands induce breast tumor formation in mice, altering the BRCA1-associated protein
networks that are required for the proper stabilization of DNA replication forks that in turn
lead to genomic instability [35]. In humans, patients with breast cancer that express high
levels of RNA derived from alpha satellite have an increased risk of developing multiple
cancers [36].

It is known that LINE-1-encoded retrotranscription activity is widespread and its
inhibition can reduce the rate of proliferation and promote the differentiation of breast
cancer cells [37]. LINE-1 (and Alu) hypomethylation, suggesting an increased transcription
in cancer cells and thus their mobilization, has been associated with the HER2-enriched
subtype of breast cancer with worst prognosis [38–40]. In the transgenic mice of a well-
defined model of breast cancer progression, LINE-1 is upregulated at a very early stage
of tumorigenesis [41]. Indeed, the altered expression patterns of LINE-1-coded ORF1 and
ORF2 proteins, with differences in overall patient survival, have been reported in invasive
breast cancers [42]. In specific cases, pesticide exposure induces LINE-1 reactivation, sug-
gesting the role of LINE transcription in pesticide-induced breast cancer progression [43],
and MET-LINE-1 chimeric transcripts identify a subgroup of aggressive triple-negative
breast cancers [44]. Overall, it has been suggested that LINE-1 may contribute to the origin
or progression of breast cancers [45].

There are many reports regarding Alu and other SINE elements within or surrounding
BRCA1 and BRCA2 genes essential to genomic rearrangements or genetic mutations leading
to etiopathogenic, prognostic or predisposing mutations of breast cancers, both in somatic
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and germ lines [46–51]; indeed, the demethylation of Alu sequences may induce, at the same
time, both transcription and rearrangements of Alu sequences. Thus, Alu transcription is
a marker of increased susceptibility to Alu-mediated genomic rearrangement or genetic
mutation at Alu sites. Looking for a direct effect of Alu transcription, it is noteworthy that
heterogeneous nuclear ribonucleoprotein C (HNRNPC) is essential in breast cancer cell
survival by inhibiting the double-stranded-RNA (dsRNA)-induced interferon response.
Indeed, dsRNA in this setting is highly enriched in Alu sequences [52], suggesting that an
overexpression of Alu sequences is characteristic of many breast cancers and may have
lethal effects in cancer cells if not controlled.

There is significant evidence regarding the use of HERV-K-coded proteins as tumor
markers and immunologic targets [52–58] and in influencing cancer stemness [59]. It has
even been suggested that they could act as etiological agents [60,61]. Indeed, the expression
of HERV-K is upregulated and associated with the basal-like breast cancer phenotype [62]
and a HERV-derived long non-coding RNAs (namely, TROJAN) promotes triple-negative
breast cancer progression [63]. HERV can directly contribute to cancer progression by
activating the ERK pathway and inducing migration and invasion [64]; it has been even
suggested that the activation of HERV-K may be essential for the tumorigenesis and
metastasis of breast cancer [65]. Indeed, HERV-K-derived RNAs and antibodies against
HERV-K-coded proteins are elevated in the blood of patients at an early stage of breast
cancer [66].

DNA transposons are the less active and less well-studied class of RS in humans.
Nevertheless, few reports suggest their role in breast cancer [67]; however, they were not
investigated further. In addition, a mechanism of BRCA1 mutation in three unrelated
French breast/ovarian cancer families, that can be generated by an abortive integration of
the human Tigger1 DNA transposon, has been postulated [68].
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Figure 1. Repetitive sequences (RS) represent about half of the human genome. The panel reports RS
activities associated with breast cancer. In orange: Satellite repeats [35,36]. In red: Long interspersed
nuclear elements (LINEs) [37,42,45]. In yellow: Small interspersed nuclear elements (SINEs) [46–51].
In blue: Human endogenous retrovirus (HERV) [62–64,66]. In green: DNA transposons [68].
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1.5. Main Aim

The main aim of this work was to analyze the transcripts arising from the repetitive
sequences in a cohort of breast cancer specimens. Overall, we report peculiar patterns of
expression and a diffuse upregulation of satellite transcription specific for each histotype.

2. Materials and Methods
2.1. Identifying and Quantifying the Repetitive Sequence Expression

The method of analysis and positive and negative controls (human beta actin cDNA
NM_001101.4, 18S and 5.8 human ribosomal subunits, and the locus EF191515 of Bacillus
subtilis SMY strain) have previously been described [34].

In brief, the analyses have been performed in a Galaxy environment [69,70]. The
FASTQ raw sequences (obtained from the European Nucleotide Archive) have been up-
loaded, processed by Trimmomatic (Galaxy Version 0.36.5) [71] and quality checked.
Bowtie2 aligner (Galaxy Version 2.3.4.2) [72] has been used with very sensitive local param-
eters to retrieve the expression of RS, oblivious of their genomic localization, aligning the
reads against pseudochromosomes containing the reference RS sequences. ‘Very sensitive’
parameter takes into account the intrinsic sequence variability of RS, aiming to retrieve RS
sequences that are slightly different from the canonical sequence used as reference. ‘Local’
alignment allows the retrieval of RS sequences attached to other sequences in the same
reads, because RS are often embedded in other transcripts. Beta actin cDNA is a positive
control of the pipeline used to retrieve the RS: RS are unspliced and the Bowtie2 aligner
must efficiently retrieve the cDNA sequence of mature mRNAs, such as NM_001101.4,
when treated as a pseudochromosome. Mature rRNA subunit sequences have been used
as positive controls, following the same rational. Their large amount allows their retrieval
even after rRNA depletion, which never reaches total efficiency, and they are physiologi-
cally unspliced, non-poly-adenylated ncRNAs of different lengths. Instead, EF191515 locus
is a negative control that has no significant homology with human sequences and thus must
have zero or almost zero reads in every sample. Raw data are reported in Supplementary
Table S1.

2.2. Analysis of Coding Gene Expression

The raw FASTQ data have been aligned by the means of HISAT2 aligner (Galaxy
Version 2.1.0) [73] using the Galaxy embedded hg38 as a reference. The generated BAM
files have been compared using the hg38_GENCODE_GENE_V19.bed as a reference.

2.3. Statistical Analyses

The differential expression analysis was performed with the DESeq2 [74] algorithms
implemented in a Galaxy environment (Version 2.11.40.2). The analysis was performed on
the merged raw counts dataset, including coding genes, RS and control expression, if not
otherwise specified. p-value correction for multiple comparisons was performed with the
Benjamini and Hochberg method [75].

2.4. Dataset Used

We analyzed the data published in the European Nucleotide Archive (ENA), RRID:SC-
R_006515, study accession: PRJNA292118 [4,5]. The dataset contains sequencing data of
15 invasive breast cancer specimens (3 each for luminal-A, luminal-B (HER2-negative),
luminal-B (HER2-positive), HER2-enriched and triple-negative breast cancer) and 18 con-
trols (15 paired adjacent non-cancerous tissues and 3 healthy tissues). As reported in
experiments SRX1135937 to SRX1135969 in the PRJNA292118 project [76], RNA was ribo-
depleted via Ribo-Zero™ Gold Kits (human) before using the Illumina TruSeq RNA Sample
Prep Kit (Cat#FC-122-1001) for the construction of the sequencing libraries. This kind of
library allowed us to analyze both poly-adenylated and non-poly-adenylated transcripts;
thus, it is suitable to analyze transcripts arising from RS, whose poly-adenylation status is
often unknown.
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3. Results

The expression of repetitive sequences has been retrieved and analyzed accordingly to
the previously described pipeline [34] with minor adaptations. Raw expression data are
reported in Supplementary Table S1. The normalized expression data of the merged raw
counts of the coding genes and RS are reported in Supplementary Table S2. Whisker plots
for selected RS of interest are reported in Figure 2.
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3.1. Analysis of the Expression of Repetitive Sequences in Cancer Specimens

A comparison between the 15 invasive breast cancer specimens and 18 controls in-
dicated a panel of RS differentially expressed in the two conditions (Table 1, Figure 2
and Supplementary Table S3). ALR, BSR and LSAU repetitive sequences are the most
significantly upregulated, i.e., more than two-fold, in cancer specimens compared to the
controls (P-adj < 0.05). However, the specimens showed great variability (Supplementary
Webpage S4); thus, a comparison between each histotype with its adjacent normal tissues
(ant) was performed.

Table 1. A comparison between the 15 invasive breast cancer specimens and 18 controls (cancer vs.
normal) and between each histotype with its adjacent non-cancerous tissues highlighted a panel of
RS differentially expressed in the two conditions. The RS whose mean expression is above 100 and
with a p-value < 0.05 are reported.

GeneID Base Mean log2(FC) StdErr Wald-Stats p-Value P-adj

Cancer vs. normal

BSR 597.99 1.62 0.28 5.80 6.57 × 10−9 1.93 × 10−4

ALR 5004.62 1.52 0.28 5.44 5.24 × 10−8 7.70 × 10−4

LSAU 484.17 1.36 0.28 4.91 9.31 × 10−7 8.20 × 10−3

ALRb 1358.44 1.03 0.27 3.81 1.37 × 10−4 1.44 × 10−1

ALR1 4308.91 0.99 0.27 3.73 1.90 × 10−4 1.48 × 10−1

GGAAT 11,375.95 0.91 0.28 3.28 1.05 × 10−3 3.35 × 10−1

HSATII 2167.60 0.91 0.28 3.27 1.08 × 10−3 3.35 × 10−1

PABL_BI 121.89 0.46 0.16 2.89 3.86 × 10−3 5.15 × 10−1

SAR 137.70 0.75 0.28 2.69 7.08 × 10−3 6.09 × 10−1

LTR22B2 517.80 −0.32 0.13 −2.52 1.17 × 10−2 7.00 × 10−1

LTR72 226.51 −0.30 0.12 −2.41 1.58 × 10−2 7.74 × 10−1

LTR12C 39,355.33 −0.51 0.22 −2.36 1.84 × 10−2 8.01 × 10−1

MER9B 648.51 −0.26 0.12 −2.27 2.33 × 10−2 8.33 × 10−1

LTR7B 2761.48 −0.35 0.16 −2.21 2.70 × 10−2 8.50 × 10−1

LTR7C 483.73 −0.25 0.12 −2.11 3.46 × 10−2 8.83 × 10−1

LTR35 156.02 −0.21 0.10 −2.10 3.61 × 10−2 8.86 × 10−1

ALR_ 10,312.15 0.49 0.24 2.00 4.51 × 10−2 9.16 × 10−1

HER2 vs. ant

ZAPHOD 160.72 −0.86 0.41 −2.07 3.81 × 10−2 1.00
HSATII 6250.25 1.10 0.56 1.96 4.98 × 10−2 1.00

LumA vs. ant

ALR 5513.55 1.11 0.44 2.52 1.16 × 10−2 1.00
LTR38B 472.48 −1.04 0.45 −2.32 2.04 × 10−2 1.00

LumB_Her2Neg vs. ant

ALR 2804.92 1.75 0.48 3.64 2.74 × 10−4 1.29 × 10−1

ALR1 3720.86 1.36 0.46 2.96 3.07 × 10−3 3.40 × 10−1

ALRb 1210.79 1.13 0.45 2.52 1.19 × 10−2 6.05 × 10−1

MER57C1 196.12 1.00 0.43 2.31 2.08 × 10−2 7.23 × 10−1

6kbHsap 7701.13 1.06 0.49 2.18 2.94 × 10−2 8.01 × 10−1
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Table 1. Cont.

GeneID Base Mean log2(FC) StdErr Wald-Stats p-Value P-adj

LumB_Her2Pos vs. ant

LTR3 853.33 −1.87 0.45 −4.14 3.45 × 10−5 1.33 × 10−2

HERVK3I 10,531.29 −1.76 0.47 −3.72 1.99 × 10−4 4.53 × 10−2

BSR 436.11 2.09 0.60 3.49 4.92 × 10−4 8.70 × 10−2

ALR1 20,223.11 2.06 0.64 3.21 1.32 × 10−3 1.56 × 10−1

ALR 14,122.78 1.97 0.64 3.06 2.24 × 10−3 2.10 × 10−1

LTR1B0 5449.61 −1.94 0.64 −3.02 2.50 × 10−3 2.23 × 10−1

LTR12C 61,931.23 −1.35 0.55 −2.45 1.45 × 10−2 5.91 × 10−1

MER122 128.05 1.31 0.64 2.06 3.97 × 10−2 9.10 × 10−1

ALR_ 13,301.52 1.18 0.59 1.99 4.61 × 10−2 9.55 × 10−1

TN vs. ant

SAR 171.13 0.84 0.28 3.01 2.63 × 10−3 2.41 × 10−1

LTR72B 423.96 −0.56 0.22 −2.57 1.03 × 10−2 4.98 × 10−1

MER87B 580.38 0.43 0.19 2.23 2.59 × 10−2 7.70 × 10−1

GSAT 291.10 0.58 0.29 1.98 4.72 × 10−2 9.7 × 10−1

In ‘HER2-enriched’ breast cancer, an upregulation of HSATII satellite expression is re-
ported (Table 1; Supplementary Table S5). Regarding ‘luminal-A’ histotype, the expression
of ALR is strongly upregulated (Table 1; Supplementary Table S6). In the case of ‘luminal-B
HER2-negative’, the expression of ALR satellite family and “6 kb tandem repeat sequence
in Homo sapiens” is upregulated (Table 1; Supplementary Table S7). We also report a strik-
ing upregulation of BSR satellite sequences between a specific luminal-B HER2-negative
specimen and its adjacent non-cancerous tissues (namely, LUM_B_Her2_NEG_0). Its nor-
malized expression is 208203 reads in the cancer specimen against 88 in the adjacent tissue
(Supplementary Table S2). Thus, this specimen has the worst classification in TNM staging
in the cohort (IIIb, together with another specimen) and many lymph node metastases
(36 positives out of the 42 inspected). Analyzing ‘luminal-B HER2-positive’ specimens,
we report a generalized upregulation of several satellite-derived transcripts together with
a downregulation of endogenous retroviruses and their LTR sequences (Table 1; Supple-
mentary Table S8). In ‘triple-negative breast cancer’, there is an upregulation of satellite
sequences and a perturbation in the transcription of endogenous retroviruses and their LTR
sequences (Table 1; Supplementary Table S9).

3.2. Analysis of Expression Background

A detailed analysis of the comparison between the expression of ANT and the normal
controls is reported in Table 2 and Supplementary Table S10. The most differentially
expressed RS is MER22 satellite (also called SST1) [77,78], which is downregulated in ANT
compared to the controls. Another abundant RS that is differentially expressed in ANT
compared to the controls is SVA_A, which is also downregulated. SVAs are SINEs that
contain Alu sequences. SVAs are still active in humans and may have biological effects [79].

We also report that the vast majority of the specimens analyzed showed an altered
expression of GGAAT repeats in comparison with their specific ANT, either increased
(GGAAThigher) or decreased (GGAATlower).
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Table 2. Comparison between the expression of RS in ANT and the normal controls (ANT vs. normal).
The RS whose mean expression is above 100 and with a p-value < 0.05 are reported.

GeneID Base Mean log2(FC) StdErr Wald-Stats p-Value P-adj

MER22 3245.14 −1.03 0.35 −2.95 3.18 × 10−3 6.42 × 10−1

PABL_BI 101.04 0.67 0.24 2.82 4.78 × 10−3 6.42 × 10−1

PTR5 394.09 −1.10 0.41 −2.67 7.67 × 10−3 6.42 × 10−1

TAR1 184.59 −0.66 0.26 −2.53 1.15 × 10−2 6.42 × 10−1

LTR7C 516.36 −0.55 0.23 −2.44 1.45 × 10−2 6.42 × 10−1

GSAT 178.69 −1.22 0.51 −2.37 1.79 × 10−2 6.42 × 10−1

LTR46 249.63 −0.69 0.31 −2.18 2.94 × 10−2 6.42 × 10−1

LTR7Y 1511.10 −0.76 0.35 −2.16 3.05 × 10−2 6.42 × 10−1

LTR1E 413.79 −0.59 0.28 −2.15 3.19 × 10−2 6.42 × 10−1

LTR7A 2067.24 −0.77 0.36 −2.14 3.20 × 10−2 6.42 × 10−1

LTR22B2 563.94 −0.50 0.23 −2.14 3.27 × 10−2 6.42 × 10−1

LTR44 116.12 0.81 0.39 2.08 3.79 × 10−2 6.42 × 10−1

LTR27C 315.21 −0.59 0.28 −2.08 3.79 × 10−2 6.42 × 10−1

ALR 1028.61 1.00 0.48 2.07 3.83 × 10−2 6.42 × 10−1

HARLEQUINLTR 3541.69 −0.45 0.22 −2.07 3.84 × 10−2 6.42 × 10−1

MER51C 493.52 −0.45 0.22 −2.03 4.19 × 10−2 6.42 × 10−1

SVA_A 65,198.32 −0.57 0.28 −2.02 4.32 × 10−2 6.42 × 10−1

MER54B 165.03 −0.57 0.28 −2.00 4.54 × 10−2 6.42 × 10−1

4. Discussion

High-throughput RNA sequencing helps one analyze the pervasive transcription of
the human genome, but it bears the burden of processing a huge amount of data. In the
routinely used pipelines of analysis, the transcription of RS is often overlooked due to the
intrinsic difficulties to be analyzed by the most common means. Nevertheless, RS represent
about half of the human genome and the source of a fair amount of transcriptional output.
Indeed, whenever analyzed, transcripts arising from RS showed biological and medical
properties far beyond the role of simple bystanders or byproducts [31,32].

While several studies on breast cancers highlighted a potential role of specific RS as
etiopathogenic agents or as diagnostic or prognostic tools, this is the first study analyzing
the expression of RS as a whole in a panel of breast cancer specimens classified by their
molecular characteristics.

Overall, it is evident that the cancerous specimens showed an increased expression
from satellite repeats, suggesting centromeric and telomeric loss of heterochromatinization
and thus chromosomal instability [80,81]. In particular, it has been previously demonstrated
that the overexpression of alpha satellite transcripts leads to chromosomal instability in
breast cancer via segregation errors [82].

It is interesting that each histotype and, more generally, each specimen showed a
specific altered pattern of transcripts arising from RS and in detail from satellite repeats,
suggesting that the altered transcription of RS could be something more than an epiphe-
nomenon and may indicate the peculiar characteristic of the specimens, such as an effect of
a previous viral infection [83]. The specificity of RS transcription is supported by a case of
‘luminal-B HER2-negative’ in which the transcripts derived from BSR (beta satellite repeats)
are thousands of times more upregulated in comparison with its background (Figure 2), a
unique case among all the cases analyzed in this paper and others [84]. It is noteworthy that
this case has the worst classification in TNM staging and diffuse lymph node metastases.
The increase may be due to a true increase in BSR expression or a significant increase in
BSR-derived transcript polyadenylation and stability. Indeed, satellite polyadenylation has
been postulated in humans, following studies on other organisms [85], and evidence is
now arising and being consolidated [86]. The analysis of RS transcription suggests that the
current molecular classification of breast cancers, even if functional in defining the thera-
peutic course [9], is far from being exhaustive in defining their molecular characteristics.
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This is in line with the great variability of prognosis and clinical course in the same class of
breast cancers [86].

We also report that the vast majority of the specimens analyzed showed an altered
expression of GGAAT repeats in comparison with their specific ANT, either increased
(GGAAThigher) or decreased (GGAATlower). The GGAAThigher specimens have a higher
ki67 staining [87], a widely used marker of cell proliferation, pointing to a faster growing
tumor mass. Indeed, the two specimens that had the worst TNM classification (IIIb) and an
evident lymph node involvement are GGAAThigher.

Regarding the transcriptional background, comparing the healthy adjacent tissues of
cancer specimens with tissues from healthy donors, there is a generalized downregulation
of MER22 satellite expression. MER22 has been implied in meiotic instability [76,88], and
its methylation status has been found relevant to multiple cancer types [89–92].

Interestingly, ALR satellites are upregulated in ANTs. Considering that ALR expres-
sion is also upregulated in tumors in comparison with non-cancerous specimens, this
suggests the role of these satellites in the progression of the disease.

Overall, the altered transcriptional landscape of RS in the background of patients may
suggest either a genetic predisposition and increased susceptibility to cancer transformation
or it could be the result of epigenetic alteration due to environmental factors (e.g., exposition
to chemicals or previous infections), which ultimately need to be investigated further.

5. Conclusions

The analysis of transcripts arising from RS in breast cancer specimens classified
following the current molecular markers showed a great interspecimen variability, with
peculiar patterns of altered RS transcription. Overall, there is an evident alteration in the
transcripts arising from satellite repeats and, in specific cases, from SINE and endogenous
retrovirus sequences. The expression from healthy adjacent tissues of cancer specimens
showed an altered expression of RS transcription when compared to the transcription
of healthy donors. If the data presented here are confirmed and extended in a larger
population, RS expression may play a role in the molecular classification and stratification
of patients or even be potentially adopted as a biomarker in liquid biopsy.
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