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Abstract: New thienyl- or chlorophenyl-substituted thiazolopyrimidine derivatives and their derived
sugar hydrazones incorporating acyclic d-galactosyl or d-xylosyl sugar moieties in addition to their
per-O-acetylated derivatives were synthesized. Heterocyclization of the formed sugar hydrazones
afforded the derived acyclic nucleoside analogues possessing the 1,3,4-oxadiazoline as modified
nucleobase via acetylation followed by the cyclization process. The cytotoxic activity of the synthesized
compounds was studied against human breast cancer MCF7 and MDA-MB-231 cell lines as well as
human colorectal cancer HCT 116 and Caco-2 cell lines. High activities were revealed by compounds
1, 8, 10, 11, and 13 against Caco-2 and MCF7 cells in addition to moderate activities exhibited by other
compounds against HCT116 or MDA-MB-231 cells.
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1. Introduction

The increased risk of cancer leading to a high mortality rate is one of the important factors that
stimulates scientific research in the field of medicinal chemistry for achieving distinct results able
to face such threat. Chemotherapy represents an important strategy [1] that is frequently applied
for treatment of cancer. The main objective associated with numerous approved chemotherapeutic
agents [2] is the apoptosis induction of cancer cells. The research for developing novel anticancer
candidates, with no or minimal side effects, is of considerable interest due to the observed toxicity
of current drugs towards normal cells, the suppressed drug activity and the induced drug resistance
which usually lead to insufficiency in the treatment process.

Thiazolopyrimidine is one of the most interesting heterocyclic scaffolds possessing structural
similarity to 5-fluorouracil (5-FU)—the well-known cancer metabolite. In addition, they have
been reported to possess various important potent activities such as antimicrobial, antipsychotic,
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anti-inflammatory, anti-Parkinson’s, analgesic, antidepressant, anti-HIV, and anticancer activities [3–11].
In addition, they have been revealed with their bioactivities as transient receptor potential
vanilloid–receptor 1 (TRPV1) modulators [12,13], antioxidants [14,15], pesticides [16], phosphate
inhibitors [17,18], acetylcholinesterase inhibitors [19,20], and antimicrobial activities [21–23].

1,3,4-Oxadiazole is a prominent scaffold which was found to possess opulent interesting applications
in drug development and designing important agrochemicals [24]. Many compounds incorporating
1,3,4-oxadiazole system showed potent bioactivities such as antiviral, anticancer, antiproliferative,
antimicrobial, anti-inflammatory activities in addition to their activities as potential antifibrotic agents
and monoamine oxidase B inhibitors [24–32]. On the other hand, acyclic and C-nucleoside analogs, as
modified forms of natural nucleosides, have revealed important bioactivities as antibiotic, antiviral,
and antitumor activities [25–27,33–38]. Figure 1 displays a number of thiazolopyrimidine and their
incorporating sugar derivatives in addition to pyrimidine and oxadiazole hybrids possessing reported
potent anticancer activities [39–42]. Recent strategies of combining various pharmacophoric scaffolds in
a new hybrid structure (molecular hybridization) for constructing potent drugs have been reported to
result in the formation of more potent bioactive candidates. These significances and our ongoing interest
in synthesizing new active carbohydrate based heterocycles [38,43–46] prompted us to synthesize new
hybrid compounds comprising thiazolopyrimidine system, aryl or thienyl moiety, and acyclic sugar
or oxadiazolyl linked to sugar moiety as modified acyclic C-nucleoside analogs and studying their
anticancer activity against a number of cancer cell lines.
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Figure 1. Anticancer thiazolopyrimidine, pyrinidinyl-sugar, and pyrimidinyl-oxadiazole compounds.

2. Results and Discussion

2.1. Chemistry

In the present study, two types of targeted hybrid heteroaryl sugar derivatives were synthesized.
The first possesses either a thienyl or chlorophenyl moiety and a thiazolopyrimidine system linked
to an acyclic sugar moiety and the second incorporates an additional 1,3,4-oxadiazole system
linked to acyclic sugar moiety. The substituted thiazolopyrimidine system was first prepared via a
multicomponent reaction (one pot Biginelli reaction) of the aldehyde (namely; p-chlorobenzaldehyde or
thiophen-2-carbaldehyde) with ethyl acetoacetate and thiourea to afford the corresponding substituted
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pyrimidine derivatives 1 or 2, respectively as previously reported [47,48]. Reaction of the pyrimidine
substituted ester derivatives 1 or 2 with 1,2-dibromoethane and potassium carbonate gave the
corresponding thiazolopyrimidine derivatives 3 or 4, respectively, which is similar to previously
reported work [49]. Their 1H-NMR spectra showed the presence of the two methylene groups in
addition to the characteristic triplet and quartet signals assigned for the ethyl group in addition to the
aryl protons. The reaction of thiazolopyrimidine derivative 3 or 4 with hydrazine hydrate [33] gave
the corresponding acyl hydrazide compound 5 or 6, respectively (Scheme 1). Their IR spectra showed
the presence of NH2 and NH in the region 3425–3325 cm−1 in addition to the characteristic carbonyl
band for the amidic carbonyl group.
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The sugar hydrazone derivatives 7–10 were formed via the reaction of acyl hydrazides with
d-galactose or d-xylose in the presence of catalytic acetic acid amount. The IR spectra of the latter
sugar hydrazones revealed the bands of sugar-hydroxyl groups at 3434–3338 cm−1. Their 1H-NMR
spectra revealed, in addition to the characteristic signals of the protons in the assigned structures, the
H-1 methine proton at 7.20–7.45 ppm with coupling constant 8.5 Hz. The latter observed chemical shift
values showed the sp2 hybridization of the sugar C-1 which indicates that the sugar moiety is present
in the acyclic form.

Acetylation of the thiazolopyrimidine hydrazonyl sugar compounds 7–10 was achieved by means
of acetic anhydride in the presence of pyridine resulting in the formation of the per-O-acetylated
sugar hydrazones 11–14, respectively. The IR spectra of the produced acetylated products revealed the
existence of the C=O band of the acetyl group at 1749–1735 cm−1 in addition to the disappearance of
OH group bands. Furthermore, their 1H-NMR spectra displayed the assigned signals for the protons
of the five methyl groups in the CH3C=O group at 1.95–2.26 ppm in addition to the H-1 proton at
7.32–8.05 ppm with 7.6–7.8 Hz coupling constant, indicating the acyclic sugar form of the sugar part.

On the other hand, performing the acetylation reaction of the sugar hydrazones 7–10 was further
carried out in acetic anhydride at 100 ◦C and resulted in a heterocyclization process in addition to
the acetylation step affording the derived 1,3,4-oxadiazoline compounds linked to acetylated acyclic
sugar units 15–18, respectively (Scheme 2). Formation of these oxadiazoline acyclic C-nucleoside
analogs was consistent with the previous reported studies of the hydrazine derivatives under these
conditions [24,33,38,46,50,51]. The infrared spectra of the resulting oxadiazoline sugar derivatives
displayed the absorption bands attributed to the carbonyl groups of the acetyl parts at 1740–1735 and
1680–1670 cm−1. The signals that were afforded in their 1H-NMR spectra were in accordance with the
assigned structures. Thus, the doublet signal at 5.70–5.72 ppm with J coupling 7.2–7.4 Hz corresponds
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to H-2 of the formed oxadiazoline ring (originally H-1 in the reacted acyclic sugar moiety) which is
attached to an sp3 carbon atom indicating the heterocyclization process. In acyclic hydrazine forms
the latter proton should be at higher chemical shift values due to the sp2 character of the assumed
C-1 (methylenic proton). The remaining protons in the acyclic sugar skeleton were displayed at their
characteristic assigned values. Furthermore, the 13C-NMR spectra of these products showed a signal at
81.3–82.5 ppm corresponding to the C-2 in the oxadiazoline ring (originally C-1 of the acyclic sugar part)
in addition to the signals corresponding to the acetyl-carbonyl carbons and aryl carbons confirming
the assigned structures.Molecules 2020, 25, x FOR PEER REVIEW 5 of 17 
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2.2. Cytotoxic Activity

In the current study, the newly synthesized compounds were examined in vitro for their cytotoxic
activities against human breast cancer MCF7 and MDA-MB-231 cell lines, as well as human colorectal
cancer HCT 116 and Caco-2 cell lines [52]. In addition, it will be also of interest in the present
investigation to see the effect of the introduction of an acyclic sugar or oxadiazolyl linked to sugar
moiety on the activity. The current results demonstrated that there was a gradual significant decrease
(p > 0.05) of cell proliferation after treating human colorectal cancerous cell lines (HCT 116 and Caco-2)
and human breast cancerous cell lines (MDA-MB-231 and MCF-7) with the synthesized compounds
using different dosages started from 0 to 100 µg/mL.

From Table 1, it has been suggested that the lower the IC50, the highest the cytotoxic effect against
the cancer cells. Compounds which showed 100% inhibition and revealed IC50 values less than
100 µg/mL against at least one cancer cell line are listed in Table 1. The remaining compounds revealed
undetectable IC50 (more than 100 ug/mL) upon all tested cancer cell lines.

Table 1. IC50s of the compounds against different colorectal and breast cancerous cell lines.

Compound HCT116 Cells Caco-2 Cells MDA-MB-231 Cells MCF7 Cells

1 25.28 58.31 40.78 ND

4 63.61 30.84 36.55 ND

8 66.75 9.63 46.99 69.90

9 27.95 ND ND ND

10 65.89 4.79 30.58 16.85

11 34.80 83.01 23.35 12.47

13 44.04 16.82 46.30 34.83

IC50 values are in µg/mL. ND = IC50 undetectable (i.e., IC50 more than 100 µg/mL).

The observed results showed that compounds 1 and 9 exhibited the lowest IC50 with the highest
cytotoxic effect against HCT 116 cell line with IC50 values 25.28 and 27.95 µg/mL, respectively.
In addition, compound 11 revealed moderate cytotoxic effect against the latter cancer cell line as
illustrated in (Figure 2 and Table 1). Regarding the activity against Caco-2 cell line, compounds 10, 8,
and 13 showed the lowest IC50 with the highest cytotoxic effect against this cancer cell line as illustrated
in Figure 3 and Table 1.
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Figure 2. Anti-proliferative activities of compounds against human colorectal cancer HCT 116 cells.
The MTT assay was performed three independent times (n = 3) using different concentrations of the
mentioned compounds.
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Figure 3. Anti-proliferative activities of compounds against human colorectal cancer Caco-2 cells.
The MTT assay was performed three independent times (n = 3) using different concentrations of the
mentioned compounds.

On the other hand, compound 11 was shown to possess the lowest IC50 with the highest cytotoxic
effect against MDA-MB-231 cell line as illustrated in Figure 4 and Table 1. The results also showed
that compounds 10 and 4 showed moderate activities against such cancer cell line. The activity results
against MCF7 cancer cell revealed that compounds 11 and 10 displayed the lowest IC50 with the highest
cytotoxic effect as illustrated in Figure 5 and Table 1.
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mentioned compounds.

By correlating of the obtained bioactivity results with the main structural features of the compounds
exhibiting the highest activities, it was found that thiazolopyrimidine linked to 4-chlorophenyl or
thienyl hybrid compounds incorporating acyclic sugar parts were the most active candidates. These
derivatives incorporated the sugar part linked via a hydrazinyl linkage to either free hydroxyl or
acetylated acyclic moiety. Thus, attachment of a hydrazinyl sugar moiety to the thiazolopyrimidine
ring system (compounds 7–14) resulted in higher activities compared to their starting precursors. The
thiazolopyrimidine linked to acetylated galactose moiety were found higher in activities than their
analogs with the five carbon xylose sugar unit. However, this was not the case for the deacetylated
analogs since the free hydroxyl xylose products (8 and 10) were higher than those possessing galactose
unit (the hydrazones 7 and 9). The sugar hydrazones 8 and 10 with free hydroxyl xylosyl group were
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found higher in activities than their derived acetylated products 12 and 14, respectively. When the
sugar part was a galactosyl moiety, the acetylated derivative 11 was found higher in activity than
its deacetylated analogue 7. Furthermore, the substituted pyrimidine compound 1 was higher in its
activity against HCT116 cells than the derived thiazolopyrimidine product 4 which did not incorporate
sugar part. Such observations may account for the importance of the -NH linked to the thione group for
the cytotoxic activity against the HCT116 cell line. However, the thiazolopyrimidine ester derivative 4
was found to be higher in the cytotoxic activity against Caco-2 cells than the substituted pyrimidine 1.Molecules 2020, 25, x FOR PEER REVIEW 8 of 17 

Molecules 2020, 25, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules 
 

 

Figure 5. Anti-proliferative activities of compounds against human breast cancer MCF7 cells. The 
MTT assay was performed three independent times (n = 3) using different concentrations of the 
mentioned compounds. 

By correlating of the obtained bioactivity results with the main structural features of the 
compounds exhibiting the highest activities, it was found that thiazolopyrimidine linked to 4-
chlorophenyl or thienyl hybrid compounds incorporating acyclic sugar parts were the most active 
candidates. These derivatives incorporated the sugar part linked via a hydrazinyl linkage to either 
free hydroxyl or acetylated acyclic moiety. Thus, attachment of a hydrazinyl sugar moiety to the 
thiazolopyrimidine ring system (compounds 7–14) resulted in higher activities compared to their 
starting precursors. The thiazolopyrimidine linked to acetylated galactose moiety were found higher 
in activities than their analogs with the five carbon xylose sugar unit. However, this was not the case 
for the deacetylated analogs since the free hydroxyl xylose products (8 and 10) were higher than those 
possessing galactose unit (the hydrazones 7 and 9). The sugar hydrazones 8 and 10 with free hydroxyl 
xylosyl group were found higher in activities than their derived acetylated products 12 and 14, 
respectively. When the sugar part was a galactosyl moiety, the acetylated derivative 11 was found 
higher in activity than its deacetylated analogue 7. Furthermore, the substituted pyrimidine 
compound 1 was higher in its activity against HCT116 cells than the derived thiazolopyrimidine 
product 4 which did not incorporate sugar part. Such observations may account for the importance 
of the -NH linked to the thione group for the cytotoxic activity against the HCT116 cell line. However, 
the thiazolopyrimidine ester derivative 4 was found to be higher in the cytotoxic activity against 
Caco-2 cells than the substituted pyrimidine 1.  

3. Experimental 

3.1. Synthesis 

3.1.1. General Procedures 

Melting points were determined on a Böetius PHMK (Veb Analytik Dresden) apparatus. Thin 
Layer Chromatography (TLC) was performed using aluminum plates pre-coated with silica gel 60 or 
60 F254 (Merck) and visualized by iodine or UV light (254 nm). The NMR spectra were recorded on 
a Varian Gemini 300 and Bruker DRX 400 spectrometer at 25 °C. 1H- and 13C-NMR signals were 
referenced to TMS and the solvent shift ((CD3)2SO δ H 2.50 and δ C 39.5). Coupling constants are 
given in Hz and without sign. The IR spectra (ν, cm−1) were recorded (KBr) on a Jasco FT/IR-410 
instrument. Microanalyses were operated using Perkin Elmer 240 instrument and satisfactory results 

0

20

40

60

80

100

120

13 11 4 8 10 9 1

M
CF

7 
ce

ll 
vi

ab
ili

ty
 (%

)

Compound

0

5

10

20

40

60

80

100

Figure 5. Anti-proliferative activities of compounds against human breast cancer MCF7 cells. The
MTT assay was performed three independent times (n = 3) using different concentrations of the
mentioned compounds.

3. Experimental

3.1. Synthesis

General Procedures

Melting points were determined on a Böetius PHMK (Veb Analytik Dresden) apparatus. Thin
Layer Chromatography (TLC) was performed using aluminum plates pre-coated with silica gel 60
or 60 F254 (Merck) and visualized by iodine or UV light (254 nm). The NMR spectra were recorded
on a Varian Gemini 300 and Bruker DRX 400 spectrometer at 25 ◦C. 1H- and 13C-NMR signals were
referenced to TMS and the solvent shift ((CD3)2SO δ H 2.50 and δ C 39.5). Coupling constants are given
in Hz and without sign. The IR spectra (ν, cm−1) were recorded (KBr) on a Jasco FT/IR-410 instrument.
Microanalyses were operated using Perkin Elmer 240 instrument and satisfactory results within the
accepted range (±0.40) of the calculated values were obtained. All reagents and solvents were of
commercial grade. The cytotoxic activity against cancer cell lines was studied at National Research
Center (NRC), Dokki, Cairo, Egypt. Compounds 1 and 2 were prepared as reported previously [47,48].

3.2. Ethyl 7-(Aryl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carboxylate (3, 4)

A mixture of the ester compounds 1 or 2 (10 mmol), 1,2-dibromoethane (10 mmol), and K2CO3

(20 mmol) in DMF (12 mL) was heated in a water bath at 90 ◦C for 3 h, and poured on ice and cooled
with water. The afforded precipitate was filtered, dried, and recrystallized from acetone–water (1:1) to
give the thiazolopyrimidine derivatives 3 or 4, respectively.
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3.2.1. Ethyl 7-(4-Chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carboxylate (3)

Yield: 88%; 136–137 ◦C. IR spectrum: 3060 (C-H aromatic), 2975 (CH-aliphatic), 1695 (C=O), 1605
(C=N). 1H-NMR (500 MHz, DMSO-d6) δ 1.39 (t, 3H, J = 5.8 Hz, CH3), 2.11 (s, 3H, CH3), 3.34 (t, 2H,
J = 5.8 Hz, CH2), 3.41 (t, 2H, J = 5.8 Hz, CH2), 4.12 (q, 2H, J = 5.8 Hz, CH2), 5.69 (s, 1H, H-7), 7.52 (d, 2H,
J = 7.8 Hz, Ar–H), 7.79 (d, 2H, J = 7.8 Hz, Ar-H). 13C-NMR (DMSO-d6) δ 14.3 (CH3), 29.2 (CH3), 53.2
(CH2), 54.8 (CH2), 58.9 (CH2), 60.9 (pyrimidine-C), 129.6 (pyrimidine-C), 130.5 (Ar-2C), 132.5 (Ar-2C),
133.0 (Ar-C), 134.8 (Ar-C), 164.3 (pyrimidine-C), 165.5 (pyrimidine-C), 169.1(C=O). EI-MS (m/z, %): 336
(M+, 69). Anal. calcd. for C16H17ClN2O2S (336.83): C, 57.05; H, 5.09; N; 8.32. Found: C, 56.90; H, 5.02;
N, 8.47.

3.2.2. Ethyl 5-Methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carboxylate (4)

Yield: 79%; 131–132 ◦C. IR spectrum: 3060 (C–H aromatic), 2970 (CH-aliphatic), 1670 (C=O), 1603
(C=N). 1H-NMR (500 MHz, DMSO-d6) δ 1.37 (t, 3H, J = 5.8 Hz, CH3), 2.10 (s, 3H, CH3), 3.35 (t, 2H,
J = 5.8 Hz, CH2), 3.41 (t, 2H, J = 5.8 Hz, CH2), 4.12 (q, 2H, J = 5.8 Hz, CH2), 4.60 (s, 1H, H-7), 6.95–7.15
(m, 3H, thienyl-H). 13C-NMR (DMSO-d6) δ 14.6 (CH3), 20.3 (CH3), 52.5 (CH2), 53.9 (CH2), 57.9 (CH2),
60.5 (pyrimidine-C), 117.0 (pyrimidine-C), 127.8 (thienyl C-5), 143.2 (thienyl C-3), 143.8 (thienyl C-4),
162.9 (thienyl C-2), 165.1 (pyrimidine-C), 166.5 (pyrimidine-C), 173.3 (C=O). EI-MS (m/z, %): 308 (M+,
85). Anal. calcd. for C14H16N2O2S2(308.41): C, 54.52; H, 5.23; N, 9.08. Found: C, 54.36; H, 5.32; N, 8.95.

3.3. 5-Methyl-7-(aryl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carbohydrazide (5, 6)

A solution of the thiazolopyrimidine ester compound 3 or 4 (10 mmol) and hydrazine hydrate
(30 mmol) in ethanol (25 mL) was heated under reflux for 8 h. The solution was cooled, and the
resulting precipitate was filtered and recrystallized from ethanol to give 5 or 6, respectively.

3.3.1. 7-(4-Chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carbohydrazide (5)

Yield: 66%; 169–170 ◦C. IR spectrum: 3412, 3325 (NH2 and NH), 3065 (CH-aromatic), 2927
(CH-aliphatic), 1655 (C=O), 1605 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.01 (s, 3H, CH3), 3.34 (t,
2H, J = 5.8 Hz, CH2), 3.41 (t, 2H, J = 5.8 Hz, CH2), 4.02 (brs, 2H, NH2), 4.61 (s, 1H, H-7), 7.56 (d, 2H,
J = 7.8 Hz, Ar–H), 7.88 (d, 2H, J = 7.8 Hz, Ar–H), 10.90 (brs, 1H, NH). 13C-NMR (DMSO-d6) δ 21.3
(CH3), 55.9 (CH2), 56.9 (CH2), 60.5 (pyrimidine-C), 115.0 (pyrimidine-C), 123.9 (Ar–C), 134.9 (Ar-2C),
140.4 (Ar-2C), 149.9 (Ar-C), 157.4 (pyrimidine-C), 168.4 (pyrimidine-C), 172.2 (C=O). EI-MS (m/z, %):
322 (M+, 73). Anal. calcd. for C14H15ClN4OS (322.81): C, 52.09; H, 4.68; N; 17.36. Found: C, 52.27; H;
4.59; N; 17.51.

3.3.2. 5-Methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-carbohydrazide (6)

Yield: 76%; 162–163 ◦C. IR spectrum: 3425–3390 (NH2 and NH), 3060 (CH-aromatic), 2925
(CH-aliphatic), 1660 (C=O), 1610 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 1.65 (s, 3H, CH3), 3.20
(t, 2H, J = 5.8 Hz, CH2), 3.50 (t, 2H, J = 5.8 Hz, CH2), 3.89-4.15 (brs, 3H, NH2, H-7), 7.15 (m, 1H,
thienyl-H), 7.40 (d, 1H, J = 7.2 Hz, thienyl-H), 7.60 (d, 1H, J = 6.8 Hz, thienyl-H), 8.49 (brs, 1H, NH).
13C-NMR (DMSO-d6) δ 22.3 (CH3), 55.6 (CH2), 57.7 (CH2), 79.7 (pyrimidine-C), 120.2 (pyrimidine-C),
121.9 (thienyl-C5), 132.9 (thienyl-C3), 154.4 (thienyl-C4), 154.9 (thienyl-C2), 157.5 (pyrimidine-C), 158.2
(pyrimidine-C), 172.4 (C=O). EI-MS (m/z, %): 294 (M+, 70). Anal. calcd. for C12H14N4OS2 (294.39): C,
48.96; H; 4.79, N; 19.03. Found: C, 49.07; H, 4.71; N, 19.17.

3.4. Sugar-5-(aryl)-7-methyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazone (7–10)

General procedure: a solution of the acyl hydrazide 5 or 6 (10 mmol) in ethanol (10 mL) was
added to a solution of d-galactose or d-xylose (10 mmol) in water (2 mL) followed by addition of glacial
acetic acid (0.2 mL). The reaction mixture was heated at reflux temperature for 5 h and then the solvent
was removed under reduced pressure. Dry diethyl ether was added to the remaining residue with
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stirring for 15 min and the formed product was washed with dry ethanol then dried to give the sugar
hydrazone derivatives 7–10.

3.4.1. d-Galactose 7-(4-chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-
carbohydrazone (7)

Yield: 71%; brownish foam; IR spectrum: 3425–3421 (OH), 3070 (CH-aromatic), 2930 (CH-aliphatic),
1645 (C=O), 1626 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.40 (s, 3H, CH3), 3.36 (t, 2H, J = 5.6 Hz,
CH2), 3.40–3.49 (m, 4H, CH2, H-6′,6”), 3.60–3.63 (m, 1H, H-5′), 3.89–4.05 (m, 2H, H-4′,3′), 4.65–4.71 (m,
2H, H-2′, OH), 5.15–5.19 (m, 1H, OH), 5.30–5.33 (m, 1H, OH), 5.40–5.44 (m, 1H, OH), 5.60–5.66 (m, 2H,
OH, H-7), 7.45 (d, 1H, J = 8.5 Hz, H-1′), 7.60 (d, 2H, J = 8.2 Hz, Ar–H), 7.88 (d, 2H, J = 8.2 Hz, Ar-H),
9.02 (s, 1H, NH). 13C-NMR (DMSO-d6) δ 18.8 (CH3), 45.1 (CH2), 55.4 (CH2), 60.6 (pyrimidine-C), 64.7
(C6′), 70.7 (C5′), 75.1 (C4′), 77.1 (C3′), 82.9 (C2′), 121.4 (pyrimidine-C), 121.9 (Ar-C), 126.9 (Ar-2C),
127.9 (Ar-2C), 139.4 (Ar-C), 140.6 (pyrimidine-C), 141.5 (C1′), 158.0 (pyrimidine-C), 167.9 (C=O). Anal.
calcd. for C20H25ClN4O6S (484.95): C, 49.53; H, 5.20; N, 11.55. Found: C; 49.37; H; 5.28; N; 11.41.

3.4.2. d-Xylose 7-(4-chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-
Carbohydrazone (8)

Yield: 62%; brownish foam; IR spectrum: 3420–3416 (OH), 3060 (CH-aromatic), 2922 (CH-aliphatic),
1665 (C=O), 1612 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.38 (s, 3H, CH3), 3.37 (t, 2H, J = 5.6 Hz,
CH2), 3.52-3.65 (m, 4H, CH2, H-5′,5”), 3.92-4.05 (m, 2H, H-4′,3′), 4.67–4.72 (m, 2H, H-2′, OH), 5.15–5.18
(m, 1H, OH), 5.29–5.40 (m, 2H, 2OH), 5.60 (s, 1H, H-7), 7.40 (d, 1H, J = 8.5 Hz, H-1′), 7.60 (d, 2H,
J = 8.2 Hz, Ar–H), 7.88 (d, 2H, J = 8.2 Hz, Ar-H), 9.02 (s, 1H, NH). 13C-NMR (DMSO-d6) δ 18.8
(CH3), 45.1 (CH2), 55.4 (CH2), 62.6 (pyrimidine-C), 64.5 (C5′), 72.7 (C4′), 77.1 (C3′), 85.9 (C2′), 121.4
(pyrimidine-C), 121.9 (Ar–C), 126.9 (Ar-2C), 127.9 (Ar-2C), 139.4 (Ar-C), 140.6 (pyrimidine-C), 141.5
(C1′), 158.0 (pyrimidine-C), 167.9 (C=O). Anal. calcd. for C19H23ClN4O5S (454.93): C, 50.16; H; 5.10, N;
12.32. Found: C, 50.41; H, 5.03; N, 12.15.

3.4.3. d-Galactose 5-methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-
carbohydrazone (9)

Yield: 75%; brownish foam. IR spectrum: 3417–3413 (OH), 3074 (CH-aromatic), 2923 (CH-aliphatic),
1650 (C=O), 1605 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.30 (s, 3H, CH3), 3.40 (t, 2H, J = 5.6 Hz,
CH2), 3.46–3.52 (m, 4H, CH2, H-6′,6′′′), 3.60–3.63 (m, 1H, H-5′), 3.94-4.10 (m, 2H, H-4′,3′), 4.68–4.72
(m, 2H, H-2′, OH), 5.18–5.21 (m, 1H, OH), 5.29–5.33 (m, 1H, OH), 5.39–5.43 (m, 1H, OH), 5.55–5.61
(m, 2H, OH, H-7), 7.35–742 (m, 2H, H-1′, thienyl-H), 7.40 (d, 1H, J = 7.2 Hz, thienyl-H), 7.6 (d, 1H, J
= 6.8 Hz, thienyl-H), 8.92 (brs, 1H, NH). 13C NMR (DMSO-d6) δ 18.8 (CH3), 45.1 (CH2), 55.4 (CH2),
60.6 (pyrimidine-C), 64.7 (C6′), 70.7 (C5′), 75.1 (C4′), 77.1 (C3′), 82.9 (C2′), 121.4 (pyrimidine-C), 124.9
(thienyl-C5), 126.4 (thienyl-C3), 127.0 (thienyl-C4), 139.4 (thienyl-C2), 140.6 (pyrimidine-C), 141.5 (C1′),
158.0 (pyrimidine-C), 167.9 (C=O). Anal. calcd. for C18H24N4O6S2 (456.53): C; 47.36; H; 5.30, N, 12.27.
Found: C; 47.17; H; 5.42; N; 12.04.

3.4.4. d-Xylose 5-methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidine-6-
Carbohydrazone (10)

Yield: 70%; brownish foam. IR spectrum: 3415–3411 (OH), 3055 (CH-aromatic), 2919
(CH-aliphatic), 1655 (C=O), 1523 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.38 (s, 3H, CH3), 3.32 (t, 2H,
J = 5.6 Hz, CH2), 3.54–3.66 (m, 4H, CH2, H-5′,5′′′), 3.95-4.12 (m, 2H, H-4′,3′), 4.97–5.11 (m, 3H, H-2′,
2OH), 5.15–5.18 (m, 1H, OH), 5.29–5.40 (m, 2H, OH, H-7), 7.20 (d, 1H, J = 8.5 Hz, H-1′), 7.34–7.38 (m,
1H, thienyl-H), 7.41 (d, 1H, J = 8.2 Hz, thienyl-H), 7.88 (d, 1H, J = 8.2 Hz, thienyl-H), 9.05 (s, 1H, NH).
13C-NMR (DMSO-d6) δ 18.8 (CH3), 45.1 (CH2), 55.4 (CH2), 60.6 (pyrimidine-C), 62.22 (C5′), 70.1 (C4′),
76.1 (C3′), 83.9(C2′), 121.4 (pyrimidine-C), 124.9 (thienyl-C5), 126.4 (thienyl-C3), 127.0 (thienyl-C4),
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139.4 (thienyl-C2), 140.6 (pyrimidine-C), 141.5 (C1′), 158.0 (pyrimidine-C), 167.9 (C=O). Anal. calcd.
for C17H22N4O5S2 (426.10): C, 47.87; H; 5.20, N; 13.14. Found: C; 48.02; H; 5.08; N; 13.04.

3.5. General Procedure for the Preparation of Compounds (11–14)

To a solution of the sugar hydrazones 7–10 (10 mmol) in pyridine (5 mL), acetic anhydride (3 mL)
was added and the mixture was stirred at room temperature for 20 h. The resulting solution was
poured onto crushed ice and the product was extracted by ethyl acetate (15 × 3 mL), washed with a
saturated solution of sodium hydrogen carbonate (10 mL) followed by water and then the solvent was
evaporated to afford the acetylated products 11–14.

3.5.1. Penta-O-acetyl-d-galactopentitolyl-7-(4-chlorophenyl)-5-methyl-2,3-dihydro-7H-
thiazolo[3,2-a]pyrimidine-6-carbohydrazone (11)

Yield: 70%; Brownish foam. IR spectrum: 3421 (NH), 3055 (CH-aromatic), 2933 (CH-aliphatic),
1735 (C=O), 1624 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.01 (s, 3H, CH3), 2.03 (s, 3H, CH3),
2.05 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.43 (s, 3H, CH3), 3.41–3.45 (m, 4H, 2CH2),
3.88–3.95 (m, 2H, H-6′,6”), 4.08–4.16 (m, 1H, H-5′), 4.68–4.80 (m, 2H, H-4′, H-3′), 4.82–4.86 (m, 1H,
H-2′), 5.32 (s, 1H, H-7), 7.35 (d, 2H, J = 8.4 Hz, Ar–H), 7.41 (d, 2H, J = 8.4 Hz, Ar-H), 7.48 (d, 1H,
J = 7.8 Hz, H-1′), 9.07 (s, 1H, NH). 13C-NMR (DMSO-d6) δ 18.8, 19.9, 20.2, 20.4, 20.7, 21.1 (6CH3),
45.1 (CH2), 55.4 (CH2), 60.6 (pyrimidine-C), 65.7 (C6′), 72.7 (C5′), 76.14 (C4′), 79.5 (C3′), 83.2(C2′),
121.4 (pyrimidine-C), 121.9 (Ar–C), 126.9 (Ar-2C), 127.9 (Ar-2C), 139.4 (Ar-C), 140.6 (pyrimidine-C),
141.5 (C1′), 158.0 (pyrimidine-C), 167.9, 169.8, 170.1, 170.3, 170.6, 170.8 (6C=O). Anal. calcd. for
C30H35ClN4O11S (695.14): C; 51.84; H; 5.08, N, 8.06. Found: C; 51.56; H; 5.12; N; 7.92.

3.5.2. Tetra-O-acetyl-d-xylotetritolyl-7-(4-chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]-
pyrimidine-6-carbohydrazone (12)

Yield: 61%; Brownish foam. IR spectrum: 3431 (NH), 3048 (CH-aromatic), 2925 (CH-aliphatic),
1749 (C=O), 1630 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.04 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.08
(s, 3H, CH3), 2.10 (s, 3H, CH3), 2.48 (s, 3H, CH3), 2.98 (t, 2H, J = 5.8 Hz, CH2), 3.25-3.45 (m, 4H, CH2,
H-5′,5”), 3.90 (m, 1H, H-4′), 4.35–4.58 (m, 2H, H-3′, H-2′), 5.56 (s, 1H, H-7), 7.32 (d, 1H, J = 7.6 Hz, H-1′),
7.64 (d, 2H, J = 8.4 Hz, Ar-H), 7.78 (d, 2H, J = 8.4 Hz, Ar-H), 9.12 (s, 1H, NH). 13C-NMR (DMSO-d6) δ
18.8, 19.8, 20.1, 20.3, 21.2 (5CH3), 45.1 (CH2), 55.4 (CH2), 60.6 (pyrimidine-C), 72.4 (C5′), 75.23 (C4′),
78.5 (C3′), 83.4 (C2′), 121.4 (pyrimidine-C), 121.9 (Ar–C), 126.9 (Ar-2C), 127.9 (Ar-2C), 139.4 (Ar-C),
140.6 (pyrimidine-C), 141.5 (C1′), 158.0 (pyrimidine-C), 168.1, 170.2, 170.4, 170.7, 170.9 (5C=O). Anal.
calcd. for C27H31ClN4O9S (623.07): C, 52.05; H; 5.02, N; 8.99. Found: C, 51.88; H, 5.09; N, 9.11.

3.5.3. Penta-O-acetyl-d-galactopentitolyl-5-methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]-
pyrimidine-6-carbohydrazone (13)

Yield: 74%; Brownish foam. IR spectrum: 3424 (NH), 3066 (CH-aromatic), 2928 (CH-aliphatic),
1740 (C=O), 1615 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 1.95 (s, 3H, CH3), 1.99 (s, 3H, CH3), 2.04
(s, 3H, CH3), 2.17 (s, 3H, CH3), 2.26 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.92 (t, 2H, J = 5.6 Hz, CH2),
3.39–3.60 (m, 4H, CH2, H-6′,6”), 4.11–4.15 (m, 1H, H-5′), 4.25-4.34 (m, 2H, H-4′, H-3′), 4.83 (m, 1H,
H-2′), 5.34 (s, 1H, H-7), 7.35-7.43 (m, 3H, thienyl-H), 8.05 (d, 1H, J = 7.8 Hz, H-1′), 9.12 (brs, 1H,
NH). 13C-NMR (DMSO-d6) δ 18.8, 20.1, 20.4, 20.6, 20.9, 21.1 (6CH3), 45.1 (CH2), 55.4 (CH2), 60.6
(pyrimidine-C), 62.7 (C6′), 70.2 (C5′), 74.1 (C4′), 76.1 (C3′), 81.9 (C2′), 121.4 (pyrimidine-C), 124.9
(thienyl-C5), 126.4 (thienyl-C3), 127.0 (thienyl-C4), 139.4 (thienyl-C2), 140.6 (pyrimidine-C), 141.5 (C1′),
158.0 (pyrimidine-C), 167.5, 169.9, 170.2, 170.4, 170.6, 170.9 (6C=O). Anal. calcd. for C28H34N4O11S2

(666.72): C, 50.44; H, 5.14; N; 8.40. Found: C, 50.21; H; 5.18; N; 8.27.
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3.5.4. Tetra-O-acetyl-d-xylotetritolyl-5-methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]-
pyrimidine-6-carbohydrazone (14)

Yield: 65%; Brownish foam. IR spectrum: 3407 (NH), 3060 (CH-aromatic), 2928 (CH-aliphatic),
1740 (C=O), 1626 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.01 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.05
(s, 3H, CH3), 2.11 (s, 3H, CH3), 2.44 (s, 3H, CH3), 3.39 (t, 2H, J = 5.6 Hz, CH2), 3.54-3.73 (m, 4H,
CH2, H-5′,5”), 4.15–4.18 (m, 1H, H-4′), 4.70–4.75 (m, 1H, H-3′), 4.88–4.94 (m, 1H, H-2′), 5.55 (s, 1H,
H-7), 7.35–7.38 (m, 1H, thienyl-H), 7.46 (d, 1H, J = 7.4 Hz, thienyl-H), 7.55–7.61 (m, 2H, thienyl-H,
H-1′), 9.05 (brs, 1H, NH). 13C-NMR (DMSO-d6) δ 18.8, 19.9, 20.2, 20.4, 20.8 (5CH3), 45.1 (CH2), 55.4
(CH2), 60.6 (pyrimidine-C), 66.2 (C5′), 73.1 (C4′), 76.1 (C3′), 81.9 (C2′), 121.4 (pyrimidine-C), 124.9
(thienyl-C5), 126.4 (thienyl-C3), 127.0 (thienyl-C4), 139.4 (thienyl-C2), 140.6 (pyrimidine-C), 141.5 (C1′),
158.0 (pyrimidine-C), 167.7, 169.9, 170.2, 170.5, 170.9 (5C=O). Anal. calcd. for C25H30N4O9S2 (594.65):
C; 50.50; H; 5.09, N; 9.42. Found: C, 50.35; H; 5.26; N; 9.25.

3.6. General Procedure for the Preparation of the Oxadiazoline Substituted Sugar Derivatives (15–18)

A solution of sugar hydrazones 7–10 (10 mmol) in acetic anhydride (15 mL) was heated at 100 ◦C
with stirring for 1.5 h. The resulting solution was poured onto crushed ice, and the product was
extracted by ethyl acetate, washed with a solution of sodium hydrogen carbonate followed by water
and then dried after evaporation of ethyl acetate. The product was washed two times with diethyl
ether–pet. ether mixture (1:1) then dried to give compounds 15–18.

3.6.1. 1-(5-(7-(4-Chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-6-yl)-2-(penta-O-
acetyl-d-galactopentitolyl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one (15)

Yield: 72%; Brownish foam. IR spectrum: 3048 (CH-aromatic), 2962 (CH-aliphatic), 1735 (C=O),
1675 (C=O), 1618 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.30 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.34 (s,
3H, CH3), 2.40 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2,42 (s, 3H, CH3), 2.43 (s, 3H, CH3), 3.41 (t, 2H, J = 6.2 Hz,
CH2), 3.67–3.88 (m, 4H, CH2, H-5′,5”), 4.38–4.42 (m, 1H, H-4′), 4.68–4.72 (m, 1H, H-3′), 4.86-4.92 (m,
1H, H-2′), 4.99-5.04 (m, 1H, H-1′), 5.32 (s, 1H, H-7), 5.70 (d, 1H, J = 7.4 Hz, oxadiazoline-H), 7.35 (d,
2H, J = 8.4 Hz, Ar-H), 7.41 (d, 2H, J = 8.4 Hz, Ar-H). 13C-NMR (DMSO-d6) 18.6, 19.8, 20.1, 20.7, 21.0,
21.5, 23.4 (7CH3), 31.5, 52.8, (2CH2), 55.9 (pyrimidine-C), 61.9 (C5′), 62.8 (C4′), 67.7 (C3′), 68.9 (C2′),
75.0 (C1′), 82.5 (oxadiazoline-C), 118.1 (pyrimidine-C), 127.5 (ArC), 128.9 (Ar-2C), 134.5 (Ar-2C), 135.9
(Ar–C), 141.1 (pyrimidine-C), 151.5 (oxadiazoline-C), 158.2 (pyrimidine-C), 169.9, 170.1, 170.4, 170.7,
170.9, 171.2 (6C=O). Anal. calcd. for C32H37ClN4O12S (737.17): C, 52.14; H, 5.06; N; 7.60. Found: C,
52.39; H; 5.14; N, 7.79.

3.6.2. 1-(5-(7-(4-Chlorophenyl)-5-methyl-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-6-yl)-2-(tetra-O-
acetyl-d-xylotetritolyl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one (16)

Yield: 66%; Brownish foam. IR spectrum: 3053 (CH-aromatic), 2916 (CH), 1735 (C=O), 1680 (C=O)
1616 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.36 (s, 3H, CH3), 2.38 (s, 3H, CH3), 2.40 (s, 3H, CH3),
2.41 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.49 ((s, 3H, CH3), 3.07 (t, 2H, J = 5.8 Hz, CH2), 3.43-3.54 (m, 3H,
CH2, H-4”), 3.92–3.97 (m, 1H, H-4′), 4.35–4.38 (m, 1H, H-3′), 4.77–4.81 (m, 1H, H-2′), 4.90-4.94 (m, 1H,
H-1′), 5.35 (s, 1H, H-7), 5.72 (d, 1H, J = 7.4 Hz, oxadiazoline-H), 7.29 (d, 2H, J = 8.5 Hz, Ar–H), 7.52
(d, 2H, J = 8.5 Hz, Ar–H). 13C-NMR (DMSO-d6) 19.1, 20.5, 20.8, 21.1, 21.5, 23.2 (6CH3), 31.4 (CH2),
52.7 (CH2), 59.30 (pyrimidine-C), 61.8 (C4′), 65.2 (C3′), 68.7 (C2′), 76.4 (C1′), 81.3 (oxadiazoline-C),
118.4 (pyrimidine-C), 128.5 (Ar-C), 130.0 (Ar-2C), 134.4(Ar-2C), 136.0 (Ar-C), 141.0 (pyrimidine-C),
150.7 (oxadiazoline-C), 158.6 (pyrimidine-C), 17.0, 170.3, 170.9, 171.2, 171.5 (5C=O). Anal. calcd. for
C29H33ClN4O10S (665.11): C, 52.37; H; 5.00, N; 8.42. Found: C, 52.08; H; 5.14; N; 8.31.
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3.6.3. 1-(5-(5-Methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-6-yl)-2-(penta-O-
acetyl-d-galactopentitolyl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one (17)

Yield: 76%; Brownish foam. IR spectrum: 3050 (CH-aromatic), 2929 (CH-aliphatic), 1739 (C=O),
1672 (C=O), 1612 (C=N); 1H-NMR (500 MHz, DMSO-d6) δ 2.30 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.36 (s,
3H, CH3), 2.39 (s, 3H, CH3), 2.43 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.49 (s, 3H, CH3), 3.23 (t, 2H, J = 5.8 Hz,
CH2), 3.39–3.51 (m, 3H, CH2, H-5”), 3.82–4.01 (m, 1H, H-5′), 4.32–4.35 (m, 1H, H-4′), 4.64–4.79 (m, 2H,
H-3′, H-2′), 4.98–5.05 (m, 1H, H-1′), 5.21 (s, 1H, H-7), 5.71 (d, 1H, J = 7.2 Hz, oxadiazoline-H), 7.81-7.93
(m, 3H, thiophen-H). 13C-NMR (DMSO-d6) 18.6, 20.1, 20.7, 21.0, 21.4, 21.5, 23.4 (7CH3), 31.5 (CH2), 52.8
(CH2), 40.9 (pyrimidine-C), 61.9 (C5′), 62.8 (C4′), 67.7 (C3′), 68.9 (C2′), 75.0 (C1′), 82.5 (oxadiazoline-C),
118.1 (pyrimidine-C), 127.5 (thienyl-C5),128.9 (thienyl-C3), 136.5 (thienyl-C4), 139.9 (thienyl-C2), 141.1
(pyrimidine-C), 151.5 (oxadiazoline-C), 158.2 (pyrimidine-C), 169.9, 170.1, 170.4, 170.7, 170.9, 171.2
(6C=O). Anal. calcd. for C30H36N4O12S2 (708.75): C, 50.84; H; 5.12, N; 7.91. Found: C, 50.62; H; 5.04;
N; 8.02.

3.6.4. 1-(5-(5-Methyl-7-(thiophen-2-yl)-2,3-dihydro-7H-thiazolo[3,2-a]pyrimidin-6-yl)-2-(tetra-O-
acetyl-d-xylotetritolyl)-1,3,4-oxadiazol-3(2H)-yl)ethan-1-one (18)

Yield: 68%; Brownish foam. IR spectrum: 3072 (CH-aromatic), 2935 (CH-aliphatic), 1740 (C=O),
1670 (C=O), 1631 (C=N). 1H-NMR (500 MHz, DMSO-d6) δ 2.30 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.34 (s,
3H, CH3), 2.41 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.55 (s, 3H, CH3), 3.24–3.27 (m, 4H, 2CH2), 3.93–3.97 (m,
1H, H-4”), 4.02–4.08 (m, 1H, H-4′), 4.43–4.47 (m, 1H, H-3′), 4.85–4.88 (m, 1H, H-2′), 5.12–5.17 (m, 2H,
H-1′), 5.25 (s, 1H, H-7), 5.70 (d, 1H, J = 7.4 Hz, oxadiazoline-H), 7.83–7.92 (m, 3H, thiophen-H). 13C-NMR
(DMSO-d6): 19.1, 20.5, 20.8, 21.1, 21.5, 23.2 (6CH3), 31.4 (CH2), 52.7 (CH2), 47.2 (pyrimidine-C), 61.8
(C4′), 65.2 (C3′), 68.7 (C2′), 76.4 (C1′), 81.3 (oxadiazoline-C), 118.4 (pyrimidine-C), 127.5 (thienyl C-5),
129.5 (thienyl C-3), 134.4 (thienyl C-4), 135.9 (thienyl C-2), 141.0 (pyrimidine-C), 150.7 (oxadiazoline-C),
158.6 (pyrimidine-C), 170.3, 170.5, 170.9, 171.2, 171.5 (5C=O); Anal. calcd. for C27H32N4O10S2 (636.69):
C, 50.93; H; 5.07, N; 8.80. Found: C; 51.05; H; 5.11; N; 8.68.

3.7. Materials of the Cell Lines Assay

3.7.1. Cell Culture, Maintenance, and Sub-Culture

Human sensitive and resistant cell lines were purchased from American Type Culture Collection
(ATCC, Gaithersburg, MD, USA) as well as human breast cancer MCF7 and MDA-MB-231 cell lines
and human colorectal cancer HCT 116 and Caco-2 cell lines. They were cultured using Dulbecco’s
modified Eagle’s medium (DMEM) and Roswell Park Memorial Institute (RPMI-1640) medium. All
media were supplemented with 4.5g/L glucose w/L-glutamine (Lonza Bioproducts, Belgium) and 10%
fetal bovine serum (FBS) (Seralab, UK). The cells were incubated in 5% CO2 humidified at 37 ◦C for
growth maintenance.

3.7.2. Cell Proliferation by MTT Assay

The percentages of viable human colorectal cancer HCT 116 and Caco-2 cells as well as human
breast cancer MCF7 and MDA-MB-231 cell lines after treatment with different concentrations
of the synthesized compounds. These compounds were evaluated by the 3-(4,5-methylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, as reported previously [38], with slight
modification. In brief, after evaluation of cell count and viability by trypan blue dye-based method,
A549 cells (1 × 104 cells/well) were seeded in a 96 well plate and then kept overnight for attachment.
The next day, the complete medium was replaced with fresh one, and then various concentrations of
the formulations were investigated on each cell line. After that, cells were allowed to grow for 24 h.
Four hours before completion of the incubation period, 10 µL of the MTT (5 mg/mL) was added in
each well. After completing the incubation, 100 µL of dimethyl sulfoxide (DMSO) was added to each
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well and left for 20 min to dissolve the formazan crystals. After the reaction, color development was
measured at 450 nm using Bio-Tek microplate reader.

3.7.3. IC50 Measurement

The half-maximal inhibitory concentrations (IC50) values, which are the concentrations that inhibit
50% of cancer cell viabilities, were obtained by plotting the percentages of cancer cell viabilities
versus the concentrations of the sample using polynomial concentration–response curve fitting models
(OriginPro 8 software).

4. Conclusions

New hybrid compounds of aryl or heteroaryl substituted thiazolopyrimidine system incorporating
acyclic sugar moiety derivatives and their derived oxadiazoline compounds were prepared from
simple starting compounds. The cytotoxic activities against four cancer cell lines were studied and
the prepared compounds that had either an acetylated or deprotected acyclic sugar part were the
most active. The results showed the importance of attachment of certain sugar moieties to the
thiazolopyrimidine system. The highest activities by the most active candidates were revealed against
human colorectal cancer Caco-2 cell lines with the lowest IC50 values.
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