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Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness,
spatiotemporal selectivity, low side-effects, and immune activation ability has been
clinically approved for the treatment of head and neck cancer, esophageal cancer,
pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma.
Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is
hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various
smart nanomedicine-based strategies are developed to overcome the barriers of
traditional PDT including the drawbacks of traditional photosensitizers, limited tissue
penetrability of light, inefficient induction of tumor cell death and tumor resistance to
the therapy. More notably, a growing number of studies have focused on improving the
therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which
heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of
PDT induced-tumor destruction, especially the host immune response is summarized, and
focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate
immunity and adaptive immunity. We expect it will provide some insights for conquering
the drawbacks current PDT and expand the range of clinical application through this
review.
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INTRODUCTION

Photodynamic Therapy (PDT) has been applied as adjuvant tumor therapy for more than 40 years
(Li et al., 2020). It depends on a basic principles that the photosensitizer (PS) is excited by a light with
an appropriate wavelength, and the excited PS directly transfers energy to the oxygen to produce
reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anions (O2

−) and hydroxyl
radicals (OH) in tumor cells (Dolmans et al., 2003). The highly reactive ROS will be result in the
oxidation of the biomolecules in cells, including nucleic acids, lipids, and proteins, leading to severe
alteration in cell signaling cascades or in gene expression regulation (Robertson et al., 2009).
Consequently, the ROS directly or indirectly destroys tumor cells via apoptotic, necrotic and
autophagy-associated cell death. Moreover, some photosensitizers are bound to serum protein and
transfer to endothelial cells of tumor blood vessels. During laser irradiation, the tumor-associated
vasculature will also be damaged, which can lead to thrombosis and hemorrhage in tumor blood
vessels. Subsequently, the tumor growth can be inhibit owing to the lack of oxygen and nutrients
(Janas et al., 2021; Wang et al., 2022c). In addition, PDT also induce the acute inflammation and
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trigger the release of cytokines and stress response proteins.
Firstly, as a major characteristic of acute inflammation, the
neutrophils will be activated in circulation and migrate across
blood vessels to move to the infectious or injured sites (Chu et al.,
2018), thus the acute inflammation induced by PDT can induce
the recruitment of some neutrophils to kill cancer cells.
Meanwhile, the injuries of the blood vessel and tumor cells
also attract the macrophages infiltration, regulating the
polarization of macrophage and improving the phagocytosis of
macrophages to tumor cells (Zhou et al., 2009; Korbelik and
Hamblin, 2015). Several studies have also suggested that PDT can
improve the Natural Killer (NK) cells activity and initiate the
immunity. Apart from the direct cytotoxicity, NK can stimulate
the maturation of dendritic cells (DCs) and subsequently activate
the adaptive immune cells like monocytes, cytotoxic T
lymphocytes (CTLs), and B cells to enhance the whole
immune response by secreting cytokines (Cantoni et al., 2016;
Cerwenka and Lanier, 2016; Wang et al., 2019b). Notably, the
PDT will trigger the release of adenosine triphosphate (ATP) and
high-mobility group box 1 protein (HMGB1) from the dying
cells, meanwhile, the calreticulin (CRT), heat shock proteins
(HSPs) will be exposed on the surface of dying cells. These
molecular provide “eat me” signal to initiate an immune
response (Shaif-Muthana et al., 2000). It promotes the
mutation of antigen presenting cells (APCs) and presentation
of tumor associate antigen (TAA). Meanwhile, the secretion of

cytokines (IFN-γ, IFN-α) will be boosted and further promote the
APCs maturation and CTLs homing (Figure 1) (Beltran
Hernandez et al., 2020). The activation of anti-tumor
immunity not only contributes to the destruction of primary
tumor cells, but also destroys the tumor cells even at isolated
locations (Ji et al., 2022).

The mechanisms of tumor damage caused by PDT mainly
include the following types: 1) PS is enriched in tumor vascular
endothelial cells, causing platelet coagulation, vasoconstriction,
and thrombosis. Tumor blood vessels are blocked, resulting in
hypoxic infarction of tumor tissue. 2) ROS directly destroys
proteins, nucleic acids, lipids, etc. of cells, causing apoptosis,
necrosis and autophagy of cells. 3) PDT-triggered inflammatory
responses activate innate and adaptive immune responses.

Nevertheless, the broad application of conventional PDT
remains many challenges in the clinic practice. It is well-
known that PS, oxygen, and light as three essential
components are involved in PDT. Typically, most of the PS
lacks the tumor-targeting ability and the effective dosage is
insufficient in tumors (Idris et al., 2015). Furthermore, the
hypoxia tumor microenvironment, limited light penetration
towards tumor tissues, and insufficient T cell infiltration in
tumors also greatly limited the efficacy of PDT (Zhang et al.,
2018a). Recently, with the development of nanotechnology,
various advanced nanoparticles were developed to overcome
above drawbacks and expand the range of application,

FIGURE 1 | Schematic illustration of the antitumor mechanism of PDT.
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showing the great potential for improving the PDT efficacy.
Numerous nanomaterials have been reported to have the
ability to produce ROS under the light excitation, enabling
them to serve as nano-photosensitizers in PDT (Table 1)
(Wang et al., 2015; Sun et al., 2019b). Moreover, some
nanoparticles are also ideal carriers for traditional
photosensitizers (Lucky et al., 2015; Xie et al., 2021). The
nano-photosensitizers and nano-delivery systems are able to
accumulate more efficiently in tumor tissue through the
enhanced permeability and retention (EPR) effect owing to the
particle size and the abnormal vascular structure of tumors (Peer
et al., 2007; Hao et al., 2020; Li et al., 2021b; Liang et al., 2021b).
The nanomaterials can also be further modified or functionalized
to improve the targeting efficacy, enhancing the dosage of in
tumor and reducing toxicity to normal tissues (Zhong et al., 2015;
Seidi et al., 2018; Liang et al., 2021a). Furthermore, nanomaterial-
based photosensitizers have better photostability than traditional
ones, which is able to produce ROS for a longer time (Wang et al.,
2020b). It is worth noting that nanomaterials mediated PDT
endow the excitation light source and approach more flexible and
adjustable. For example, various lanthanide-doped upconversion
nanoparticles (UCNPs) are developed and applied for UCNPs-
based PDT. It will be excited by near infrared light (NIR), which
can penetrate deep tissues (>3 cm) with lower light scattering and
absorption of human tissues (Chen et al., 2017; Zhang et al.,
2018a). Other excitation approach including ultrasound and
X-ray gradually derived new therapeutic strategies termed
sonodynamic therapy (SDT) and radiodynamic therapy
(RDT), respectively, also provide novel approach for breaking
through the limitation of tissue penetration depth (Chen et al.,
2015; Lu et al., 2018; Pan et al., 2018; Ni et al., 2022; Nowak et al.,
2022). To relieve the hypoxia in tumor microenvironment and
improve the PDT efficacy, several strategies based on
nanomaterials have emerged so far. In addition to the direct
delivery of oxygen with nanoplatform, some nanoparticles can be
served as nanoreactor to catalyze the release of oxygen in tumor
microenvironment, such as MnO2, CaO2 and two-dimensional

nanomaterials (Fan et al., 2016; Ji et al., 2019; Zhou et al., 2020;
Wang et al., 2022a; Jin et al., 2022; Zeng et al., 2022). Besides,
acceleration of intratumoral blood flow is also useful for
increasing O2 concentrations in hypoxic tumors. Previous
research suggests that photothermal-mediated heating will
increase the blood flow and combination with photothermal
therapy is regarded to enhance PDT inhibition of hypoxic
tumors (Wu et al., 2019a; Chen et al., 2022). Benefiting from
the unique characteristics of multifunctional nanomaterials,
multiple therapeutic strategies can be simultaneously mediated
by one nanoplatform to synergistically inhibit tumor, such as the
combination of gas therapy (Wan et al., 2018; Wang et al., 2022b)
and chemotherapy (Yang et al., 2019a; Wang et al., 2019e), etc.,
Recently, some emerging nanomaterials such as heterojunction-
based nanoparticles have been prepared to enhance the
generation efficacy of ROS through catalytic reaction, deriving
a new therapeutic strategy termed catalytic therapy. The
combination of PDT and catalytic therapy implied a
promising strategy to strengthen the therapeutic efficiency
(Pan et al., 2019; Kang et al., 2021; Kong et al., 2021; Pan
et al., 2022).

Tumor recurrence and metastasis are vital causes of treatment
failure and death of patients. Although PDT can induce host anti-
tumor immune response, the short-acting and insufficient anti-
tumor immunity is hard to control the tumor recurrence and
metastasis due to the existence of immunosuppressive
microenvironment. A large number of studies currently is
committed to elicit robust anti-tumor immunity after PDT,
and imply that activation of antitumor immune effects is a
highly promising strategy to enhance PDT efficacy and expand
PDT indications. Nowadays, the advanced nanomaterials have
opened new promising avenues to refine and improve the anti-
tumor efficacy through combining PDT with immunity
activation. In addition to improve the therapeutic efficacy by
excellently codelivering PS to tumors, relieve hypoxic
microenvironment and combining with other treatment
approaches, etc., the multifunctional nanomaterials can

TABLE 1 | Summary of nanocomposites containing photosensitizers for cancer therapy.

Photosensitizer Nanoplatforms Wavelength Cancer References

Porphyrin sodium
(Photofrin)

Metal-organic frameworks (MOFs) 630 nm Breast cancer, cervical
cancer

Choi et al. (2018), Marydasan
et al. (2019)

5-aminolevulinic acid
(5-ALA)

5-ALA-SQ NPs, nanogels, ALA-OHex micelles 630 nm, 660 nm Prostate cancer, breast
cancer, cervical cancer

Babic et al. (2018), Wang et al.
(2020a), Li et al. (2021a)

Chlorin e6 (Ce6) rGO-PEG/Ce6 NPs, PEG-Ce6-Gd NPs, Uccinate
(TPGS)–IR820/Ce6 micelles

630 nm, 660 nm,
808 nm

Breast cancer, glioma,
melanoma

Hu et al. (2018), Lee et al. (2020),
Xu et al. (2021)

Rose Bengal (RB) Mesoporous silica NPs, RB-loaded peptido-nanomicelles
(RBNs)

532 nm, 585 nm Glioma, squamous cell
carcinoma

Sun et al. (2019a), Zhang et al.
(2019)

Indocyanine
green (ICG)

Holo-Tf-indocyanine green (holo-Tf-ICG) NPs, folate
decorated polymeric micelles (FA Co-PMs), DOX/ICG (DI)
micellar

808 nm Breast cancer, glioma, liver
cancer

Zhu et al. (2017), Zhang et al.
(2018b), Chen et al. (2019)

Infrared 780 iodide
(IR780)

Polydopamine nanoclustered micelles, IR780-DOX-
PEG NPs

808 nm Breast cancer Yang et al. (2019a), Xing et al.
(2019)

Infrared 820 (IR820) IR820 1-methyl-tryptophan (IR820-1 MT) NPs, zinc
protoporphyrin (ZnPP) conjugated micelles

808 nm Breast cancer, melanoma,
lung cancer

Noh et al. (2018), Zaharie-Butucel
et al. (2019)

Infrared 806 (IR806) Metal-organic frameworks (MOFs), IR806 chitosan
liposomes

793 nm, 980 nm Breast cancer, cervical
cancer

Deng et al. (2017), Lin et al.
(2018); Jogdand et al. (2020)
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regulate the tumor immune microenvironment, including
eliciting innate immunity and adaptive immunity (Table 2)
(Xu et al., 2017; Sang et al., 2019; Chen et al., 2020; Chen
et al., 2021).

ELICITING INNATE IMMUNITY

After PDT, cell debris or various cytoplasmic components
resulting from tumor death and lysis can cause a strong
inflammatory response in surrounding tissues. Various cells in
the TME, such as surviving tumor cells, damaged endothelial
cells, tumor stromal cells, etc., can release numerous pro-
inflammatory mediators, including arachidonic acid, cytokines
such as MIP2 (CXCL2), IL6, IL- 1β, TNFα, complement system,
etc.. These components enhance chemotaxis, activation, and
phagocytosis of macrophages, and aggregate neutrophils,
triggering a strong innate immune response. At the same time,
macrophages will present cell debris and dead tumor cells as
antigens to T lymphocytes, and correspondingly activate
lymphocyte-based adaptive immunity (Jin et al., 2022).
Therefore, PDT-induced local tumor tissue inflammatory
response activates innate and adaptive immune responses
(Beltran Hernandez et al., 2020). The innate immune cells can
detect tumors, induce and amplify adaptive immune responses,
and exert direct effector responses. Given the crucial role of
innate immune responses in antitumor immunity, harnessing
manipulates innate immune responses in cancer opens up new
possibilities for long-lasting, multilayered tumor control.

Potentialities of Neutrophils to Enhance
Photodynamic Therapy
Neutrophils, known as polymorphonuclear leukocytes (PMN),
are the major immune cell population in human blood and serve
as the first line of defense against invading pathogens (Rosales,
2018). In recent years, increasing evidence has shown that
neutrophils have host defense, immunomodulatory functions,
and play an important role in cancer therapy (Wu et al., 2019b).
The polarization of primary human neutrophils in vitro to

generate N1 and N2 neutrophils was first proposed by
Mareike et als. N1 polarized neutrophils have pro-
inflammatory properties and promote the release of
interferons, chemokines, and tumor necrosis factors (Ohms
et al., 2020). Although there is an urgent need to fully
understand the interaction between neutrophils and their
tumor microenvironment, most of the current studies are still
limited tomouse tumormodels, and continued research is needed
to verify whether human neutrophils have macrophage-like
polarization (Eruslanov et al., 2017; Wu et al., 2020).

Numbers studies have shown that PDT promotes neutrophil
infiltration in tumor tissues and then activates innate immunity
(Cecic et al., 2006). Since neutrophils are able to migrate into
inflamed tumors, the use of neutrophil-mediated drug delivery
systems to enhance drug accumulation and sustained release at
tumor sites opens new avenues for nanomedicine development.
Therefore, Qiu et al. (2021) constructed a nanocomplex (SA-2@
NCs) capable of targeting activated peripheral blood neutrophils
(PBN), which was formed by encapsulating ibrutinib (IBR) drugs
with targeted sialic acid (SA). First, liposomes loaded with
photosensitizer DIR were injected into the tail vein, and PDT/
PTT treatment was performed to induce acute inflammation and
rapidly activate PBNs to infiltrate the tumor site. Then, SA-2@NCs
nanocomplexes were injected into the tail vein, which accumulated
at the tumor site after being internalized by activated PBN.
Combining IBR-mediated immunotherapy and DIR-mediated
PDT/PTT for antitumor can effectively inhibit tumor growth and
metastasis (Qiu et al., 2021). However, there are some difficulties in
the extraction and preservation of neutrophil membranes, and the
stability of nanoparticles needs to be improved.

In summary, nanoparticles wrapped with neutrophil
membranes promote the recruitment of nanoparticles in
tumor tissues and improve the tumor targeting of
nanoparticles. Notably, nanoparticles loaded with immune
activators can be tried to activate neutrophil N1 polarization
and enhance antitumor immune response.

Activation of Natural Killer Cells
NK cells are innate immune cells that are the first line of defense
against infection and cancer. NK cells can spontaneously damage

TABLE 2 | Summary of photodynamic therapy and immunotherapy combinatorial treatments.

Immunity effect Nanoplatform Cancer Methods References

Activate NK cells Liposomes Melanoma Loaded with NK cell agonist Deng et al. (2018), Wang et al.
(2019b)

Induce M1 macrophage
polarization

Liposomes; metal-organic
frameworks (MOFs)

Breast cancer Nanoparticles wrapped with TAMs/ neutrophil/
NK cell membranes; nanoparticles repolarize
macrophages

Deng et al. (2018), Wang et al.
(2019c), Jiang et al. (2020), Chen
et al. (2021), Qiu et al. (2021)

Activate DCs and
increase DCs antigen
presentation

Nanocapsule; liposome Gastric carcinoma Nanoparticles loaded with DCs agonists Im et al. (2019), Mao et al. (2020)

Activate cytotoxic T
lymphocytes and deplete
Tregs

Liposome; micelle Breast cancer Loaded with drugs against
immunosuppressive cells

Cheng et al. (2021), Ding et al. (2021)

Blockade immune
checkpoint

Metal-organic frameworks
(MOFs); micelle; liposome

Breast cancer;
melanoma; bladder
cancer; melanoma

Co-administration with CTLA-4 and PD-L1; Or
co-delivering the IDO-1 inhibitor

Wang et al. (2016), Gao et al. (2020),
Yao et al. (2020), Choi et al. (2021),
Zhou et al. (2021)
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FIGURE 2 | Example of nanomedicine-based PDT to activate innate immune responses. (A) Schematic Illustration of NK Cell-Membranes-Cloaked Nanoparticles
for PDT-Enhanced Cell-Membrane Immunotherapy. (B) Growth curves for the distal tumors. (C) In vivo maturation of DCs (CD80+ and CD86+) from tumor-draining
lymph nodes in BALB/c mice following intravenous injection of T-NPs or murine NK-NPs (n = 3 per group). (D) Proportions of tumor-infiltrating CD4+ T cells. (E)
Proportions of tumor-infiltrating CD8+ T cells. (F) Pro-inflammatory cytokines (TNF-α) levels in the sera of mice treated with murine NK-NPs-mediated PDT from day
0, day 1, day 3, and day 7 (Deng et al., 2018). (G) Schematic illustration of the tumor-associated-macrophage-membrane-coated upconversion nanoparticles for
improved photodynamic immunotherapy. (H) Photographs show representative external views of lung nodules. (I) The survival curve of tumor-bearing mice calculated

(Continued )
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target cells in the absence of antigen-specific stimulation and
major histocompatibility complex. Numerous studies have shown
that the antitumor immune response induced by PDT enhances
the activity of NK cells. Enhancing PDT-induced immune
response by activating NK cells may be benefit improve the
therapeutic effects (Zheng et al., 2013). Protective mechanisms
such as anti-apoptotic mechanisms and therapeutic escape
pathways in melanoma hinder the application of PDT in
melanoma. Therefore, Wang et al. (2019b) designed a special
nanoliposomes to enhance Melanoma PDT and immune
activation of NK cells. The main components of
nanoliposomes, including phosphatidylcholines, Ce6, and low
molecular citrus pectin (LCP), are all in clinical use or
biodegradable. Nanoliposomes as a trigger to enable the
cytoplasmic release of LCP. LCP promotes the binding of
NKG2D to MICA on tumor cell membranes and indirectly
activates NK cells, giving the nanoparticles a synergistic effect
of enhancing PDT and NK cell-related immunity. However,
further more molecular and immune studies should be
performed in the future to elucidate the role of LCP in PDT
antitumor immunity. Furthermore, the natural tropism of NK
cells is exploited during PDT to improve the tumor-targeting
effect of nanoparticles. In antitumor immunotherapy, NK cell
membrane can induce polarization of M1-macrophages, providing
membrane immune-inducers for stimulating the immune response
during tumor therapy. Therefore, some researchers have designed a
NK cell membrane-encapsulated nanoparticle (NK-NPs), which
target cancer cells and induce M1 macrophage polarization, thus
induce tumor-specific immune responses (Figure 2A) (Deng et al.,
2018). The in vivo results demonstrated that NK-NPs-mediated
PDT could enhance NK cell membrane immunotherapy, eliminate
primary tumor growth, and produce distant effects that inhibit
distant untreated tumors. As shown in Figures 2B–F. In
addition, blockade the immune checkpoint of NK cells may
enhance the therapeutic effect of PDT. For example, some
researchers have found that T-cell immunoglobulin and ITIM
domain (TIGIT) is expressed on activated T cells and is also
found on NK cells, memory T cells, a subset of Treg cells as well
as follicular T helper cells. TIGIT directly inhibits NK and effector
T cells, and it also inhibits immune responses through promoting
Treg cell function (Anderson et al., 2016). In some mouse models,
blocking TIGIT prevents NK cell depletion. And blocking T-cell
immune receptor with TIGIT enhances NK cell-dependent tumor-
specific T-cell immunity. Loading TIGIT inhibitors into
nanoparticles may be a new direction for future research.

In conclusion, the immune response can be improved by
regulating the activation of NK cells at different targets during
PDT. The natural tropism of NK cell membranes is exploited to
improve the targeting of nanoparticles to tumors. The
immunotherapeutic approach of the NK synergistic PDT
offers a strategy for tumor immunotherapy.

Regulation of Macrophage Polarization
It is now well established from a variety of studies that
macrophages can be divided into M1 macrophages, which
have antitumor effects, and M2 macrophages, which promote
tumor proliferation (Qian and Pollard, 2010; Lu et al., 2016). In
vivo, M1 macrophages are responsible for recruiting Helper
T cells, cytotoxic T lymphocyte, and NK cells, that directly
target infected or tumor cells (Mantovani et al., 2004; Beatty
et al., 2011; Murray andWynn, 2011; Butcher and Galkina, 2012).
Compared with M1 macrophages, M2 macrophages exhibit an
anti-inflammatory phenotype and are present in infections,
allergies, tissue reconstruction, and tumor development (Satoh
et al., 2010). Tumor-associated macrophages (TAMs) are a
prominent component of the stroma and leukocyte infiltrates
in tumors (Azria et al., 2003; Balkwill, 2009). On the one hand,
TAMs surround tumor cells and interact in the TME to promote
tumor growth, progression, and metastasis, leading to
immunosuppression. On the other hand, TAMs inhibit tumor
growth after transformation to the M1 phenotype (Qiu et al.,
2018). Therefore, a large number of studies support the concept of
TAMs reprogramming as a sufficient and feasible approach to
initiate T-cell-mediated antitumor immunity (Cassetta and
Pollard, 2018). PDT induce immunogenic cell death (ICD) to
release damage-associated molecular patterns (DAMPs), thus
polarize macrophages from an immunosuppressive M2
phenotype to an antitumor M1 phenotype (Tan et al., 2016;
Zhou et al., 2018). A large number of studies have confirmed
demonstrated that the polarization of M1 macrophages could be
promoted by structural modification of PDT nanoparticles and
the loading of photosensitizer (Wang et al., 2019c). In addition,
some nanoparticles also affect macrophage polarization by
initiating ferroptosis. Ferroptosis is a new cell death format
identified in recent years. Ferroptosis can effectively inhibit
tumor growth and induce immune response. Considering the
central role of iron in ferroptosis, many studies have focused on
iron-based nanomaterials. Jiang et al. (2020) reported a PLT
membrane-camouflaged Fe3O4-SAS [magnetic nanoparticle
loaded with sulfasalazine (SAS)]. Fe3O4 nanoparticles are
ferroptosis inducers. And the study revealed that Fe3O4-SAS@
PLT-mediated ferroptosis could repolarize macrophages from
immunosuppressive M2 phenotype to antitumor M1 phenotype
and elicit an effective immune response. This nanoparticle-
mediated ferroptosis combined with SAS immunotherapy
effectively inhibited tumor growth and metastasis compared to
a single treatment (Jiang et al., 2020). On the other hand, Chen
et al. designed a PDT nanoparticle (NPR@TAMMs) wrapped by
TAMs membrane (TAMM). Studies on the TAMM encapsulated
nanoparticles showed unique antigen-homing affinity and
biocompatibility. Meanwhile, TAMMs can deplete macrophage
colony-stimulating factor 1 (CSF1). CSF1 is a key regulator of
monocyte/macrophage differentiation and maintains the tumor-

FIGURE 2 | by Kaplan−Meier estimate. (J) Quantification by flow cytometry of the ratio of CD11b + CD206 + cell populations in the different treatment groups of tumor-
bearing mice. (K) ELISA assay of IFN-γ in tumor-bearing mice with different treatments (Chen et al., 2021). Data are means ± SD. *p < 0.05; **p < 0.01. NS, no
significance.
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promoting function of TAMs. By displaying TAMmembranes on
the surface of nanoparticles, it is expected that NPR@TAMMs
can mimic the source cells, thus binding to the
immunomodulatory molecule CSF1, reducing serum CSF1
levels and blocking CSF1/CSF1R signaling, leading to
immunosuppressive inactivation (Figures 2G–I). This PDT-
immunotherapy approach based on macrophage membrane
provides a new strategy for personalized cancer treatment
(Chen et al., 2021). Overall, the PDT nanoparticles could
improve the antitumor innate immune response through
loading of agonists or modifying with TAMM and NK cell
membranes.

ELICITING ADAPTIVE IMMUNITY

A growing number of studies have shown that acute
inflammation triggered by PDT recruits leukocytes to the
tumor area and secretes chemokines, then promote the
maturation of dendritic cells (DCs) and activating T and
B cells, leading to adaptive immune responses (Brackett and
Gollnick, 2011; Yang et al., 2016). Although some studies have
suggested that B cells play a role in PDT-induced antitumor
immunity and mechanism of B cell-mediated antitumor
immunity has not been elucidated (Preise et al., 2009; Brackett
and Gollnick, 2011; Rocha et al., 2015). Therefore, in this section,
we focus on PDT-induced T-cell-mediated tumor-specific
immune responses.

Promotion of Dendritic Cells Maturation
Currently, the mechanism of antitumor immune response by
PDT has been described mainly by the immunogenic cell death
(ICD), which can transform a “cold” tumor into a “hot” (Kumar
et al., 2021). ICD induces DAMP such as calreticulin (CRT), high
mobility group protein 1 (HMGB1), and heat shock protein
(HSP-70/90) (Adkins et al., 2014; Radogna and Diederich,
2018; Li et al., 2019). These danger signals cause APC to
present antigens (Turubanova et al., 2019). Subsequently, T
lymphocyte infiltration increases and its mediated adaptive
immune response is activated (Kabingu et al., 2007; Duan
et al., 2016). Consequently, activation of DC maturation and
promotion of antigen presentation may contribute to the
improvement of the antitumor efficacy of PDT.

Numerous studies have reported enhanced DC maturation
and activation and increased secretion of pro-inflammatory
cytokines after PDT (Gollnick and Brackett, 2010; Kushibiki
et al., 2010; Brackett and Gollnick, 2011; Zheng et al., 2016).
The infiltration of DCs in tumor tissues is essential for antigen
presentation in the immune response. On the one hand, adoptive
DCs can be attempted to promote the immune response. Sur et al.
(2008) appropriately transferred DCs of homozygous bone
marrow origin into PDT-treated tumors and found that this
treatment improved the survival rate of rats. On the other hand,
designing DCs vaccines for tumor-targeted immunotherapy.
Studies have shown that a DC-based tumor vaccine would be
a safe and promising tool for cancer therapy. Yang et al. (2019b)
reported a multimeric nanoformulation capable of producing

tumor-associated antigens (TAAs) and acting as DC immune
adjuvants. The nanoformulation was based on a chimeric cross-
linked polymersome (CCP) as a carrier to encapsulate
doxorubicin hydrochloride (DOX) and a photosensitizer 2-(1-
hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH). The
chemotherapeutic drug DOX can induce immunogenic cell
death (ICD), the cell debris generated by PDT acts as TAAs,
and in addition, CCPS with amine groups acts as an adjuvant for
DCs. Combined PDT and immune adjuvants can enhance the
recruitment of TAAs and DCs, promote the maturation of DC
cells, and trigger a cascade of immune responses (Figure 3A)
(Yang et al., 2019b). About 3.02% of the DCs were activated in the
tumor tissue of the CCPS/HPPH/DOX treated group and about
1.7% of the cytotoxic T lymphocyte population infiltrated into the
mouse tumor tissue, which was significantly higher than that of
the control group (Figures 3B,C). Garg et al. (2016) developed a
DC-based vaccine using chrysin-PDT that induced a strong
immune response and improved overall survival in a mouse
glioma model. Numerous trials have shown that dendritic cell-
based vaccination can induce tumor-specific T-cell responses.
However, the therapeutic effect of activating DCs to promote
antigen presentation is limited due to the lack of prevalent
antigens in the immune system. There are several other
studies that focus on immune regulation during PDT. A novel
therapeutic strategy is to construct the nanoparticles loaded with
photosensitizers and DCs agonists. Im et al. (2019) reported a low
oxygen response mesoporous silica nanocapsule (CAGE) for
PDT. The nanocapsules were loaded with Ce6 and their
surfaces were modified with glycol chitosan (GC) and PEG.
The negatively charged CpG is loaded onto the CAGE surface
by electrostatic interaction with GC. CpG oligonucleotides (CpG)
bind to TLR9 and activate dendritic cells, upregulating
costimulatory markers for antigen presentation. In this study,
modification of nanoparticles activated DCs and increased DCs
antigen presentation, which subsequently enhanced antigen
presentation (Im et al., 2019). The developed immune
adjuvant delivery system reflects its function in the tumor-
associated immune microenvironment, demonstrating the
potential of adjuvant immunotherapy combined with PDT in
antitumor therapy.

In sum up, activating DC to enhance the antitumor immune
efficacy of PDT is a promising approach. Adoptive DC, DC
vaccine and the DCs agonists could promote DC maturation,
thus facilitate antigen presentation and subsequent immune
response.

Depletion of Tumor-Associated T
Regulatory Cells
Previous studies have shown that PDT induces adaptive immune
responses in a CTL-dependent manner (Zheng et al., 2013;
Kleinovink et al., 2017). An important aspect of PDT-
mediated antitumor immunity is the effective infiltration of
T cells into tumors (Ino et al., 2013). Clinical studies also have
shown that PDT activates CD4+ helper T cells (Hou et al., 2020).
And a number of experiments have demonstrated that patients
with vulvar intraepithelial neoplasia who responded to PDT had
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increased levels of infiltrating CD8+ T cells after treatment.
However, the tumor tissue makes use of all kinds of
immunosuppressive mechanisms to establish an
immunosuppressive microenvironment to resist and suppress
antitumor immune response. The presence of immune
checkpoint molecules and tumor-infiltrating
immunosuppressive cells in tumor tissue limits the activation
and effective functioning of antigen-reactive T cells and enables
tumors to escape from immune elimination.

Numerous tumor-associated T regulatory cells (Tregs) inhibit
the activation and expansion of tumor antigen-specific effector
T cells, which provides a favorable environment for tumor growth
(Nishikawa and Sakaguchi, 2014). Depletion of tumor-infiltrating
Tregs would be beneficial to trigger antitumor immune response.
Remarkably, systemic depletion of Tregs may induce severe
autoimmune diseases and hyperimmune responses (Wing and

Sakaguchi, 2010). CD25-targeted PDT as reported by Oh et al.
(2017) can induce Tregs apoptosis in tumors and inhibit tumor
growth. It is well known that immunosuppressive cells, including
myeloid-derived suppressive cells (MDSCs), M2-like tumor-
associated macrophages (TAMs), and regulatory T cells
(Tregs), are responsible for tumor immune escape. Loading
drugs against immunosuppressive cells into nanoparticles can
down-regulate the activity of immunosuppressive cells, providing
a new path for promoting PDT antitumor immunotherapy. Ding
et al. (2021) prepared a liposome (LIC) composed of
phosphoinositol 3-kinase (PI3Kγ) inhibitor IPI-549 and
photosensitizer Chlore6 (Ce6). IPI-549 is a selective PI3Kγ
inhibitor that inhibits PI3Kγ in MDSCs, leading to
downregulation of arginase 1 (Arg-1) and ROS, promoting
apoptosis of MDSCs and reducing their immunosuppressive
activity against CD8+T cells. It promotes the proliferation and

FIGURE 3 | Example of nanomedicine-based PDT to activate adaptive immune responses. (A) Schematic illustration of an in situ DC vaccine exploiting chimeric
cross-linked polymersomes (CCPS) as adjuvant combined with tumor-associated antigens (TAAs) induced by PDT and ICD for MC38 colorectal cancer immunotherapy.
(B) Activated DC ratio in tumor-draining lymph nodes (tdLNs) for mice treated with different nanoformulations (n = 3). (C) Tumor infiltrating lymphocytes in tumor sites
after treatment (n = 3) (Yang et al., 2019b). (D) Schematic illustration of visible-light-triggered prodrug nanoparticles (LT-NPs) combined chemotherapy and PDT to
potentiate checkpoint blockade cancer immunotherapy. (E,F) Percentage of (E)matured DCs (CD11c + CD40 + CD86+) and (F) cytotoxic T cells (CD45 + CD3+ CD8+) in
lymphocytes after coculture with culture medium containing CT26 cells treated with DOX, VPF, or LT-NPs in the presence or absence of light irradiation (n = 5). (G–I)
Percentage of (G) CRT-positive cancer cells (CD45−CRT+), (H) tumor-infiltrating matured dendritic cells (CD11c + CD40 + CD86+), and (I) tumor-infiltrating cytotoxic
T cells (CD45 + CD3+ CD8+) on day 7 after treatments (n = 5). (J) Percentage of splenic effector/memory T cells among the CD8+ T cells (CD3+CD8+CD44 + CD62Llow) in
mice that experienced CR by LT-NPs (+L) with anti-PD-L1 antibody on day 100 after treatment and naive mice (n = 5). (K) Cytokine levels in serum isolated 20 days after
CR mice were rechallenged with secondary tumors, compared to naive mice (n = 5) (Choi et al., 2021). Data are means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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activation of cytotoxic T lymphocytes (CTL), reduces Tregs, and
repolarizes TAMs to an M1-like phenotype (Ding et al., 2021).

In addition to Tregs, the other natural immunosuppressive
cells including MDSCs and M2 macrophages are also attracted to
the tumor microenvironment. Thus, it would be highly desirable
to develop anti-immunosuppressive cells-based therapies to
achieve therapeutic feasibility.

The Combination of Photodynamic Therapy
With Immune Checkpoint Blockade
Immune checkpoints are a plethora of inhibitory pathways
present in the immune system initiated by ligand-receptor
interactions that regulate immune responses in surrounding
tissues (Pardoll, 2012). Immunosuppression is mediated by
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and
programmed death-1 (PD-1). These two immunomodulatory
receptors are expressed on T cells (Quezada et al., 2011;
Pardoll, 2012). T-cell receptors (TCR) initiate an immune
response by recognizing antigens. This is regulated by the
balance between co-stimulatory and inhibitory signals
(i.e., immune checkpoints) (Zou and Chen, 2008). Immune
checkpoints are easily blocked by antibodies or regulated by
recombinant forms of ligands or receptors, preventing
antitumor immunity. Combining immune checkpoint
inhibitors with other therapies including PDT may improve
the effectiveness of antitumor treatment (He et al., 2016;
Wang et al., 2016; Yang et al., 2017; Yuan et al., 2021).

CTLA-4 is the first clinically targeted immune checkpoint
receptor that is expressed exclusively on T cells, where it primarily
regulates the early stages of T-cell activation. CTLA-4 neutralizes
the activity of the T-cell co-stimulatory receptor CD28 (Lenschow
et al., 1996). Once antigen recognition occurs, CD28 signaling
amplifies TCR signaling to activate T cells (Schneider et al., 2006).
CTLA-4 blockade modulates immunosuppression within tumors
and has been approved by the US Food and Drug Administration
for the treatment of several types of cancer therapies (Wang et al.,
2016; Xu et al., 2017). Wang et al. (2019b) reported a nanoparticle
UCNP-CE6-R837, which promoted CTLA-4 checkpoint
blockade by loading immune adjuvant, effectively inhibited the
immunosuppressive activity of Treg cells, increased the ratio of
CTL to Treg cells, and promoted antitumor cell immunity.
Surprisingly, PDT based on UCNP-CE6-R837 combined with
CTLA-4 blockade can effectively induce the generation of
immune memory response to prevent tumor recurrence,
similar to the function of cancer vaccine. This study proved
that PDT combined with cancer immunotherapy can achieve
significant synergistic therapeutic effects (Wang et al., 2019b).

In contrast to CTLA-4, PD-1 has a remarkably promising
immune checkpoint receptor, and has the primary role of
regulating effector T-cell activity within tissues and tumors and
limiting autoimmunity (Keir et al., 2006; Okazaki andHonjo, 2007;
Keir et al., 2008). PD1 is highly expressed on Treg, and promotes
Tregs proliferation in the presence of its ligands. Since many
tumors have highly infiltrating Treg, blocking the PD-1
pathway may enhance the antitumor immune response by
reducing the number or inhibiting the activity of Treg

(Francisco et al., 2009). Two ligands of PD-1 are PD-L1 and
PD-L2 (Tseng et al., 2001). On solid tumor cells, the main PD1
ligand expressed is PD-L1. Clinical evidence has been shown that
PD-L1 expression by tumor cells suppresses local T-cell-mediated
antitumor responses (Konishi et al., 2004). PD-1 monoclonal
antibodies are currently commercialized and used clinically to
treat several types of tumors (Pardoll, 2012; Wolchok et al.,
2013; Larkin et al., 2015). The combination therapy strategy
based on PD-1 inhibitors is expected to enhance the effect of
PDT. Nanoparticles simultaneously encapsulated or loaded with
photosensitizers and immune checkpoint inhibitors systematically
exert antitumor immune efficacy. Choi et al. (2021) reported a
nanoparticle (LT-NPs) that directly binds chemical drugs,
photosensitizers and lysable peptide precursors. LT-NPs highly
accumulate within tumor tissues via the EPR effect, and they are
specifically cleaved to VPF and cathepsin B overexpression occurs
in tumor cells, resulting in minimized side effects. At the same
time, Because of LT-NPs containing PD-L1 blockers, the
combinatorial treatment with anti-PD-L1 antibody not only
leads to a powerful antitumor immune response but also
efficiently inhibits the progression of distant pulmonary
metastatic tumors (Figures 3D–K). However, it should be noted
that due to the complex chemical synthesis process, it is difficult to
control the quality of the functional nanoparticles in mass
production. At the same time, the structure and function of
nanoparticles need to be adjusted according to the specific
clinical needs in the future study of PDT.

Indoleamine-2, 3-dioxygenase (IDO) is an
immunomodulatory enzyme that is highly expressed in many
types of solid tumors and catalyzes the oxidative metabolism of
tryptophan to kynurenine (Feng et al., 2018). Deficiency of
tryptophan or accumulation of kynurenine in the tumor
microenvironment can inhibit T cell proliferation, promote
Tregs production and activation (Awuah et al., 2015). It has
been reported that some nanoparticles amplify PDT-induced
immune responses by inhibiting IDO activity. Gao et al.
(2020) investigated exfoliable prodrug vesicles in the tumor
microenvironment in combination with a photosensitizer and
IDO-1 inhibitor. Prodrug vesicles remain stable in the blood,
avoiding drug leakage, and specifically accumulate at the tumor
site. Meanwhile, the NLG919 prodrug was reactivated in the
tumor microenvironment to inhibit IDO-1. Notably, the
antitumor efficacy of the nanoparticles in the CT26
subcutaneous tumor model was relatively superior to that in
the 4T1 tumor model, which may be due to more pronounced
IDO-mediated immune evasion in CT26 tumors. It can be proved
that in different tumor models, the inhibition of IDO shows
different therapeutic effects, which has certain reference
significance for the personalized adjustment of drug clinical
application in the future (Gao et al., 2020).

CONCLUSION

Numerous preclinical studies have shown that PDT is
considered a promising strategy for the treatment of several
types of tumors. PDT damages tumor cells and induces ICD to
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activates cellular subsequent immune response. As more has
been learned about the immune regulatory mechanisms of PDT,
PDT based on nano delivery systems are becoming the focus of
clinical trials for cancer. According to the purpose and use of the
treatment, nanoparticles are synthesized from different types of
materials, such as lipids, polymers and inorganic compounds.
Overcoming tumor-mediated immunosuppression by these
nanocarriers via a combination or conjugation with immune
checkpoint inhibitors would offer the possibility of amplifying
antitumor immune responses and improving therapeutic
efficacy. Other studies focused on induction of ICD,
reprogramming of TAMs and regulating the tumor immune
microenvironment by nanomedicine. Nevertheless, challenges
and opportunities also remain for nanosystems driven
photodynamic immunotherapy. Firstly, some nanopolymers
and inorganic nanomaterials with poor biodegradability and
biocompatibility significantly limits their clinical
transformation. Optimized liposomes, extracellular vehicles,
and biodegradable organic polymers etc. may be facilitate to
clinical application (Cabeza et al., 2020; Pinto et al., 2021).
Secondly, PDT initiated immune response and duration are
relatively weak and short. There are still needed to optimize
advanced biomaterials for eliciting effective immune responses
and simultaneous activation of multiple immune signaling
pathways. In addition to the combination of chemical drug
and immune adjuvant to strengthen the host anti-tumor effect,
the development of autologous tumor cell–based vaccines are
emerging as a transformable and promising approach for
personalized tumor therapy (Doix et al., 2019; Fang et al.,
2020). Last but not least, more effective photosensitizers or
nanocarriers is urgent to develop based on the further
exploration of anti-tumor mechanism. Recently, PDT acts as
a source of ROS is regarded to closely associated with a new
form of regulated cell death, ferroptosis, which is characterized
by the accumulation of iron-dependent ROS and lipid peroxides
(LPO) to lethal levels. PDT can work in synergism with
ferroptosis inducers and achieve a synergistic effect
(Mishchenko et al., 2021). The combination action may lead
to uncontrolled lipid ROS accumulation and cancer cell death

by ferroptosis (Xu et al., 2020; Shui et al., 2021). More
interestingly, PDT activates T lymphocytes to release IFN-γ
which has been proved to downregulates both system xc-

subunits (SLC3A2 and SLC7A11) at the transcriptional
level, thereby causing depletion of the intracellular GSH
pool and triggering ferroptosis in cancer cells (Wang et al.,
2019d; Zitvogel and Kroemer, 2019). The ferroptosis also
induce tumor cells death through ICD, which is expected to
continuously elicit and maintain the host’s anti-tumor
immune effect after PDT. Therefore, ferroptosis induction
in PDT is regarded as a powerful alternative strategy for
reinforcing tumor therapeutic efficiency. It is clear that
more work is required to develop novel integrated platform
of PDT that induce prominent anti-tumor immunity effect in
tumor microenvironment and limited toxic side effects in
normal cells.
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