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ABSTRACT

Thousands of new phages have recently been dis-
covered thanks to viral metagenomics. These phages
are extremely diverse and their genome sequences
often do not resemble any known phages. To appre-
ciate their ecological impact, it is important to deter-
mine their bacterial hosts. CRISPR spacers can be
used to predict hosts of unknown phages, as spacers
represent biological records of past phage–bacteria
interactions. However, no guidelines have been es-
tablished to standardize host prediction based on
CRISPR spacers. Additionally, there are no tools that
use spacers to perform host predictions on large
viral datasets. Here, we developed a set of tools
that includes all the necessary steps for predicting
the hosts of uncharacterized phages. We created a
database of >11 million spacers and a program to
execute host predictions on large viral datasets. Our
host prediction approach uses biological criteria in-
spired by how CRISPR–Cas naturally work as adap-
tive immune systems, which make the results easy to
interpret. We evaluated the performance using 9484
phages with known hosts and obtained a recall of
49% and a precision of 69%. We also found that this
host prediction method yielded higher performance
for phages that infect gut-associated bacteria, sug-
gesting it is well suited for gut-virome characteriza-
tion.

INTRODUCTION

Bacteriophages (phages: viruses that infect bacteria) are the
most abundant and genetically diverse biological entities on
the planet. Their ubiquity is equal to that of their hosts’:
Wherever there are bacteria, there are phages that can in-
fect them (1). Phages play major roles in their own ecosys-
tems by contributing to bacterial mortality, remodeling bac-
teria through horizontal gene transfer and rewiring host
metabolism (2). Still, phages remain largely understudied
compared to bacteria. For example, the number of phage
genomes in public databases is still ∼20-fold lower than that
for bacteria despite their extensive abundance and diver-
sity. Phages do not possess a conserved gene such as riboso-
mal RNA in bacteria, making it impossible to detect both
known and novel phages using a universal genetic marker,
although some have tried (3). In addition, phages are ob-
ligate intracellular parasites, hence they require a bacte-
rial host to be propagated, isolated and characterized. This
makes isolating new phages challenging when the host has
not yet been identified and even impossible when the host is
presently unculturable.

Viral metagenomics offers a way to analyze the total viral
genomic content in a given sample, circumventing some of
the limitations associated with phage studies since it does
not require the culturing or identification of hosts (4). High
throughput sequencing techniques have drastically acceler-
ated the discovery rate of new phage sequences, either from
non-targeted shotgun metagenomics (total DNA) or viral
metagenomics (DNA or RNA from the viral fraction). For
instance, the most widespread and abundant phages in the
human gut (5) and in the oceans (6) were discovered as a
result of studies using metagenomics. However, phages are
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extremely diverse and virologists are confronted with the vi-
ral dark matter obstacle: the majority of reads or contigs
in viral metagenomes match no known sequences in refer-
ence databases (7). Therefore, most of the newly discovered
phage sequences lack characterization in terms of morphol-
ogy, gene content, phylogeny and host range. In the most
recent and largest survey of ocean viromes using metage-
nomics, 338 398 (90%) viral populations could not be tax-
onomically assigned to a known family (8). Consequently,
any additional information on this considerable viral dark
matter is necessary to better characterize phage communi-
ties and how they interact with their hosts in various ecosys-
tems.

For any novel phage, a fundamental feature is the identi-
fication of its bacterial host. There are several bioinformat-
ics approaches that predict the host of a phage [reviewed
in (9)], of which overall, the best predictions have been
made using sequence homology-based approaches. These
approaches involve exact nucleotide matches between the
phage and a prophage that is integrated into the genome of
its bacterial host, and nucleotide–nucleotide homology of
the phage and its host genes. CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) spacers can also
be used for homology-based predictions. Together with cas
genes, CRISPR loci form CRISPR–Cas systems, an adap-
tive defense mechanism against invading nucleic acids, such
as phage genomes (10–12) and other mobile genetic ele-
ments (13). CRISPR–Cas systems are found in ∼40% of
all bacterial genomes sequenced to date (10). Bacteria pos-
sessing an active CRISPR–Cas system can become resistant
to specific phages by incorporating short DNA fragments,
called spacers, into their CRISPR locus (11,14). These spac-
ers originate from the invading phage genome and allow
the bacterial cell to efficiently recognize and block a sub-
sequent infection from a phage carrying a spacer-matching
sequence. Spacer acquisition mostly occurs at the 5′ end of
the CRISPR locus, while the 3′ end carries ancestral spac-
ers (15). CRISPR spacers are thus very useful for host pre-
dictions since they essentially contain molecular records of
past phage infections within the bacterial chromosome and
therefore clearly link phages with their hosts. The struc-
ture of CRISPR loci also generally represents a chrono-
logical history of past interactions between bacteria and
phages.

CRISPR spacer-based host predictions however exhibit
low sensitivity (∼12.5% for exact matches) and poor accu-
racy (15%) when there are no appropriate cut-offs (9). The
fact that not all bacteria carry a CRISPR–Cas system most
likely contributes to the low fraction of predicted phages of
this spacer approach. In addition, the precision might be
lowered by pervasive horizontal gene transfer of CRISPR–
Cas systems (16), which would not always reflect a genuine
phage-host interaction. Spacers also undergo a certain level
of turnover, leading to spacer loss over time, particularly
in the middle of the array. However, this phenomenon has
been modeled only a few times and studied very little in
vitro (17,18). Several programs have been developed to iden-
tify CRISPR loci within bacterial genomes (19–22), with
CRISPRDetect (23) and CRISPRCasFinder (24) being the
most recent. These two programs can predict the 5′–3′ orien-
tation of the locus, which is essential for understanding the

chronology of phage infections. Because host predictions
using CRISPR spacers are homology-based, they primar-
ily depend on the size of the database against which the new
phage sequences are compared. As such, it is very likely that
CRISPR spacer host predictions have low sensitivity due to
undersampling of the total diversity of available spacers.

The aim of this work was to increase both the recall (per-
centage of phages that yielded a prediction) and the pre-
cision (percentage of accurate predictions) of the CRISPR
spacer host prediction approach, to set guidelines to ob-
tain accurate predictions and to explore and analyze its per-
formance for different hosts. We took advantage of the re-
cent progress in CRISPR identification programs to survey
CRISPR loci in all bacterial genomes in the NCBI database
and increased the number of spacers available for homol-
ogy searches. Over 11 million spacers were recovered from
367 446 bacterial genomes and they were organized into a
spacer database available at http://crispr.genome.ulaval.ca,
allowing users to search and download the database in a
user-friendly and customizable fashion. Next, we evaluated
the recall and the precision of the spacer database by per-
forming a homology search on reference phages with a
known host as a benchmark for our studies. The recall and
the precision were measured for different alignment metrics,
such as the number of mismatches and the E-value. Finally,
we set up a decision tree of logical rules inferred from phage
biology to improve the precision of the predictions. For pre-
dictions with at most two mismatches between a spacer and
a matching viral sequence, we obtained predictions for 49%
of phages and a precision of 69% at the genus level.

MATERIALS AND METHODS

Spacers in bacterial genomes

All bacterial genomes in the NCBI database (n = 580
383) were downloaded on 23 March 2020 in FASTA for-
mat using the file transfer protocol. The file path for
each genome was obtained from the assembly summary.txt
file (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria)
under the ‘ftp path’ column. We then executed the
command-line version of CRISPRDetect v2.2 to iden-
tify CRISPR loci in these bacterial genomes using an -
array quality score cutoff of 3 as recommended for FASTA
files. The GFF file generated by CRISPRDetect was parsed
to extract spacers (a row corresponds to a spacer when the
feature type in the third column is ‘binding site’) and the
following metadata for each spacer: accession number of
the bacterium (first column), start and end positions on the
genome (fourth and fifth columns), length (sixth column),
orientation (seventh column), locus number and position
inside the locus (ninth column after ‘ID = ’) and sequence
(ninth column after ‘Note = ’).

SQL spacer database, web platform and command-line tool

An Sqlite database was constructed using Python v3.8.5
and the Sqlite3 v2.6.0 module. For each genome, the species,
genus, family, order and suborder were retrieved using the
Python ete3 v3.1.1 module (25) which interacts with the
NCBI taxonomy tree. Due to recent updates in the bac-
terial taxonomy database that have yet to be reflected in
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GenBank, some entries were manually searched online in
the NCBI taxonomy database and incorporated into the
spacer database. The spacers for each bacterial genome
were retrieved from the GFF files that were produced by
CRISPRDetect and inserted in the Sqlite database. The
complete code that was required to reproduce these steps
is available with the phage host prediction tool on GitHub
(http://github.com/edzuf/CrisprOpenDB). A web applica-
tion was created to permit database exploration and to al-
low experimentation with the phage host prediction tool.
The application is a Plotly Dash application implemented
with Python. This web application hosts a complete version
of the Sqlite database that can be downloaded as CSV or
FASTA files. A command-line host prediction tool was also
implemented using Python. The main purposes of this tool
were to allow users to run predictions for large numbers of
phage genomes and to offer a more customized host pre-
diction process. The tool supports multi-FASTA files that
contain all phage genomes for which a host prediction must
be computed. The alignment step with blastn already offers
the option to set the desired number of threads. Compu-
tation times were therefore already optimized for this step.
However, information retrieval from the spacer database
and host prediction for each genome required parallel pro-
gramming to increase speed, so we used the Python ‘mul-
tiprocessing’ package. Several tests were carried out to as-
sess the speed of the command-line tool. Six different-sized
datasets (10, 50, 100, 500, 1000 and 5000 genomes) were cre-
ated. For each size, 10 subsets of phages were randomly gen-
erated. For each subset, the host prediction command-line
tool was executed, and the computation time was measured.
The complete code and instructions for installing the com-
mand line tool are available on GitHub (http://github.com/
edzuf/CrisprOpenDB). A version of the Sqlite database
must be downloaded in order to run the predictions
locally.

Benchmark phage dataset

All phage genomes (n = 12 737) used in this study were
retrieved from the NCBI Virus database (26) on 23 April
2020, using the following filters: Virus = ‘Bacteriophage, all
taxids’ and Nucleotide completeness = ‘complete’. This list
included several duplicates, mostly due to phage genomes
being available in both RefSeq and GenBank databases.
These duplicates were relatively easy to identify as they had
the same GenBank Title. One occurrence of each of these
duplicate genomes was kept. Phage genomes that were de-
posited after experimental evolution experiments were also
excluded, as they could lead to overrepresentation of some
sequences. These were recognized by the presence of the
words ‘mutant’, ‘clone’, ‘isolate’ or ‘evolved’ in the Gen-
Bank Title. In addition, phages with either a non-bacterial
or unknown hosts were removed. This is caused by incon-
sistencies in the nomenclature of phage genomes, especially
those identified through metagenomics. This resulted in a
total of 9484 phage genomes (see Supplementary dataset 1
for the complete list). The hosts of these phages were in-
ferred from the ‘Host’ column, or when empty, from the
GenBank Title (e.g. Escherichia is the host of Escherichia
phage Lambda).

Optimization of pipeline for host prediction

To predict the hosts of these phages using a CRISPR-based
method, we searched for homology between the spacers and
the phage genomes. A multi-FASTA file was created with
all the spacers in the spacer database that ranged from 23
to 48 nucleotides (n = 11 674 395). Blastn v2.2.26 (27) was
then used to perform nucleotide-nucleotide pairwise align-
ments with the -task ‘blastn’. Hits were saved in a tabu-
lar format and exported in a Python 3 Jupyter Notebook
for further analyses. For each hit between a spacer and a
phage, a predicted host was assigned based on the bacte-
rial origin of the spacer. We evaluated the recall and the
precision of different E-values, and numbers of mismatches
to determine the cut-off that recovered the highest number
of host predictions while still preserving the best accuracy
in terms of predicted hosts. The E-value was automatically
computed by the alignment program. The true number of
mismatches was calculated as: (spacer length – alignment
length + number of mismatches computed by blastn). All
hits with gap openings were discarded because the presence
of gaps makes it unworkable to calculate the true number
of mismatches. The precision of the prediction was mea-
sured at different bacterial taxonomic levels by computing
the rank of the last common ancestor (LCA) between the bi-
ologically confirmed and the predicted hosts. The lineages
for both real and predicted hosts were obtained with ete3 by
first converting the host bacterial names into taxids with the
NCBITaxa.get name translator() function, then by trans-
lating the taxids into a hierarchically sorted list of parent
taxids with the NCBITaxa.get lineage() function. The two
lineages were compared to identify the LCA and its rank
was obtained with the NCBITaxa.get rank(). Depending
on the cut-off, numerous spacers that originated from differ-
ent bacterial genera matched the same phage. Two different
approaches were applied sequentially to determine which
predicted host was the most likely to be the real host. In
the first step, the bacterial genus with spacers that targeted
the highest number of different regions in the phage genome
was considered the predicted host. This was deduced from
the start and end positions on the phage genome of each
alignment with a spacer. In the second step, for each genus
that was predicted to be the host of the same phage, we cal-
culated the relative position for all the spacers that matched
the phage genome within the CRISPR locus. We then con-
sidered the genus with the spacer that was closest to the 5′
end of its locus to be the predicted host as the most recently
acquired spacers are usually at the 5′-end of a CRISPR ar-
ray. The relative position is a transformation of the absolute
position within the locus of the spacer. This ensures that all
spacers have a numerical position within the same range (0
to 1), despite various lengths of CRISPR loci. If the predic-
tion still yielded multiple hosts (with equal highest number
of targets on the phage genome and closest spacers to the 5′
end), the predicted host was their LCA.

Statistics

A null model was generated to evaluate whether the cut-offs
and filters that we proposed yielded better predictions than
selecting a random host from the alignment hits. For each
phage, a random hit (spacer) was selected from the blastn
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results and the corresponding bacterium was assigned as
the randomly predicted host. For predictions obtained with
the first filter, random hits corresponded to any hits from
the raw blastn results, irrespective of the number of mis-
matches. For predictions obtained with the second filter,
random hits consisted in selecting a random host from all
hits that passed the first filter. For the third fiter, the same
logic was applied, except that we selected a random host
from all hits that passed the first and second filters. The
random prediction was considered successful when the ran-
domly predicted host was identical to the real host at the
genus level. The success rate was measured as the percent-
age of phages for which the host was successfully predicted
at random. This measurement was performed for 1000 sim-
ulations.

Proof of concept on a published gut virome

We tested our host prediction pipeline on a recently pub-
lished dataset of human gut viromes (28). After a first round
of decontamination, the authors obtained 57 721 contigs.
We used VIBRANT v1.2.1 (29) to further curate the se-
quences of these same contigs and confirm they were of vi-
ral origin. Contigs that were confirmed to be viruses by VI-
BRANT were then used to explore the breadth of bacterial
hosts that were predicted for this dataset. A specific phage
contig (metaspades NG-13376 921T3 lib202033 5478 NO
DE 37 length 22057 cov 6.42255) was examined for the
presence of an integrase or a recombinase, indicating it may
be temperate. We searched for ‘recombinase’ and ‘integrase’
in the phage contig annotation performed by VIBRANT.
Additionally, hmmsearch v3.3 (30) was executed to search
for a large serine recombinase in the phage contig predicted
proteins, using the hmm profile of the protein family re-
solvase (PF00239).

Comparison with an existing host prediction method

We compared the recall and the precision of our approach
with WIsH v1.0 (31), a program based on homogeneous
Markov models to predict potential bacterial hosts. The au-
thors used 3780 bacterial genomes and 1420 phages to eval-
uate the accuracy of their predictions. All 1420 phages were
part of our benchmark dataset, except for NC 003525 (host
is unknown) and NC 020836 (no longer exists). To evalu-
ate performance, we measured the recall and the precision
for the 1418 phages using our host prediction approach and
compared our results with those obtained in the previous
study using WIsH.

RESULTS

The spacer database represents an unprecedented catalogue
of spacer diversity

We used CRISPRDetect to identify CRISPR loci in all
bacterial genomes in the NCBI database. Out of 580 383
genomes available at the time of the analysis, we identified
at least one CRISPR locus in 367 446 of them (63.3%). This
represents a total of 11 767 782 spacers, ranging from 1 to
419 nucleotides. Since spacers ranging from 28 to 43 nu-
cleotides represent 99.2% of all sequences, spacers outside

this range likely represent errors introduced by CRISPRDe-
tect, either from erroneously splitting the repeat extremi-
ties from the complete repeat sequence (leading to a short
spacer), or from not distinguishing repeats from spacers (re-
sulting in a long spacer). These were removed from fur-
ther analyses but are still available in the online database.
The spacers belonged to 1978 bacterial genera and the most
widely represented hosts were strongly influenced by the
number of genomes available in the NCBI database. Ac-
cordingly, spacers belonging to Salmonella were by far the
most frequently identified (n = 8 325 687), followed by Lis-
teria (n = 588 364) and Escherichia (n = 368 069) (Figure
1A). There is a total of 1 313 992 unique spacer sequences,
indicating a high level of sequence redundancy among the
11 million spacers. The genus Salmonella also had the high-
est number of unique spacers (n = 73 797), whereas Es-
cherichia and Listeria were not even in the top ten (11th and
15th positions, respectively) (Figure 1B). Similarly, Clostrid-
ium was the 11th most represented genus in the total num-
ber of spacers but had the second highest number of unique
spacers (n = 32 375). However, for the ratio of unique/total
spacers (Figure 1C), the genus Salmonella had the smallest
ratio (0.009). The case of Salmonella is a reminder that us-
ing the complete GenBank database adds considerable re-
dundancy in our spacer database for heavily sequenced or-
ganisms with less diverse CRISPR arrays. In contrast, most
of the genera (67%) examined had a ratio that was ≥0.95
(Figure 1D), meaning that almost all of their spacers have
unique sequences.

A website and command-line tool for exploration and high-
throughput predictions

A web platform (Figure 2) was developed with the objec-
tive of sharing the spacer database with the scientific com-
munity. To navigate across the different bacterial genomes
and spacers, searchable dropdown menus allow the user
to filter by species, genus, family and order. The spacers
can be displayed in a table that is linked to the NCBI Or-
ganism database. The phage host identification tool used
in conjunction with the spacer database can be tested
online. Single genome FASTA files can be uploaded to
the application and a host prediction will be made. The
server only permits the use of default parameters in or-
der to deliver the fastest and best results. Custom param-
eters can be used by installing the phage host identifica-
tion command-line tool from GitHub (https://github.com/
edzuf/CrisprOpenDB). The command-line tool is a Python
package that can be used for batch processing. It is not lim-
ited in the number of genomes or by the genome length that
can be processed. From start to finish, the program took on
average 86 min to perform host predictions on a dataset of
5000 phages, running on 32 CPUs (Figure 3). A full host-
prediction report can be produced and explains each step
of the analysis while providing the list of spacers on which
a prediction is based. For a deeper understanding of a spe-
cific prediction, a table containing both alignment results
and spacer information extracted from the database can be
generated and saved as a CSV file. The list of all customiz-
able parameters implemented is shown in Supplementary
Table S2.

https://github.com/edzuf/CrisprOpenDB
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Figure 1. Overview of the spacer database diversity. (A) Total number of spacers and (B) number of unique sequences from the top 10 bacterial genera
in the spacer database. Coloured bars represent genera that appear in the top 10 for both total and unique sequences. (C) Total number of spacers and
number of unique spacers for each bacterial genus in the spacer database (each marked by coloured dots). Grey and pink dots represent ratios of unique
versus total spacers that are smaller or greater than 0.95, respectively. (D) Distribution of the ratio of unique vs total spacers.

Figure 2. Overview of the spacer database website (http://crispr.genome.ulaval.ca). The homepage features dropdown menus that filter spacers according
to the organism at different taxonomic levels. It also presents summary figures that represent the distribution of spacer sizes and number of spacers per
organism.

http://crispr.genome.ulaval.ca
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Figure 3. Average host prediction computation time for datasets comprising 10–5000 phage genomes. Phage genomes were randomly selected from the
complete dataset of 9484 phages.

Systematic filters increase phage host prediction performance

We used a set of criteria and filters to select the most prob-
able bacterial host for unknown phage sequences (summa-
rized in Figure 4A). These filters were essential considering
the high level of redundancy and bias in the number of spac-
ers found in bacterial genera for which numerous genomes
have been sequenced. Without proper filters, selecting a ran-
dom host from the alignment result would be greatly influ-
enced by these biases. The filtering conditions have biologi-
cal meanings and are data driven, which helps to make our
prediction algorithm easier to interpret. The performance
of the implemented filters was tested using 9484 phage
genomes with known hosts from the NCBI Virus database.
After searching for sequence homology between the phage
genome and the spacer database using blastn, four filters
were applied sequentially. During the first step, we evaluated
the performance of two different alignment metrics to use as
filters to discard inaccurate alignment hits. Specifically, we
examined the number of mismatches (0–10) and the E-value
(10–9–10–1). The number of nucleotide mismatches reflects
the number of mutations between a spacer in the CRISPR
locus and a protospacer in the phage genome and hints at
the elapsed evolutionary time since a phage and its host last
interacted. For the number of mismatches specifically, hits
with the least number of mismatches within the cut-off limit
are kept. Following this first step, if the remaining spacers
belonged to the same bacterial genus, that genus was as-
signed as the predicted host of the phage. Otherwise, up to
three additional filters were applied. Similarly, if only one
bacterial genus was found for every additional filter, it was
assigned as the host of the phage and the prediction algo-
rithm ended. In the second step, only bacterial genera that
targeted, through their spacers, the highest number of dif-
ferent regions on the phage genome passed through the fil-
ter. The rationale behind this step is that hosts with spacers
targeting multiple regions of the phage genome are more
likely reflecting genuine phage–host interactions, compared

to hosts targeting single regions, perhaps caused by ran-
dom hits. During the third step, only bacterial genera whose
spacers were closest to the 5′ end (leader end) in their corre-
sponding CRISPR array were retained. Similar to the first
filter, this third filter provides a measure of time since the
last phage–host encounter, because new spacers are incor-
porated at the 5′ end of the array. Thus, spacers closer to
the 5′ end are more recently acquired compared to those at
the 3′ end. For the fourth and final step, if all previous fil-
ters and conditions failed to identify a single host genus, the
last common ancestor of the remaining bacterial genera was
considered to be the phage host.

The recall and the precision at three taxonomic bacte-
rial ranks (genus, family and order) for different numbers
of mismatches and E-values are shown in Figure 4B. Both
the number of mismatches and the E-value yielded similar
results: strict cut-offs (low numbers of mismatches or low
E-values) provided more accurate predictions but were less
sensitive, whereas more relaxed cut-offs increased the re-
call and reduced the precision. The overall highest precision
reached 95% at the genus level and was obtained with an
E-value of 10–9. This was however accompanied by a very
low recall of only 2.5%. A zero-mismatch cut-off reached a
precision of 84% at the genus level and a recall of 31%. In
general, for a given recall, using the number of mismatches
resulted in a higher precision by at least 5% than when the
E-value was used. Although the E-value yielded good per-
formance, we did not retain it for two reasons. First, E-
values depend on the length of the query (phage genome)
and the size of the database. Both can vary substantially,
as phage genomes have a wide range of sizes, and because
the database size will inevitably increase when updated over
time. Second, E-values are harder to interpret biologically
and setting a threshold for the E-value would be somewhat
arbitrary. In the context of CRISPR–Cas systems, the num-
ber of mismatches is a biologically meaningful alignment
metric since Cas interference complexes vastly rely on spac-
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Figure 4. A systematic approach for predicting the bacterial host of unknown phages. (A) Four criteria were sequentially applied to discard false positives
from the spacer-phage alignment results. These criteria were inspired from the way the CRISPR–Cas systems work as an adaptive immune system and
are biologically relevant. (B) Recall (dashed line) and precision at three taxonomic levels (solid line; red represents genus, green represents family, blue
represents order) of the host predictions when the number of mismatches (left) or the E-value (right) was used as the first filter.

ers to be identical to the invading nucleic acids in order to
efficiently recognize and cleave it. To maximize both the re-
call and the precision, we thus recommend a maximum tol-
erance of two mismatches, which yielded a precision of 69%
and a recall of 49%. By tolerating two mismatches, we allow
for sequencing errors or mutations without compromising
the precision too greatly. The optimal order of the filters was
also determined after testing all possible combinations and
selecting the order which conferred the best compromise in
recall and precision (Supplementary Table S1). The number
of mismatches necessarily needs to be the first filter for the
two other filters to perform accurately, otherwise they may
be applied on hits with many mismatches.

Relevance of each filter in obtaining high-quality predictions

To confirm that our selected criteria translate into accurate
predictions, we compared the distribution of accurate and
wrong predictions according to the host’s number of tar-
gets on the phage genome (for hosts predicted following the
second filter) or the host’s spacer position in the array (for
hosts predicted following the third filter) (Figure 5A and
B). A total of 541 phage host predictions were obtained by
applying the second filter. Most of these phages (n = 370,
68%) had two putative hosts following the first filter, but
we found three phages that had more than six predicted

hosts remaining after the first filter. These three phages all
infect Klebsiella and their host was accurately predicted (the
other putative hosts were all Enterobacterales). We were
also surprised to find five phage genomes targeted at >100
regions by their accurately predicted Moraxella host spac-
ers. When comparing accurate and wrong host predictions
obtained with the second filter, a clear distinction could be
observed in the number of spacer targets on phage genomes.
Accurate hosts target a higher number of viral regions, ir-
respective of the number of putative hosts remaining after
the first filter, which confirms the relevance of this criterion
(Kolmogorov–Smirnov statistic = 0.38, P-value = 2.00 ×
10–15). Next, the third filter was responsible for a total of
292 phage host predictions. At this point, phages are left
with less putative hosts, with the majority having two pre-
dicted hosts remaining after the second filter (n = 266, 88%).
There were three phages with more than three hosts (phages
that infect Bordetella, Actinomyces and Burkholderia). For
phages with two remaining putative hosts after the second
filter, there was a difference in the distribution of spacer
position for accurate and wrong predictions. Hosts with
phage-matching spacers closest to the 5′ end led to more
accurate predictions, consistent with our biological expla-
nation (Kolmogorov–Smirnov statistic = 0.59, P-value =
5.55 × 10–16). We however found a reverse trend for phages
with three remaining putative hosts after the second fil-
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Figure 5. Contribution of each filter and effect of the host on prediction performance. (A) Violin plot of the number of targets on the phage genome for
hosts predicted with the second filter and number of hosts that passed through the first filter. Accurate predictions are shown in green and inaccurate
predictions are shown in red. (B) Violin plot of the position of the spacer closest to the 5′ end of the CRISPR array for hosts predicted with the third filter.
Accurate predictions are shown in green and inaccurate predictions are shown in red. (C) Number of accurate (green) and wrong (red) predictions when
either one of the four filters yielded a prediction. (D) Recall and precision for groups of phages that infect the same bacterial host (each represented by a
dot). The graph is separated into four categories based on the recall and the precision values (higher or lower than 50%).

ter, but these represent only 8% of the predictions obtained
from the third filter. This is a good reminder that the spacer
acquisition rate between organisms is different and might
be the reason why this third filter is erroneous in some
contexts.

We next examined how the accuracy varied across filters
(Figure 5C). The first and second filters contributed the
most to singling out a host, as together they represented
93% of all predictions made. The fourth filter (last common
ancestor), intended as a safety net in case previous filters
failed, was rarely employed (<1%) for making a prediction.
The first and second filters also showed the highest accu-
racy, as their predictions had 71 and 69% precision, respec-
tively. The third filter (spacers closest to the 5′ end of the
CRISPR array) yielded less precise predictions (49% preci-
sion) and represented 6% of all predictions. Despite various
levels of precision, the three filters systematically performed
better than selecting a random host (null model, P-value <
0.001). This was not surprising for the first filter (number
of mismatches) because there are several spurious hits from

a blastn alignment. However, this confirms the importance
of the two additional filters as they improved the quality of
the predictions, when compared to selecting a random host
from the hits that passed the first filter.

Host effect on prediction accuracy

Given the variability in the content of various CRISPR ar-
rays, which is linked to the adaptive activity of CRISPR–
Cas systems, we suspected that our approach may show dif-
ferent performances depending on the host of the phage.
There were 81 cases where the real host was in a tie with
other putative hosts after the first filter and led to an inac-
curate prediction after the second filter. Of these, 61 were
phages infecting Escherichia, but were systematically pre-
dicted to infect Salmonella. This may be caused by broad
host range phages classified as Escherichia phages but capa-
ble to infect other Enterobacteriaceae. Similarly, there were
52 cases where the real host was in a tie with other putative
hosts after the second filter and was not picked as the pre-
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dicted host by the third filter. Here, 19 of these were phages
infecting Mycolicibacterium and were incorrectly assigned
to Mycobacterium.

Overall, the performance of the prediction algorithm was
found to be host dependent. This is most likely caused by
differences in the diversity of spacers for each host, as we
found a correlation between the precision and the number
of host unique spacers when phages were grouped by their
hosts (Figure 5D, Spearman correlation coefficient = 0.69).
Prediction performances (based on bacterial host) were sep-
arated into four categories, depending on their recall and
precision (higher or lower than 50%). We examined the re-
sults for categories 1 (low recall/low precision) and 3 (high
recall/high precision), as they represented the two largest
categories. Interestingly, we found several marine bacteria
in category 1 and many gut-associated bacteria in category
3. No host predictions were made for phages that infect
Prochlorococcus and Synechococcus (category 1). Less than
20% of Cellulophaga (category 1) phages were predicted but
these predictions were systematically inaccurate. These in-
accuracies however did not apply to phages that infect Vib-
rio, another marine bacterium, as the recall and precision
for this group of phages reached 52 and 70%, respectively.
It was previously reported that neither Synechococcus nor
Prochlorococcus harbors a CRISPR–Cas system (32). Con-
sistent with those findings, our spacer database does not
contain any spacers that belong to Prochlorococcus. There
are, however, 2125 spacers that originate from Synechococ-
cus. On the other hand, phages that infect Clostridioides,
Enterococcus and Prevotella (category 3) could be perfectly
(100% recall and precision) or near perfectly associated to
their hosts. Other gut bacteria found in category 3 included
Salmonella, Proteus, Clostridium and Bifidobacterium (Sup-
plementary dataset 2). The incidence of CRISPR–Cas sys-
tems was previously reported to be associated with particu-
lar ecological traits, such as specific ranges of oxygen levels
and temperatures, which might explain why host predictions
based on CRISPR spacers are better suited for gut phages
than for aquatic phages (33,34).

A CRISPR spacer-based host prediction method to uncover
phages that infect the most dominant bacterial members of
the gut

To illustrate the types of results that can be obtained, we
used the recent gut virome study by Shkoporov and col-
leagues (28) and predicted the bacterial hosts of their dis-
covered phages. Of the initial catalogue of 57 721 contigs, we
used VIBRANT to further identify contigs with a viral ori-
gin. VIBRANT predicted only 5496 contigs (9.5%) as viral.
We predicted the hosts for 1393 phage contigs (25%), with
eight bacterial hosts representing half of the predictions
(Figure 6A). These top hosts are all dominant members of
the human gut microbiota (35), which supports the valid-
ity of the predictions. The authors of the initial study had
also performed CRISPR spacer-based host predictions, us-
ing different genomic sources and software. Of the 5496 vi-
ral contigs, they obtained a host prediction for 834 of them.
Our approach yielded 67% more predictions. There were
569 viral contigs for which a host was predicted at the genus
level from both the initial study (hereby called Shkoporov

host predictions) and our present work and after compar-
ing predictions for the same viral contig, we found that 457
(80%) were identical (Figure 6B). The filter used in our pre-
diction approach strongly associated with the two methods
giving identical or different predictions. Indeed, identical
predictions were made in the vast majority (392/457, 86%)
with the first filter (number of mismatches), whereas cases
with different predictions were obtained from the first filter
only 55% of the time. Thus, cases of conflicting predictions
between the Shkoporov host prediction and our method
represent more complex decisions, requiring the second and
third filters.

We then focused our attention on a phage contig pre-
dicted to infect Clostridium. This 22-kb contig was tar-
geted by 16 different Clostridium spacers (with 0 mis-
match) all across the contig (Figure 6C). Shkoporov and
colleagues identified this phage as a Siphoviridae but were
unable to predict its host. Although this phage con-
tig seemed incomplete, no integrase or recombinase was
identified, suggesting it may be virulent, whereas most
Clostridium/Clostridioides phages in the literature are cur-
rently temperate (36). Using a combination of viral metage-
nomics and our host prediction method may provide
a means to identify new phages and help isolate viru-
lent phages for various applications. This combination
of techniques was proven successful for the isolation of
crAssphage, which was initially identified through metage-
nomics (5), predicted to infect Bacteroides and then, iso-
lated four years later with Bacteroides intestinalis as its host
(37).

Comparing the CRISPR-based approach with existing meth-
ods

We also compared the performance and ease of use of our
approach with that of WIsH (31), a host prediction method
based on homogeneous Markov models. To compare the
recall and the precision, we used the same dataset of 1420
phage genomes from Galiez et al. (31). Using our method,
we obtained a recall of 17% and a precision of 71%. The
precision associated with WIsH is inversely proportional to
the number of bacterial genera used to train homogeneous
Markov models. Galiez et al. (31) used 965 bacterial gen-
era to test the accuracy, whereas our spacer database con-
tained spacers belonging to 1978 bacterial genera. For an
equivalent recall of 17%, WIsH precision with 965 bacterial
genera reached 80%. There was however insufficient data
to precisely evaluate what the recall and precision of WIsH
would be with 1978 bacterial genera. We estimated that the
relationship between the number of bacterial genera and
the precision was best described by a logarithmic function,
where doubling the number of bacterial genera would de-
crease the precision at the genus level by ∼6%. Given this
conservative assumption, the precision of WIsH with 1978
bacterial genera would approach 70%. Thus, with equal
numbers of bacterial genera, we estimate that WIsH and
our CRISPR spacers-based host prediction method would
achieve similar levels of accuracy. In our opinion, a host pre-
dicted from spacers matching a viral contig arguably pro-
vides a more convincing case because of previously recorded
phage–bacteria interactions in the CRISPR array. On the
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Figure 6. Bacterial host predictions for unknown phages from the gut virome. Eight dominant members of the gut microbiota represent half of the predic-
tions. (A) Number of phages predicted to infect each bacterial genus. (B) Number of predictions obtained from each filter for gut virome phages when a host
was also predicted in the previous Shkoporov study. Predictions that are identical or different to the Shkoporov study are in blue and green, respectively.
(C) Regions (red dots) on a putative Clostridium-infecting phage contig targeted by Clostridium spacers.

other hand, WIsH shows an association in terms of genomic
composition between a phage and its putative host.

We also believe that the spacer database and pipeline de-
veloped here stand out for their user-friendly design. It re-
quires a one-time download (database and script) and the
users do not need to pre-select bacterial genomes for more
accurate predictions. Furthermore, the predicted hosts are
accompanied by the information on the filter that was
used to predict the phage host. Therefore, since preci-
sion varies by filter, the user knows how reliable each pre-
diction is and can make informed decisions about how
the results are used. The use of a set of well-defined cri-
teria offers a transparent and easy way to critically as-
sess and interpret the host prediction of uncharacterized
phages. Other spacer databases exist, such as the Inte-
grated Microbial Genome/Virus (IMG/VR) system (38)
and the CRISPRCasFinder website (24). The IMG/VR
website provides a tool to blast single phage sequences
against their Viral Spacer Database, using the E-value as
a cut-off. However, none of these databases provide an
easy system for linking spacer sequences to organisms
and then automatically performing host predictions with
optimized parameters. Previous studies that characterize
the viromes of various environments have made phage
host predictions with CRISPR spacers by building custom
spacer databases (28,39–43). They used different sources
(metagenome-derived spacers or spacers from deposited
genomes), CRISPR identification programs and filters to
assign hosts. To our knowledge, our spacer database, web
platform and command-line program represent the first set
of tools that automates, simplifies and standardizes phage
host predictions based on CRISPR spacers from spac-
ers identification to database construction and alignment
filters.

DISCUSSION

We optimized bacterial host predictions of unknown phages
based on CRISPR spacers. By allowing at most two mis-
matches between a given spacer and a queried phage as
well as following a set of criteria inspired by the biology
of CRISPR–Cas systems, we obtained a recall of 49% and
a precision of 69% at the genus level for our benchmark
dataset. A set of tools was developed to streamline host
prediction, including a spacer database that contains >11
million spacers, a web platform to explore the database us-
ing taxonomic filters and to perform predictions for single
phage genomes, and a command-line tool that automates
alignment and host predictions for larger virome datasets.
We used criteria that were inspired by the way CRISPR ar-
rays chronologically accumulate spacers and how Cas pro-
teins recognize invading nucleic acids. This CRISPR spacer-
based approach was shown to be particularly well suited
for unknown phages from the gut virome. This host pre-
diction method also distinguishes itself by its customizabil-
ity and user-friendly interface to facilitate the interpreta-
tion of host prediction results. Despite showing high pre-
cision, our method is limited in its recall. One way to im-
prove the recall may be to use our proposed method in
conjunction with other host prediction tools, particularly
those that rely on other prediction strategies. Mining spac-
ers from bacterial metagenomes of the same sample used for
viral metagenomics might increase the number of phages for
which a prediction is obtained since such spacers likely re-
flect specific and recent interactions with unknown phages
(39,41). However, using spacers from metagenomes involves
identifying spacers from potentially misannotated bacte-
rial contigs, which could lead to inaccurate host predic-
tions. Additional work is likely needed to optimize host pre-
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dictions with metagenome-derived spacers, possibly by in-
corporating other metrics so that precision is not compro-
mised. The spacer database is currently restricted to bacte-
rial spacers, but CRISPR–Cas systems are present in both
archaea and bacteria. However, given the limited number of
archaeal genomes, and more importantly their viruses (only
250 archaeal viruses that infect 23 hosts genera are publicly
available), we could not provide accurate measurements of
the host prediction for archaeal viruses. As more archaea
and viruses get sequenced, a spacer-based host prediction
method may be developed, tailored to this Domain.

The CRISPR spacer database expands the diversity of se-
quences available to find homology with unknown phages.
Our comprehensive analysis led to the identification of the
most performant and biologically relevant criteria, verified
on thousands of phages, to predict the bacterial hosts of
unknown phages. The first set of tools to automate bac-
terial host predictions based on CRISPR spacers was also
developed, providing the scientific community with a web-
site and command-line tool to perform high-quality, consis-
tent and easy-to-interpret predictions. Altogether, this ap-
proach will contribute to a better characterization of un-
known phages from viral metagenomics and a better under-
standing of their ecological role by revealing the hosts that
they infect.
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