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Unveiling the protective immune response to visceral leishmaniasis is critical for a rational
design of vaccines aimed at reducing the impact caused by this fatal, if left untreated,
vector-borne disease. In this study we sought to determine the role of the basic leucine
zipper transcription factor ATF-like 3 (Batf3) in the evolution of infection with Leishmania
infantum, the causative agent of human visceral leishmaniasis in the Mediterranean Basin
and Latin America. For that, Batf3-deficient mice in C57BL/6 background were infected
with an L. infantum strain expressing the luciferase gene. Bioluminescent imaging, as well
as in vitro parasite titration, demonstrated that Batf3-deficient mice were unable to control
hepatic parasitosis as opposed to wild-type C57BL/6 mice. The impaired microbicide
capacities of L. infantum-infected macrophages from Batf3-deficient mice mainly
correlated with a reduction of parasite-specific IFN-g production. Our results reinforce
the implication of Batf3 in the generation of type 1 immunity against infectious diseases.
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INTRODUCTION

Human leishmaniases are a group of poverty-related neglected diseases caused by an infection with
parasites of the genus Leishmania, which are transmitted by infected sand flies. Depending on the
infectious parasitic species, patients may develop different pathologies. In the Old World, cutaneous
leishmaniasis (CL) is mainly caused by L. major infection. Visceral leishmaniasis (VL) usually develops
after infection with L. infantum (Mediterranean countries and South America) or L. donovani (Indian
Subcontinent and East Africa) (1). Even though patients who have recovered from leishmaniasis develop
immunity against reinfection (2), suggesting that an effective vaccine should be feasible, to date there are
no vaccines or specific immunotherapies against the human forms of the disease.

The existence of murine models of infection for different parasitic species is contributing to the
development of vaccines or more effective and advanced therapeutic strategies (3, 4). In addition,
these models have been fundamental to understand the generation, maintenance and, eventually,
failure of those immune responses underlying either resistance or susceptibility to infection.
Different studies performed on mice experimentally infected with L. major have allowed the
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establishment of an association between resistance and
susceptibility, and the cellular response induced after challenge.
The susceptibility to infection shown by BALB/c mice correlates
with the induction of a dominant Interleukin (IL)-4–producing
CD4+ Th2 response, and to the generation of parasite-dependent
IL-10 responses (5). As a result, the parasite multiplies in the site
of infection and subsequently spreads to the viscera (6).
Alternatively, resistant C57BL/6 mice develop a response
mediated by Interferon (IFN)-g-producing CD4 + Th1 cells,
thus activating infected macrophages to produce nitric oxide
(NO), which mediates the intracellular killing of the parasite (5).

Infection of both BALB/c or C57BL/6 strains with Leishmania
viscerotropic species results in parasite multiplication in the
liver, spleen and bone marrow (6). During the first weeks
after challenge (initial phase) parasites multiply in the liver,
but in the late phase infected Kupffer cells are activated to
produce NO resulting in a decrease of hepatic parasitic
burdens. This inflammatory response is unable to control
parasite multiplication in either the spleen or the bone
marrow, resulting in a chronic infection (7, 8). The immune
response concomitant to this parasitosis evolution after challenge
with L. infantum has been mainly studied in the BALB/c model
and results in the generation of both Th1 and Th2 responses (9–
11). This mixed Th1/Th2 response has been also recently
reported in the C57BL/6-L. infantum model of infection (12).

AP-1 (activator protein-1) constitutes a family of transcription
factors endowed with a basic region-leucine zipper (bZIP)
belonging to different families (JUN, FOS, ATF, basic leucine
zipper transcriptional factor ATF-like and MAF) that form
heterodimers to regulate transcription. Development and
function of myeloid and lymphoid cell populations is
regulated by different basic leucine zipper transcriptional factor
ATF-like (BATF) proteins (13). BATF proteins can act as
negative regulators of the AP-1 complex or interact with IFN
regulatory factor (IRF) family member to regulate transcription
(14). Batf3 is a BATF member that was firstly identified in
human T cells and is required for the development of the of a
subset of conventional dendritic cells (DC) (15). To determine
the role of Batf3 in visceral leishmaniasis (VL), we have
employed C57BL/6 wild-type and Batf3−/− animals challenged
with an infective genetically-modified strain expressing red-
shifted luciferase (luc) gene (16). We have followed the
presence of parasites in internal organs in vivo throughout the
course of the infection. We have analyzed the presence of viable
parasites in liver, spleen and bone marrow in the initial (fourth
week) and late phases (tenth week). We have also examined the
immune response in animals in both phases, studying the
humoral and cellular responses against the parasite. We found
an enhanced susceptibility along with a decrease in the parasite-
specific CD4+ Th1 response in L. infantum-infected Batf3-
deficient mice, while the proportions of IL-4, IL-17, or IL-10–
producing CD4+ T cells remained unaffected. These results
suggest the involvement of Batf3-dependent conventional type
1 DC (cDC1) in resistance to VL, but further studies will be
required to directly demonstrate their role in the susceptibility to
this infectious disease. Thus, we show that, although the absence
Frontiers in Immunology | www.frontiersin.org 2
of Batf3 critically impairs Th1 immunity, it might have a
differential impact on other T cell subsets or not, depending on
the pathogen.
MATERIALS AND METHODS

Mice and Parasites
Mice were bred under specific pathogen-free conditions at the
National Centre for Cardiovascular Research (CNIC) and
transported to the Severo Ochoa Molecular Biology Centre
(CBMSO) to conduct the research. Batf3−/− mice kindly
provided by Dr. Kenneth M. Murphy, (Washington University,
St. Louis, MO. USA), were backcrossed more than ten times to
establish WT and Batf3−/−colonies from the heterozygotes. The
animal research complies with EU Directive 2010/63EU,
Recommendation 2007/526/EC and Spanish Royal Decree (RD
53/2013) regarding the protection of animals used for
experimental and other scientific purpose. Procedures were
approved by the Animal Care and Use Committee at the
Centro de Biologıá Molecular Severo Ochoa (CEEA-CBMSO
23/243), the Bioethical Committee of the CSIC (under reference
795/2019), Bioethical Committees of the CNIC and Universidad
Complutense de Madrid as well as the Government of the
Autonomous Community of Madrid (Spain) under the
references PROEX 115/19, PROEX 121/14, and PROEX134/19.
All animal procedures conformed to EU Directive 2010/63EU
and Recommendation 2007/526/EC regarding the protection of
animals used for experimental and other scientific purposes,
enforced in Spanish law under Real Decreto 1201/2005. All
experimentation was performed with female mice.

The PpyRE9h+L. infantum strain expressing red-shifted luc
gene was employed to infect the mice (16). Promastigotes were
cultured at 26°C in M3 medium supplemented with 10% fetal
calf serum (FCS; Sigma. St. Louis MO. USA), 100 U/ml of
penicillin, 100 mg/ml of streptomycin and 100 mg/ml of
puromycin (all purchased from Thermo Fischer Scientific,
Waltham, MA, USA). Animals were challenged intravenously
(i.v.) with 1 × 107 stationary phase promastigotes. For soluble
leishmania antigen (SLA) preparation, L. infantum (strain
MCAN/ES/96/BCN150) promastigotes were employed. This
strain was grown in the same medium indicated above but in
the absence of puromycin.

Follow-Up of In Vivo Infections by
Bioluminescent Imaging and In Vitro
Quantification in Internal Organs of the
Parasitic Burdens
After challenging the mice with PpyREh9+L. infantum
promastigotes, animals were monitored weekly in a Charge-
Coupled Device (CCD) IVIS 100 Xenogen system (Caliper Life
Science, Hopkinton, MA, USA) as described in (16). Briefly,
images were acquired for 10 min from animals anesthetized with
isoflurane that were previously intraperitoneally injected with D-
luciferin (150 mg/Kg) purchased from Perkin Elmer (Waltham,
MA, USA). The estimation of the parasitic burden in living mice
December 2020 | Volume 11 | Article 590934
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was performed by the quantification of the regions of interest
(ROIs) around liver and femur in ventral position using Living
Image v.4.3. The values of BLI are expressed as radiance (p/s/
cm2/sr).

At the indicated time points post-challenge, parasitic burden
in liver, spleen and bone marrow (BM) were determined by
limiting dilution as described in (17). Briefly, approximately 20
mg of liver, the whole spleen, and BM samples perfused from the
femur cavities of each mouse, were individually homogenized in
M3 medium supplemented with 20% FCS, 100 U/ml of
penicillin, 100 mg/ml of streptomycin and 100 mg/ml of
puromycin and filtered through 70 mm cell strainers (Corning
Gmbh, Kaiserslautern, Germany) to obtain a cell suspension.
Cells were serially diluted (1/3) in 96-well flat-bottomed
microtiter plates (Thermo Fischer Scientific) containing the
same medium employed for homogenization (in triplicates).
The number of viable parasites was determined from the
highest dilution at which promastigotes could be observed after
10 days of incubation at 26°C and is indicated per whole spleen,
per gram of liver, or parasites per 1 × 107 BM cells.

Analysis of the Leishmania-Specific
Humoral Responses
The reactivity against parasite proteins was determined by ELISA
as described in (18) using NUNC MaxySorp plates. Briefly, plate
wells were coated with freeze-thawed L. infantum SLA (1.2 µg
per well) and incubated with 1/2 dilutions (starting at 1/100).
The serum of each infected mouse was analyzed independently.
Anti-IgG1, or anti-IgG2c horseradish peroxidase-conjugated
anti-mouse immunoglobulins from Nordic (BioSite Täby,
Sweden) were used as secondary antibodies at 1/2,000 dilution.
Orto-phenylenediamine was employed for color development
and the optical densities were read at 490 nm in an ELISA
microplate spectrophotometer (Model 680, Bio-Rad
Laboratories). Sera reactivity was calculated as the reciprocal
end-point titer defined as the inverse value of the highest serum
dilution factor giving an absorbance > 0.1 absorbance unit.

In Vitro Cell Stimulation, Determination of
Cytokine Concentration in Culture
Supernatants, and Analysis of IFN-g
Production by T Cells
Primary cultures from the spleen of infected mice were
established in RPMI complete medium: RPMI medium
(Sigma) supplemented with 10% heat-inactivated FCS, 20 mM
L-glutamine, 200 U/ml penicillin, 100 mg/ml streptomycin and
50 mg/ml gentamicin (Thermo Fischer Scientific). GMCSF BM-
derived CD11c+ cells (GM-BM) were used as antigen presenting
cells. They were derived from BM suspensions cultured for 7
days in RPMI complete medium supplemented with 20 ng/ml
recombinant GMCSF (Peprotech, London, UK). Cells were
loaded with L. infantum SLA (3 µg/ml) the last 24 h to obtain
stimulated cells. For in vitro stimulation, spleen cells (2 ×106

cells/ml) were co-cultured at 37°C and 5% CO2 with GM-BM
cells (4 ×105 cell/ml) (stimulated or not with SLA) in RPMI
complete medium.
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For the analysis of cytokine secretion to culture supernatants,
spleen cells were stimulated as indicated above for 72 h.
Afterwards, supernatants were obtained and analyzed by
sandwich ELISA using commercial kits (Thermo Fisher
Scientific). The levels of IFN-g, IL-17, IL-10, IL-4, or IL-13 in
culture supernatants were determined.

For the analysis of cells producing IFN-g, spleen cells were
stimulated as indicated above for 48 h. For the last 6 h, cultures
were treated with brefeldin A (10 µg/ml; Sigma). Then, cells were
harvested, washed in PBS with 1% heat-inactivated FCS (PBSw)
and incubated with Fc block (BD Bioscience, San José, CA, USA)
prior to staining. Next, cell surface markers: CD3 (clone 145-
2C11; APC), CD4 (clone RM4-5; BV570) and CD8 (clone 53–
6.7; FITC) were stained for 30 min at 4°C. After washing in
PBSw, cells were fixed and permeabilized with Cytofix/Cytoperm
(BD Bioscience). Next, the PE/Cy7 anti-mouse IFN-g (clone
XMG1.2) antibody was added for 30 min at 4°C. Finally, cells
were washed and analyzed. Antibodies were purchased from
BioLegend (San Diego, CA, USA). Samples were acquired using a
FACS Canto II flow cytometer and FACSDiva Software (BD
Bioscience) and processed and plotted with FlowJo Software
(FlowJo LLC, Ashland, Oregon, USA).

Nitrite Determination
Release of nitrite was determined in the supernatant of spleen cell
cultures (5 × 106 cell/ml) stimulated or not with Concanavalin A
(ConA;1 µg/ml) or SLA (12 µg/ml) for 72 h in complete RPMI
medium. For nitrite determination, 50 µl of culture supernatant
were mixed with an equal volume of Griess reagent. Nitrite
concentration was calculated from a sodium nitrite linear
standard curve (1–100 µM). Absorbance was measured at
540 nm.

Statistical Analysis
Statistical analysis was performed using the Graph-Pad Prism 5
program. Data were analyzed by a two-tailed Student t-test.
Differences were considered significant when P < 0.05.
RESULTS

Batf3 Deficiency Impacts on VL
Progression in Mice Infected With
L. infantum
To analyze the role of Batf3 deficiency in the evolution of VL, we
carried out a comparative analysis of the development of the
infection in the liver with parasites expressing the luc gene
between Batf3−/− mice and their corresponding littermate
controls. No differences were observed in hepatic bioluminescence
values between Batf3−/− and control mice at the initial phase of the
infection (weeks 1–6; Figure 1A and Supplementary Figure 1).
However, as can be deduced from the radiance values from week 7
to the end of the assay, at the late phase of the infection, parasite
burden reached a plateau in Batf3−/−mice, suggesting that they have
an impaired ability to control hepatic parasite multiplication (weeks
7–10; Figures 1A, B and Supplementary Figure 1). From week 6
December 2020 | Volume 11 | Article 590934
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onwards, similar parasite numbers were detected in the bone
marrow of both groups (Figure 1C and Supplementary Figure
1). We could not detect parasites in the spleen with either the front
view or the lateral view, except for some Batf3-deficient mice that,
during the last two weeks, presented dispersion of parasites to other
internal organs (Supplementary Figure 1).

Differences in hepatic parasitic burdens between Batf3−/−

and control mice were confirmed by using a limiting dilution
assay. Batf3−/− mice showed an increase of two orders of
magnitude in hepatic parasitic load compared to controls at
week 10 post-challenge. The ability to control parasite
multiplication in the liver was only observed in wild-type
mice, since there was a decrease in the number of parasites
from the early to the late phase. However, mice deficient for
Batf3 exhibit an increase in the number of parasites (Figure 2).
We also determined the parasitic burden in the spleen.
Although Batf3−/− mice presented higher parasite numbers
than control mice in this organ, the increase was not found
to be significantly different in any of the two repeat
experiments. In both groups, we found splenic chronic
progressive infection, since the number of parasites increased
significantly in the spleen with infection time (Figure 2).
Similar parasite numbers were found in the bone marrow
from both groups at week 4 and week 10 post-challenge
(Figure 2). All these results allowed us to conclude that the
deficiency in Batf3 transcription factor prevents the control of
parasite multiplication in the liver, without affecting the
establishment of a chronic infection in the spleen or bone
Frontiers in Immunology | www.frontiersin.org 4
marrow. We found in some Batf3-deficient mice signs of illness
around weeks 7 to 9 post-challenge: i.e. lethargy and unkempt
coats, so we decided to establish a humane endpoint at 10 weeks
to prevent unnecessary animal distress.

Batf3 Deficiency Impairs the Generation of
Leishmania-Specific IgG2c Humoral
Response in Mice Infected With
L. infantum
Next, we analyzed the humoral immune response against
leishmanial antigens in the L. infantum infected mice. We
evaluated the titer of IgG2c and IgG1 anti-SLA antibodies in
the sera of infected mice as an indication of the in vivo induction
of Th1- or Th2-mediated responses respectively. The analysis
was performed at week 4 after challenge (initial phase, Figure
3A) and at the end of the experiment 10 weeks after infection
(late phase, Figure 3B). At both time points, mice of the control
group showed a mixed response, with titers of IgG1 and IgG2c
anti-SLA antibodies that were not significantly different. Batf3−/−

mice showed very low, although detectable, titers of the IgG2c
subclass antibodies throughout the infection process. These titers
were significantly lower than those found in mice of the control
group (Figures 3A, B). No differences were observed for the titer
of anti-SLA IgG1 antibodies between both groups (Figures 3A,
B). This diminished IgG2c response, which depends on IFN-g
(19), suggests that Batf3−/− mice have an impaired capacity to
induce Th1 responses against the parasite that did not result in
an increased parasite-specific Th2-mediated humoral response.
A B

C

FIGURE 1 | In vivo evaluation of L. infantum infection. Batf3−/− (KO; n= 9, weeks 1–3; n = 5, weeks 4–10) and wild-type (WT; n= 10, weeks 1–3; n = 5, weeks
4–10) mice were infected intravenously with 1 × 107 PpyREh9+ L. infantum stationary phase promastigotes. (A) Representative bioluminescent images of infected
mice. (B, C) The graphs show the mean (+ SD) of the quantification of ventral bioluminescence corresponding to the liver (B) or femurs (C) from the experiment
shown in the Supplementary Figure 1. Symbol * shows the statistical differences between KO and WT mice data (P < 0.05). Symbol + shows the statistical
differences between WT data taken at week 7 and at week 10 (P < 0.05). Results are representative of two independent experiments.
December 2020 | Volume 11 | Article 590934
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Batf3 Deficiency Impairs the Generation of
Leishmania-Specific Cellular Immune
Responses in Mice Infected With
L. infantum
To investigate the cellular immune response elicited against the
parasite, we analyzed Leishmania-specific cytokine secretion by
spleen cells taken at week 4 and at week 10 post-infection ex vivo.
For stimulation, we used CD11c+ GMCSF bone marrow-derived
cells (GM-BM) loaded or not with L. infantum SLA were
employed. The SLA-specific production of IFN-g was higher in
wild-type animals at the initial and at the late phase of infection,
(Figure 4A). A similar profile was obtained when determining
the presence of IL-10 in culture supernatants (Figure 4B). The
only difference was the absence of IL-10 in the supernatant of
the cultures established from the Batf3−/− mice independently of
the stimuli at the initial phase (Figure 4B). Regarding Th2-
related cytokines, SLA-dependent secretion of IL-4 (Figure 4C)
and IL-13 (Figure 4D) was observed at the late phase for both
cytokines and also at the initial phase for IL-13. At the late phase
of the infection we did not detect significant differences between
the amount of these cytokines in both mice groups. We did not
detect a SLA-dependent secretion of IL-17 in any group
(Supplementary Figure 2).

Since the predominant IFN-g-mediated response found in the
infected wild-type animals was decreased, although not absent,
in Batf3−/−mice, we analyzed the frequency of CD4+ and CD8+ T
Frontiers in Immunology | www.frontiersin.org 5
cells producing this cytokine in both mice groups.
Supplementary Figure 3 shows the gating strategies and FMO
controls. The frequency of IFN-g-producing CD4+ and CD8+ T
cells was analyzed both at the initial (Figure 5A), and at the late
phase of the infection (Figure 5B). We detected a statistically
significant higher production of FN-g-producing only for CD4+

T cells stimulated with SLA at the final phase of the infection.
To complement these findings, we measured the amounts of

nitrites, derived from NO production in macrophages, by Griess
reaction in the culture supernatants of spleen cells established
from Batf3−/− and control mice. Our results showed the presence
of nitrites in cell supernatants from WT mice upon stimulation
with SLA, in greater magnitude in the late phase of infection
(Figure 6). This metabolite was almost absent in cultures
generated from Batf3-deficient mice stimulated with SLA, but
produced in similar levels than in WT mice upon Concanavalin
A treatment, reflecting the limited leishmanicidal capacity of
their macrophages in response to parasite stimuli.
DISCUSSION

Batf3 transcription factor may play different roles in the
development and function of myeloid and lymphoid
populations. For example, it inhibits the differentiation of
regulatory T cells in the periphery (20). Very recently, a role
December 2020 | Volume 11 | Article 590934
FIGURE 2 | Evolution of parasite burden. The presence of viable parasites in Batf3−/− (KO) and wild-type (WT) mice infected intravenously with 1 × 107 PpyREh9+L.
infantum stationary phase promastigotes was determined at week 4 (initial; n= 4 KO, n = 5 WT) or at week 10 (late; n = 5 both groups) by limiting dilution. Data are
represented as the mean (+ SD) of the parasite loads from each group. Samples from each mouse were independently determined in the liver (parasites per gr),
spleen (parasites per organ) or bone marrow (parasites per 1 × 107 cells). * (P < 0.05) shows the statistical differences in liver parasite loads from WT and KO
groups. + (P < 0.05) shows the statistical differences in liver or spleens from mice of the KO group at week 4 and at week 10 post-challenge. x (P < 0.05) shows the
statistical differences in liver or spleens from mice of the WT group at week 4 and at week 10 post-challenge.
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for Batf3 in memory CD8+ T cell differentiation has been
revealed (21, 22). Importantly, Batf3 selectively determines
acquisition of CD8a+ DC phenotype and function in lymphoid
organs, and CD103+ in non-lymphoid organs (15, 23–25). Both
subsets comprise conventional type 1 DCs (cDC1), which play
important roles in viral and cancer immunity (26).

The chronic self-healing L. major infection model in C57BL/
6 mice contributed to unveiling the role of the different DC
subsets in the priming and maintenance of the anti-Leishmania
response [reviewed in (27, 28)]. DC comprise a heterogenous
population, and are further classified into distinct subtypes
according to ontogeny, differential expression of surface
proteins, cell localization, and immunological function.
Intradermal infection of a C57BL/6 mouse strain deficient in
Batf3, resulted in an exacerbated evolution of the CL disease
(29, 30). In this model, it was demonstrated that Batf3-
dependent DCs are essential for the control of CL due to L.
major infection. Batf3-deficient mice presented unresolved
lesions and higher parasitic burdens, because of their inability
to produce IL-12, a cytokine which is critical for the
maintenance of Th1 immunity (29). In contrast to the mouse
model of L. major-induced CL, less is known about the role of
the different DC subsets in VL. We hypothesized that absence of
Frontiers in Immunology | www.frontiersin.org 6
cDC1, due to Batf3-deficiency, might impact on cross-priming
of IFN-g CD8+ T cells (15, 31, 32), which play a major role in
experimental VL (32, 33) and/or maintenance of IFN-g-
producing CD4+ T cell responses (29, 35).

Murine models of VL have been extensively employed to
elucidate the interaction of the host's immune system and
viscerotropic parasite species (36, 37). Using in vivo
bioimaging techniques we have been able to follow the
evolution of the parasite colonization in C57BL/6 mice
infected by L. infantum. According to previous reports (16,
38, 39) we have employed the pseudocolor heat-map signals to
analyze the evolution of the parasitic burden in liver, spleen and
bone marrow (Figure 1 and Supplementary Figure 1). We
have also determined the parasite loads in these organs by
titration assays at two time points corresponding to the initial
phase, when the immune response is primed in the spleen, and
to the late phase of infection, when hepatic resistance is
observed and parasites are present chronically in the spleen
and BM (Figure 2) (7, 40). Although C57BL/6-L. infantum is
not the most frequent murine model of VL, the data collected in
this work are roughly consistent with published reports (12).
Data show a similar evolution of the disease in this model of VL
to that occurring in BALB/c mice infected by L. infantum or
L. donovani, or in C57BL/6 mice infected with L. donovani;
namely if comparing the control of parasitic burdens in the liver
and development of a chronic infection in the spleen or
the bone marrow (7, 8, 11, 41). Regarding the evolution of the
hepatic parasite burden, bioluminescence reached its peak in
weeks 6 to 7 and showed a progressive decline from those weeks
until the end of the trial in wild-type mice. Interestingly,
deficiency in Batf3 protein altered this evolution of hepatic
parasitic load, which was progressively increased in Batf3−/−

mice resulting in a chronic hepatic infection. It is noteworthy
that in the last two weeks a dispersion of bioluminescence to
other internal organs was observed in some Batf3−/− deficient
mice, thus demonstrating a lack of control of the disease in
Batf3-deficient animals. Contrary to the data shown by Alvarez
et al. where they use the same Leishmania strain for infection of
BALB/c mice (16), we were not able to detect bioluminescent
signal in the spleen (except in some of the Batf3−/− animals at
the end of the assays, as depicted above). Interestingly, a
positive signal was obtained in the bone marrow (of the
femur) in both animal groups. The higher concentration of
parasites in the bone marrow is likely to allow their
visualization, while in the spleen the luminescence remains
below the detection threshold. The lower parasitic load
observed in the spleen of C57BL/6 mice compared to BALB/c
animals infected with the same L. infantum strain (10, 16) is
consistent with previous data indicating that, although both
strains are considered susceptible to VL, C57BL/6 mice show an
intermediate phenotype of infection, less susceptible than
BALB/c mice (2, 12, 42, 43). However, and as reported
previously for C57BL/6 infected with L. infantum (12) or L.
donovani (42), an increase of splenic parasite burdens with time
was observed in both wild-type and Batf3−/− animals.
A

B

FIGURE 3 | Humoral response against Leishmania after challenge. Batf3−/−

(KO) and wild-type (WT) mice were infected intravenously with 1 × 107

PpyREh9+ L. infantum stationary phase promastigotes. The IgG1 and IgG2c
reciprocal end-point titers against L. infantum SLA were calculated by ELISA
at week 4 (A) (n = 9 KO, n = 10 WT) or week 10 (B) (n = 5 per group). Data
are represented as mean + SD. * (P < 0.05) shows the statistical differences
between IgG1 and IgG2c titers in the KO group. + (P < 0.05) shows the
statistical differences of the IgG2c titers between WT and KO groups. Results
are representative of two independent experiments.
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The self-resolving liver infection of the murine VL models
mainly relies on the development of a CD4+ Th1 response
specific for the parasite that is primed in the spleen and is
implicated in the formation of inflammatory granulomas in the
liver (40). The activation of this CD4+ Th1 cell response
mounted by DCs occurs in the spleen in a IL-12–dependent
manner (7, 11, 37). Here, we present different evidence about the
existence of a dampened inflammatory response in Batf3−/−

mice both at the initial and late phases of the disease compared
to wild-type mice. The first evidence is the limited presence of
anti-SLA IgG2c subclass antibodies in the serum of knockout
mice at both phases of infection. Thus, we found significantly
reduced titers of this antibody subclass in Batf3−/− animals
compared to wild-type mice (Figures 3A, B). The second
evidence is related to the observation that Batf3−/− mice
exhibit reduced production of parasite-specific IFN-g by CD4+

T cells. This cytokine, that is essential for the activation of
infected macrophages (37, 44), was found at significantly lower
levels in the supernatants of cultures established from Batf3-
deficient mice than in those of wild-type controls (Figure 4A).
This finding correlates to the low NO production found in
Batf3−/− mice (Figure 6). Thus, Batf3-deficiency resulted in a
decrease in global leishmanicidal capacity, since NO promotes
the destruction of parasites that infect macrophages (45). Others
and we (29, 30) have shown that, in the absence of Batf3-
depedendent cDC1, there is a poor IFN-g response in the
murine model of CL due to infection with L. major. This
highlights the involvement of Batf3 in the generation of Th1
immunity against different Leishmania species, as also happens
with other protozoan parasites such as Toxoplasma gondii (35),
or in mucosal or systemic bacterial infections (46). Although
A B

DC

FIGURE 4 | Cytokine production against the parasite after challenge. Batf3−/− (KO) and wild-type (WT) mice were infected intravenously with 1 × 107 PpyREh9+ L. infantum
stationary phase promastigotes. Spleen cells cultures from each mouse were independently established at week 4 (Initial phase; n= 4 KO, n = 5 WT) or at week 10 (Late
phase; n = 5 both groups) and stimulated for 72 h with BM-DCs pulsed or not with SLA. IFN-g (A), IL-10 (B), IL-4 (C), or IL-13 (D) levels were measured in culture
supernatants by quantitative sandwich ELISA. Data are represented as the mean + SD. * (P < 0.05) shows the statistical differences between WT and KO mice groups. + (P <
0.05) shows the statistical differences between the SLA stimulated and unstimulated cells from mice of the KO group. x (P < 0.05) shows the statistical differences between the
SLA stimulated and unstimulated cells from mice of the WT group. Results are representative of two independent experiments (Late phase).
A

B

FIGURE 5 | Percentages of T cell producing IFN-g. Batf3−/− (KO) and wild-type
(WT) mice were infected intravenously with 1 × 107 PpyREh9+ L. infantum stationary
phase promastigotes. Spleen cells cultures from each mouse were independently
established at week 4 (A; Initial phase; n= 4 KO, n = 5WT) or at week 10 (B; Late
phase; n = 5 both groups) and stimulated for 48 h with BM-DCs pulsed or not with
SLA. Afterwards cells were processed for flow cytometry. Analyses are gated on
CD3+ cells. Data are represented as the mean (+ SD) of the percentage of CD4+ or
CD8+ T cells positive for IFN-g. * (P < 0.05) shows the statistical differences between
WT and KOmice groups.
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there is evidence indicating that CD8+ T cells can also contribute
to the production of IFN-g in murine models of VL (47, 48), and
that Batf3-dependent DC are critical for CD8+ T cell
crosspriming (15, 31, 32), we did not detect statistically
significant differences in the percentages of CD8+ T cells
producing IFN-g between wild-type and Batf3-deficient
animals (Figures 5A, B). We have not detected the generation
of Th17 responses against L. infantum proteins (Supplementary
Figure 2). This result contrasts with what has previously been
reported for the CL murine model in Batf3−/− mice, where the
defect in Th1 response was compensated by the induction of
parasite-dependent IL-17–mediated responses (30).

Contrary to what occurs upon L. major infection, the
negative effect of the absence of Batf3-dependent DC in the
generation of Th1 responses does not correlate with an increase
in Th2-type responses (29, 30). Thus, we show that parasite-
specific IL-4 (Figure 4C) and IL-13 production (Figure 4D) and
the titers of SLA-specific IgG1 circulating antibodies (Figures
3A, B) did not differ between the two mice groups, which could
be related with the paucity of splenic Tfh cells observed in
L. infantum C57BL/6 mice (12). Finally, IL-10 has been
described as an immunoregulatory molecule in human and
murine experimental VL that can suppress antiparasitic
immunity but also contributes to tissue damage prevention
(49–51). As occurred for Th2-related cytokines, the absence of
Batf3 resulted in an increased production of IL-10 after L. major
infection (28, 29), that is not reproduced in the VL model
Frontiers in Immunology | www.frontiersin.org 8
employed for this work (Figure 4B). Since IL-10 production
by CD4+ Th1 cells could act as a feedback control of IFN-g-
mediated inflammation (51–53), the decreased production of IL-
10 detected in Batf3−/− mice splenocytes could be an indirect
effect of the diminished IFN-g responses observed in
these animals.

In summary, our results suggest that Batf3-dependent DCs
are essential for controlling VL induced by L. infantum infection.
Notwithstanding, our results imply, but do not directly
demonstrate the role of cDC1 in resistance to VL, and further
studies are needed to address this important limitation. In the
absence of this population, the induction of CD4+ Th1 responses
against the viscerotropic L. infantum species is severely impaired,
as has been described for CL. In contrast to L. major-infected
Batf3-deficient mice, enhanced susceptibility to VL did not
correlate with increased production of IL-10, Th2-type (29) or
Th17-mediated responses (30). Thus, the crucial role of Batf3-
dependent DCs, differentially imprinting Th responses in the
different forms of leishmaniasis, reinforces the possibility of
designing vaccines or targeted immunotherapies based on
delivery of parasite antigens to this type of DCs.
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FIGURE 6 | Determination of the amounts of nitrite in the supernatants of splenic cell cultures. Batf3−/− (KO) and wild-type (WT) mice were infected intravenously
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SD) of nitrite levels is shown. * (P < 0.05) shows the statistical differences between WT and KO mice groups. Data shown are representative of two independent
experiments with similar results (Late phase).
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