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Weihong SongID
6☯, A. Dessa Sadovnick1,17☯

1 Department of Medical Genetics, University of British Columbia, Vancouver, Canada, 2 Department of

Neurology, Medical University of Vienna, Vienna, Austria, 3 Laboratory of Human Genetics of Neurological

Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific

Institute, Milan, Italy, 4 MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy,

5 Department of Biomedical Sciences for Health, University of Milan, Milan, Italy, 6 Townsend Family

Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada, 7 National

Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing,

China, 8 Department of Cell Biology and Immunology, Instituto de Parasitologı́a y Biomedicina López Neyra
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Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system character-

ized by myelin loss and neuronal dysfunction. Although the majority of patients do not pres-

ent familial aggregation, Mendelian forms have been described. We performed whole-

exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated

likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the

transcription and activation of inflammatory mediators. Rare missense or nonsense variants
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were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2),

inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213),

nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4,

SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological

and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS,

and provide the molecular and biological rationale for the chronic inflammation, demyelin-

ation and neurodegeneration observed in MS patients.

Author summary

Although the majority of patients diagnosed with multiple sclerosis do not have a family

history of disease, 13% report having a close relative also diagnosed with multiple sclero-

sis. In these families, the cause of multiple sclerosis can be largely attributed to a single

genetic variant that is transmitted through generations. In this study we analyzed DNA

from 132 patients from 34 families, resulting in the identification of 12 rare genetic vari-

ants that are largely responsible for the onset of multiple sclerosis in these families. These

variants are located in genes implicated in specific immunological pathways, and suggest

the biological mechanisms that trigger the onset of multiple sclerosis. These genes and

variants provide the means for the generation of cellular and animal models of human dis-

ease, and highlight biological targets for the development of novel treatments.

Introduction

Multiple sclerosis (MS) is a common autoimmune disease of the central nervous system (CNS)

affecting over two million people worldwide [1]. Although described as early as the 14th cen-

tury, it was Jean-Martin Charcot in 1868 who recognised MS as a distinct entity, and provided

the first detailed description of its clinical and pathological features [2]. Knowledge of the bio-

logical processes involved in the onset of MS have advanced greatly, and an increasing number

of disease-modifying treatments (DMTs) have been approved since the 1990s; however, a cure

has remained elusive [3, 4]. A better understanding of the molecular mechanisms orchestrat-

ing the disruption of biological processes in MS patients is critical for the development of effi-

cacious treatments that address the causes of MS and its progression, enhance remyelination,

and prevent axonal loss and disability [5]. Large scale genome-wide association studies

(GWAS) have already identified more than 200 genes that can moderately affect the individu-

al’s susceptibility to the disease [6]. Given the large size of these case-control studies, risk vari-

ants that remain undiscovered to date are expected to be individually rare. Thus, we

implemented high-throughput second generation sequencing technologies in multi-incident

MS families for the identification of rare disease-causing variants. Although the majority of

patients do not present a family history of MS, the prevalence of familial aggregation has been

estimated at 12.6% globally [7]. In these families, rare variants co-segregating with MS are

likely to account for the highest attributable risk towards the disease; however, additional

genetic and environmental factors are expected to play a significant role in the presentation of

clinical symptoms, level of disability, disease progression, penetrance and onset age [8, 9]. The

application of whole-exome sequencing (WES) in MS families has already nominated patho-

genic mutations in NR1H3, P2RX4/P2RX7, NLRP1 and GALR2 [9–12]. Although only one of

these discoveries has been replicated [13], mutations responsible for Mendelian forms of MS
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highlight the molecular mechanisms underlying the cause of disease, and provide the means

for the generation of new cellular and animal models of MS based on human genetic etiology

[9]. The comprehensive characterization of the biological pathways disrupted in these models

will nominate targets for pharmaceutical intervention trials and precision medicine

approaches. In addition, genetic screening for these pathogenic variants will enable the identi-

fication of at risk individuals, provide confirmation of diagnosis, and facilitate the prediction

of disease prognosis and treatment efficacy [14, 15]. This is critical to improve quality of life

for MS patients, as early diagnosis and selection of effective DMTs have been associated with

improved patient outcomes, and reduced accumulation of irreversible neurological damage

[16].

Results

A flowchart describing the samples and methodology implemented in this study is provided in

Fig 1. To identify genetic variants of major effect responsible for Mendelian forms of MS, we

performed WES analysis in 132 MS patients from 34 multi-incident families of European

descent. The high incidence of MS observed in these families, together with a high ratio of

MS patients to healthy siblings (>25%), lack of consanguinity or gender bias, and the presence

of unaffected parents, suggest autosomal dominant with reduced penetrance as the most

plausible disease model. Thus we evaluated pathogenicity for all heterozygote missense or

nonsense variants on autosomes with a minor allele frequency (MAF) below 1% in private or

public databases of variants [17], by assessing co-segregation with MS. To account for pheno-

copies and reduced penetrance, variants were considered to segregate with disease when

observed in at least 75% of blood-related individuals diagnosed with MS, and no more than

one unaffected family member, excluding unaffected parents of MS patients; defined as obli-

gate carriers. Using this a priory criterion, the implementation of WES identified disease-caus-

ing variants co-segregating with MS in 12 families (Fig 2). Rare missense or nonsense variants

were identified in plasminogen activator, urokinase (PLAU p.Cys151Phe), mannan binding

lectin serine peptidase 1 (MASP1 p.Gly459Asp), complement component 2 (C2 p.Thr184Met),

NLR family pyrin domain containing 12 (NLRP12 p.Leu972His), ubiquitin protein ligase E3

component N-recognin 2 (UBR2 p.Ala1658Thr), catenin alpha 3 (CTNNA3 p.Ala852Ser),

nuclear factor of activated T-cells 2 (NFATC2 p.Pro679Leu), ring finger protein 213 (RNF213

p.Asn2327Asp), nuclear receptor coactivator 3 (NCOA3 p.Arg485Cys), potassium voltage-

gated channel modifier subfamily G member 4 (KCNG4 p.Arg474His), solute carrier family

24 member 1 (SLC24A1 p.Leu26Phe), and solute carrier family 8 member B1 (SLC8B1 p.

Ser94Gly) (Table 1). Interestingly, these genes appear to cluster within linked immunological

pathways, suggesting a common biological process underlying the onset of MS in families (Fig

3), and provide a molecular and biological rationale for the chronic inflammation, demyelin-

ation and neurodegeneration observed in MS patients.

Fibrinolysis and the complement cascade

Fibrinolysis is the process responsible for dissolving fibrin of blood clots and promote tissue

repair and remodeling following vascular lesion. Plasmin is the primary fibrinolysin, and is the

active enzyme from the proteolysis of plasminogen (PLG) by serine proteases, plasminogen

activator tissue type (PLAT) or PLAU (Fig 3) [18]. Components of the PLG activation system

have been found to play a role in cardiovascular diseases, cancer proliferation, and inflamma-

tory diseases, including sepsis, metabolic disease, and arthritis [19]. In MS, a rare genetic vari-

ant in PLG (p.Gly420Asp) was found to be over-represented in patients compared to healthy

controls [20]. In addition, several neurological diseases, including MS, present abundant CNS
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Fig 1. Flowchart describing the methodology and samples characterized in this study.

https://doi.org/10.1371/journal.pgen.1008180.g001
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deposition of fibrinogen resulting in microglial activation, axonal damage, and inhibition of

oligodendrocyte differentiation and remyelination [21, 22]. Interestingly, fibrin has been sug-

gested as a promising therapeutic target for neurological diseases, as its depletion is protective

against inflammatory demyelination in animal models [21].

The complement system consists of a large collection of plasma proteins that can be acti-

vated in a cascade-like fashion in response to invading pathogens and damaged host cells.

Crosstalk between the fibrinolysis and complement systems has been well described, and

includes plasmin which is capable of effectively cleaving complement components C3 and C5

into their active forms [23]. The activation of the complement leads to opsonisation of patho-

gens for phagocytosis, anaphylatoxin production to promote inflammation, and the assembly

and deposition of the membrane attack complex which disrupts membrane integrity resulting

in the death of targeted bacteria and infected or damaged cells (Fig 3) [24, 25]. The comple-

ment system has been linked to MS pathophysiology, with deposition of active complement

components within brain plaques, peri-plaques and adjacent white matter regions [26, 27]. In

addition, complement components play a role in microglial activation, neuroinflammation,

and synaptic loss in neurodegenerative diseases [28, 29].

Fig 2. Pedigrees for families nominating genes for MS. Males are represented by squares and females by circles, a

diagonal line indicates subjects known to be deceased. Black filled symbol, MS; black filled with gray dot, possible MS;

gray filled, unaffected obligate carrier. Heterozygote carriers (M) and wild-type (wt) genotypes are provided. MS

patients with inferred genotypes are indicated with an asterisk.

https://doi.org/10.1371/journal.pgen.1008180.g002

Table 1. Genetic variants of interest or considered to co-segregate with MS in multi-incident families. Genomic coordinates from NCBI Build 37.1 (hg19) and dbSNP

refSNP (rs) identifiers from build 150 or submitted SNP (ss) numbers are provided. Sample counts and/or minor allele frequency (MAF) for MS patients, healthy controls

and the Exome Aggregation Consortium (ExAC) database are given. Estimated effect on protein function was assessed with the Combined Annotation Dependent Deple-

tion (CADD) phred-scale scores v1.4. n/a, not available.

Gene Genomic

position

Reference/

Alternative

cDNA change Amino acid

change

dbSNP ID rs/ss MS patients n

(MAF)

Controls n

(MAF)

ExAC

MAF

CADD

PLAU 10:75672744 A/G c.256A>G p.T86A rs753886853 1 (0.02%) 0 0.004% 7.1

10:75673124 C/T c.445C>T p.H149Y rs117135013 7 (0.14%) 1 (0.05%) 0.06% 6.7

10:75673131 G/T c.452G>T p.C151F ss3646580234 1 (0.02%) 0 n/a 24.7

MASP1 3:186954283 C/T c.1376G>A p.G459D ss3646580232 1 (0.02%) 0 n/a 26.2

3:186954275 G/T c.1384C>A p.P462T ss2137543902 1 (0.02%) 0 n/a 27.1

C2 6:31901495 C/T c.551C>T p.T184M rs138034438 1 (0.02%) 0 0.008% 22.2

NLRP12 19:54313859 G/A c.1054C>T p.R352C rs199881207 1 (0.02%) 1 (0.05%) 0.035% 23.3

19:54313489 A/T c.1424T>A p.L475Q ss3646580242 1 (0.02%) 0 n/a 23.6

19:54301509 A/T c.2915T>A p.L972H ss3646580241 1 (0.02%) 0 n/a 24.9

UBR2 6:42656072 G/A c.4972G>A p.A1658T ss3646580233 1 (0.02%) 0 n/a 32.0

CTNNA3 10:67680222 C/A c.2554G>T p.A852S rs778712224 1 (0.02%) 0 0.001% 26.2

NFATC2 20:50049290 G/A c.2036C>T p.P679L ss3646580244 1 (0.02%) 0 n/a 27.1

RNF213 17:78319114 A/G c.6979A>G p.N2327D rs138044665 13 (0.26%) 0 0.10% 4.3

17:78319472 T/C c.7337T>C p.I2446T ss3646580239 1 (0.02%) 0 n/a 16.5

17:78341843 C/T c.12055C>T p.R4019C rs139265462 5 (0.10%) 0 0.05% 15.4

NCOA3 20:46264406 C/T c.1453C>T p.R485C rs138250384 3 (0.06%) 0 0.02% 26.8

KCNG4 16:84256289 C/T c.1094G>A p.R365H rs553198108 1 (0.02%) 0 0.002% 29.0

16:84255962 C/T c.1421G>A p.R474H rs761759691 1 (0.02%) 0 0.008% 24.0

SLC24A1 15:65916494 C/T c.76C>T p.L26F rs755508009 3 (0.06%) 0 0.007% 15.9

SLC8B1 12:113759030 T/C c.280A>G p.S94G rs754992099 1 (0.02%) 0 0.001% 0.005

12:113737645 G/C c.1692C>G p.Y564X ss3646580235 1 (0.02%) 0 n/a 39.0

https://doi.org/10.1371/journal.pgen.1008180.t001
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Plasminogen activator, urokinase (PLAU). The implementation of WES in five siblings

diagnosed with MS identified a PLAU p.Cys151Phe substitution in four of the five family

members diagnosed with MS (Fig 2). A single rare missense or nonsense variant shared by all

affected individuals was not observed. The age at onset of MS for patients harboring PLAU p.

Cys151Phe was between the ages of 23 and 36 years (mean = 31.0, standard deviation (SD) ±
7.0). Clinical information for this family is limited as II-1 and II-5 were deceased by 52 and 44

years of age, respectively. The clinical course for PLAU p.Cys151Phe carriers was consistent

with relapsing remitting (RR)MS at the onset of disease. II-6 presented a disability score

(EDSS, Expanded Disability Status Scale) [30] of 2.0 at MS onset (S1 Table). The PLAU p.

Fig 3. Pathways predicted to be disrupted in multi-incident MS families. Simplified representation of immunological pathways containing genes harboring disease-

causing variants identified in MS patients, highlighting their crosstalk and overlap. Genes of the fibrinolysis and complement cascades are provided in blue, inflammasome

activation in orange, Wnt signaling pathways in green, nuclear receptor complexes in purple, and cation channels and exchangers in gray. Genes harboring variants

segregating with MS in families are indicated with a ‘MS’ label. NR, nuclear receptor; CH, chemokine; CY, cytokine.

https://doi.org/10.1371/journal.pgen.1008180.g003

Genetics and pathogenesis of familial multiple sclerosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008180 June 6, 2019 7 / 40

https://doi.org/10.1371/journal.pgen.1008180.g003
https://doi.org/10.1371/journal.pgen.1008180


Cys151Phe was inherited from the father (I-1), who at 71 years of age did not report suffering

from MS symptoms or any neurological disorder. A seemingly healthy female (II-7), who was

34 years old at the most recent interview, was also found to carry the PLAU substitution. We

were unable to obtain an update on the disease status for II-7, but given the mean age at onset

of MS in this family, we can not rule out that she may have developed MS later in life.

PLAU p.Cys151Phe replaces an evolutionarily conserved cysteine (Fig 4) and is predicted

damaging on protein function, with a Combined Annotation Dependent Depletion-phred

(CADD) score of 24.7 [31]. The affected residue is one of the six cysteines required for the for-

mation of disulfide bonds that maintain a kringle domain structure (Fig 5A) [32]. Kringle

domains are common structures in proteinases associated with blood clotting and the fibrino-

lysis system, and play a role in the regulation of proteolytic activity. The kringle domain in

PLAU is necessary for the interaction with its specific inhibitor SERPINE1, also known as plas-

minogen activator inhibitor-1 (PAI-1), and prevent the cleavage of PLG into plasmin [18, 33].

The use of a SERPINE1 antagonist in the experimental autoimmune encephalomyelitis (EAE)

animal model of MS was shown to decrease inflammation, demyelination, and axonal degen-

eration. In contrast, induction of EAE in PLAT knock out mice, which have impaired fibrin

degradation, causes exacerbated disease and delayed recovery [34, 35]. Taken together, these

studies support a role for fibrinolysis and PLAU p.Cys151Phe in the pathophysiology of MS.

The PLAU substitution identified in this family has not been previously described, and gen-

otyping p.Cys151Phe in 2,502 MS probands and 1,075 healthy controls from Canada, and 15

multi-incident families from Italy did not identify any additional carriers. Mining WES data

from 426 MS patients from Canada led to the identification of two missense variants (p.

Thr86Ala, p.His149Tyr) with a MAF below 1% in public databases [17], and not present in our

WES control samples, which consist of 100 healthy individuals from Canada and 955 multi-

ethnic diseased controls. Genotyping of PLAU p.Thr86Ala in additional family members iden-

tified this rare variant in the proband’s sibling (II-1), who was diagnosed with MS at 27 years

of age, and their mother (I-2) for whom no information is available (Fig 2). PLAU p.His149Tyr

was observed in one additional family member diagnosed with MS (III-2), an unaffected

brother (III-1) who was 26 years old at interview, and their mother (II-4) who at 62 years of

age did not disclose suffering from MS symptoms. These two variants fulfil our criteria for co-

segregation with disease, and were genotyped in MS probands and controls from Canada.

PLAU p.Thr86Ala was not observed in any additional samples, in contrast p.His149Tyr was

identified in six additional MS probands and one healthy control (Table 1). Genotyping p.

His149Tyr in family members identified the variant in eight out of ten MS patients for whom

DNA was available, but also five unaffected family members and five obligate carriers (Fig 2).

Although most MS patients in these families presented the p.His149Tyr variant, several fami-

lies do not support our criteria for co-segregation with disease.

WES analysis of 15 familial probands from Italy identified one additional variant in PLAU,

(p.Ser138Thr) not co-segregating with disease in two families (S2 Table), and the previously

described p.His149Tyr substitution in one MS patient; however this variant was not present in

one additional family member diagnosed with MS. Although p.His149Tyr was not found to

co-segregate with MS in several families, its close physical proximity to p.Cys146 and p.

Cys151, two amino acid residues forming disulfide bonds in the kringle structure (Fig 5A);

together with an elevated frequency in Canadian MS patients (MAF = 0.14%) compared to

controls (MAF = 0.05%), resulting in an odds ratio (OR) of 2.85 (95% confidence interval (CI)

= 0.35–23.25), and the identification of this rare missense variant in multi-incident families

from Canada and Italy, suggest that p.His149Tyr may represent a risk factor for MS. This is

further supported by a significant association (p = 4.7×10−8) between common genetic variants

in PLAU and MS susceptibility risk reported in the largest GWAS of MS to date [6]. PLAU is
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also a plausible biological candidate for a role in MS, as the level of PLAU expression in circu-

lating monocytes has been shown to correlate with clinical activity in RRMS patients, and to

be permanently elevated in patients with secondary progressive (SP)MS. Similarly, a correla-

tion between increased PLAU expression and disease severity score in MS patients has also

been described [36].

Mannan binding lectin serine peptidase 1 (MASP1). Exome analysis of five siblings

diagnosed with MS from a large multi-incident German family identified a rare variant in

MASP1 p.Gly459Asp segregating with disease (Fig 2). This substitution was identified in all

family members diagnosed with MS, and one healthy male sibling (II-9) who was 44 years of

age at examination. Affected MASP1 p.Gly459Asp carriers presented a clinical course consis-

tent with RRMS at the onset of disease, which became progressive for II-1, II-5 and II-8. The

average age at the onset of MS was 27.4 years (SD ± 6.3) with disease severity that despite long

disease duration does not appear to be highly disabling for most family members (S1 Table).

The majority of MS patients in this family had depression, which was severe for II-1 and II-2,

and accompanied by hallucinations and delusions in II-5.

Genotyping MASP1 p.Gly459Asp in MS probands and healthy controls from Canada, and

Italian families did not identify any additional carriers (Table 1). Mining WES data identified

three additional rare MASP1 variants in MS patients not observed in controls (p.Arg441His, p.

Pro462Thr, p.Arg538Ter). Genotyping these variants within each family identified less than 75%

of family members diagnosed with MS harboring these substitutions, and thus not fulfilling our

criteria for segregation with disease (S2 Table). Although p.Pro462Thr did not co-segregate with

MS, it was genotyped in MS probands and controls from Canada, as it is located three amino

acids C-terminal from p.Gly459Asp, has not been previously described, is predicted damaging

for protein function (CADD = 27.1), and is evolutionarily conserved (S1A Fig). This additional

genotyping effort did not identify any additional carriers, thus assessment of p.Pro462Thr in

additional MS cohorts and multi-incident families is necessary to define its role in MS.

MASP1 is a serine protease of the lectin pathway that triggers complement activation by

cleaving C2, and forming the C3 convertase C4b2a (Fig 3). MASP1 encodes three different

transcripts; isoform 1 is the longest and is composed of a heavy chain and a light chain con-

taining the serine protease domain, isoform 2 has the same heavy chain as isoform 1 but a dif-

ferent light chain serine protease domain, and isoform 3 is composed of a single shortened

heavy chain [37]. The p.Gly459Asp substitution identified in MS patients is located exclusively

in the serine protease domain of isoform 2, also known as MASP3, is highly conserved in

orthologs and most paralogs (Fig 4), and is predicted damaging for protein function

(CADD = 26.2). MASP3 is thought to regulate complement activation by inhibiting MASP2

function in the lectin pathway, and promoting factor D (FD) activation in the alternative path-

way [38, 39]. Recessive loss of function mutations in MASP1, resulting in impairment of

MASP3, cause 3MC syndrome; a rare disorder characterized by facial dysmorphism, and com-

monly presenting cleft lip and palate, postnatal growth deficiency, hearing loss, and cognitive

impairment [37, 40]. In MS patients with active disease, serum levels of MASP3 have been

shown to inversely correlate with MASP2 levels and the pathological antibody response to her-

pes virus, leading the authors to suggest a protective role for MASP3 in MS [41].

Complement component 2 (C2). We identified a large family with five relatives diag-

nosed with MS (Fig 2). To identify the genetic factor responsible for the onset of disease, we

Fig 4. Protein conservation in orthologs and human paralogs. Organism and RefSeq accession numbers are

provided for orthologs and gene name and RefSeq accession numbers for human paralogs, which were obtained from

Ensembl release 91. Evolutionarily conserved positions for nominated pathogenic variants are highlighted in black,

and the NLRP1 p.Gly578Ser mutation previously identified in MS patients indicated in gray [11].

https://doi.org/10.1371/journal.pgen.1008180.g004
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performed WES analysis in four family members presenting MS symptoms (IV-1, 2, 6, 7). This

analysis failed to identify a rare heterozygote missense or nonsense variant shared amongst all

affected individuals; however, segregation analysis for variants observed in any three of the four

family members who underwent WES analysis identified a rare variant in C2 (p.Thr184Met)

co-segregating with disease. The variant was identified in four family members diagnosed with

MS (III-2, IV-1, 6, 7), one out of six unaffected family members (III-3), and one obligate carrier

(III-6). Genotyping C2 p.Thr184Met in MS patients and controls did not identify any additional

carriers (Table 1). The mean age at onset of MS for family members carrying the C2 p.

Thr184Met substitution is 33.3 years (SD ± 4.0). The clinical disease course for C2 p.Thr184Met

carriers was RRMS, which only became progressive for IV-7 (S1 Table). The level of disability is

quite variable with some family members (IV-6) presenting a EDSS of 2.5 after 7 years of dis-

ease, while others (III-2) were deceased at 47 years of age, 16 years after the onset of MS. Analy-

sis of exome data from 441 MS patients identified a rare C2 p.Lys526Arg variant not present in

1,055 WES controls; however, genotyping C2 p.Lys526Arg in nine additional family members

diagnosed with MS did not support co-segregation with disease, and was excluded from further

analysis (S2 Table).

In the complement activation cascade, C2 binds to surface-bound C4b and is cleaved into

C2a and C2b by activated factor C1s in the classical pathways or MASP1/MASP2 in the lectin

pathway (Fig 3). C2b is then released whereas C2a remains attached to C4b providing the cata-

lytic subunit for C3 or C5 convertases [39]. The p.Thr184Met variant, which is conserved in

mammals (Fig 4), and predicted damaging for protein function (CADD = 22.2), is located in

the third complement control protein (CCP) module of C2, and disrupts its third β-strand seg-

ment. CCP domains are evolutionary conserved structures commonly found in proteins of the

complement system but also present in many non-complement proteins. CCP domains are

typically composed of five β-strand segments that run back or forth forming a β-sandwich sur-

rounding a hydrophobic core [42]. Although all CCP modules share a common tertiary struc-

ture, their biological function is diverse. The CCP domains in C2 are involved in C3b and C4b

binding [43], thus the p.Thr184Met substitution identified in this family could potentially

affect the kinetics of the complement cascade activation, by disrupting the formation of C3

and C5 convertases, altering the production of anaphylatoxins C3a and C5a, and the formation

of the membrane attack complex.

Complement components have been linked to MS, with cerebrospinal fluid (CSF) of

patients presenting increased C3 levels compared to controls, particularly those diagnosed

with primary progressive (PP)MS. C3 levels were also found to correlate with degree of clinical

disability [44], and an association between a functional variant in C3 (p.Arg102Gly) and cogni-

tive impairment, brain atrophy and greater lesion burden in MS patients has been described

[45]. Similarly, anaphylatoxin C3a and C5a receptors are upregulated in patients with MS [46],

and increased complement anaphylatoxin receptor-positive microglia in progressive MS

patients has been suggested as a source of sustained neuroinflammatory response driving

Fig 5. Functional analysis. a) Primary structure of single-chain PLAU protein, adapted from Berkenblit et al. 2005

[32]. Kringle domain is provided in gray, with cysteine residues forming disulfide bonds indicated in white. Amino

acid substitutions identified in MS families are shown. b) Crystal structure for NLRP12 leucine rich repeat (LRR) sixth

domain showing conserved amino acid residues was predicted from NP_653288.1 with I-TASSER (Iterative Threading

ASSEmbly Refinement) [181], and the p.Leu972His substitution introduced using PyMol 1.7. c) Western blot showing

expression of pro-caspase-1, caspase-1, NLRP12 and β-actin in microglial (BV2) cells transfected with an empty vector

(vector), wild-type NLRP12 (WT) or mutant constructs (L475Q or L972H); and d) expression of iNOS, NCOA3 and β-

actin in microglial (BV2) cells transfected with an empty vector (vector), wild-type NCOA3 (WT) or NCOA3 p.Cys485

(R485C). Histograms depict mean expression ± standard error. �Tukey’s HSD post hoc p-value< 0.001. r.u. relative

units.

https://doi.org/10.1371/journal.pgen.1008180.g005
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myelin and neuronal pathology [27]. In addition, mouse models of MS have shown C3a and

C5a to contribute to demyelination, delayed remyelination, worsen disease severity, and being

capable of inducing the production of pro-inflammatory cytokines and chemokines [47, 48].

Inflammasome assembly

An inflammasome is a cytosolic protein complex that is critical for secretion of interleukin

(IL)-1β and IL-18, initiating an inflammatory cascade and inducing pyroptosis. Although the

majority of studies support a central role for inflammasomes in the innate immune response, a

role in T-cell biology has also been suggested. The assembly of the inflammasome is activated

by pattern-recognition receptors (PRR) sensing pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs), or changes in intracellular cat-

ion concentrations [49]. Several PRR sensor molecules can activate inflammasome complex

formation, and include nucleotide-binding domain (NOD or NACHT)-leucine rich repeat

(LRR)-pyrin domain (PYD)-containing proteins (NLRPs) and NATCH-LRR-caspase activa-

tion and recruitment domain (CARD)-containing proteins (NLRCs) [50]. Each NOD-like

receptor (NLR) is activated by unique stimuli and promote the formation of a specific inflam-

masome. The assembly of the inflammasome complex serve as a scaffold for the recruitment of

the apoptosis-associated speck-like protein containing a CARD (ASC) adaptor, encoded by

PYCARD, and oligomerization of the inactive zymogen pro-caspase-1, initiating its autopro-

teolytic cleavage and activation (Fig 3). Caspase-1 then cleaves cytokine precursor pro-IL-1β
and pro-IL-18 into their biologically active forms which are secreted and trigger a potent

inflammatory response [51, 52]. A subgroup of NLRs, including NLRP12, NLRC3 and NOD2

are capable of enhancing or attenuating inflammatory signaling cascades by modulating

diverse signaling pathways, including the NF-κB and extracellular signal-regulated kinase

(ERK) pathways, which regulate the expression of inflammasome components, cytokines and

chemokines [49, 53].

Mutations in several inflammasome components can cause autoinflammatory syndromes.

Activating mutations in NLRP3 cause cryopyrin-associated periodic syndromes (CAPS),

which is characterized by systemic inflammation with fever and blood neutrophilia [52]. Inter-

estingly some low penetrance NLRP3 CAPS mutations have been described in patients diag-

nosed with MS, suggesting a role for the inflammasome in the onset of autoimmune diseases

[54]. This is further supported by studies showing an increased expression of NLRP3 inflam-

masome-related genes in RRMS patients compared to controls [55]. In addition, the study of

multi-incident MS families have nominated pathogenic mutations in NLRP1, and purinergic

receptors P2RX4/P2RX7 which initiate inflammasome formation by modifying intracellular

calcium and potassium concentrations [10, 11]. Rare missense variants in NLRP5 and NLRP9
have also been found to correlate with disease course and severity in MS patients [8, 56].

NLR family pyrin domain containing 12 (NLRP12). To identify the genetic cause for the

onset of MS in a large multi-incident family with six siblings diagnosed with MS, we per-

formed WES in four affected family members (II-1, 2, 4, 5). This analysis identified a NLRP12

p.Leu972His substitution segregating with disease in all six family members diagnosed with

MS (Fig 2). Detailed clinical information is available for four patients, and suggests that the

clinical course for NLRP12 p.Leu972His is progressive MS, with II-1 and II-2 presenting

PPMS, II-4 RRMS with incomplete remission and II-5 SPMS (S1 Table). The mean age at

onset of MS was 29.4 years (SD ± 5.1).

The p.Leu972His substitution, which has not been previously described, and was not identi-

fied in any additional samples, affects one of the seven amino acids that are critical for the for-

mation of the sixth LRR domain of NLRP12 (Fig 5B) [57, 58]. The mutated leucine is

Genetics and pathogenesis of familial multiple sclerosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008180 June 6, 2019 13 / 40

https://doi.org/10.1371/journal.pgen.1008180


conserved in orthologs and most human paralogs (Fig 4) highlighting the importance of this

residue for protein function (CADD = 24.9). LRR domains in PRRs are thought necessary for

the recognition of PAMP and DAMP ligands, and to maintain an auto inhibited state, as the

deletion of LRR domains generally leads to constitutively active proteins [59].

Mining exome data from 441 MS patients identified a rare p.Arg352Cys in two blood-related

patients from Italy, albeit not segregating with disease in additional family members (S2 Table),

and a p.Leu475Gln substitution in an affected sibling pair from Canada (Fig 2). In this family,

the age at onset of MS was 39 and 22 years for II-1 and II-2, respectively. II-1 presented a clinical

course consistent with PPMS and a EDSS of 7.5 after 4 years of disease. In contrast the clinical

course for II-2 was consistent for RRMS without apparent gait impairment (EDSS = 0) (S1

Table). Screening MS patients and controls for NLRP12 p.Leu475Gln did not identify any addi-

tional carriers (Table 1). The p.Leu475Gln substitution, which is conserved in orthologs (Fig 4)

and has not been previously described, is located in the NACHT domain of NLRP12. NACHT

domains have ATPase activity and are thought to be important for protein oligomerization

[49]. Interestingly, the recessive NLRP1 p.Gly578Ser mutation described in a sibling pair diag-

nosed with MS, and shown to increase IL-1β expression, is also located in the NACHT domain

and only seven amino acids N-terminal from the homologous p.Leu475 in NLRP12 (Fig 4) [11].

Mutations in NLRP12 have been described in patients with familial cold autoinflammatory

syndrome (FCAS), that causes symptoms similar to CAPS with fever, myalgia and elevated

serum inflammatory markers [52]. Interestingly the p.Arg352Cys substitution identified in

one Italian family has been associated with FCAS (S2 Table) [60, 61]. To assess whether this

variant also associates with MS, we genotyped 2,502 MS patients and 1,075 healthy controls

from Canada. This analysis identified NLRP12 p.Arg352Cys in one control and one familial

proband, however segregation did not support pathogenicity (Tables 1 & S2). The allelic fre-

quency observed in unrelated MS patients (0.02%) and healthy controls (0.05%), together with

lack of co-segregation in MS families, does not support a role for p.Arg352Cys in MS.

NLRP12 knock-out mice were found to present hyperactivated T-cells and increased

expression of prostaglandin-endoperoxide synthase 2 (COX2), C-C motif chemokine receptor

5 (CCR5) and IL-1β. In addition, lipopolysaccharide (LPS) stimulation in primary microglial

cells from NLRP12 knock-out mice triggered a significant increase in the expression of nitric

oxide synthase (iNOS), tumor necrosis factor (TNF-α) and IL-6, compared to wild-type cells

[62]. The induction of EAE in these mice has however provided conflicting outcomes, with

some studies reporting exacerbated clinical phenotype while others describe reduced disability

with atypical symptoms [62, 63].

Transfection of microglial BV2 cells with wild-type, p.Gln475 or p.His972 NLRP12 showed

significant differences in caspase-1 (ANOVA, p = 4.3×10−6) (Fig 5C). Wild-type and p.Gln475

NLRP12 caused an almost two-fold increase in caspase-1 activation compared to empty vector

(Tukey’s, p = 5.8×10−5, p = 2.2×10−5), whereas no differences were observed for p.His972

(Tukey’s, p = 1.0). Using a luciferase reporter assay, we also ascertained the inhibitory effect of

NLRP12 on NF-κB activation, which showed no differences between wild-type and mutant

proteins (S2 Fig). Taken together, these data suggest impaired inflammasome activation as the

mechanism of disease for NLRP12 p.Leu972His. In contrast, lack of differences between p.

Leu475Gln and wild-type NLRP12 suggest that this variant is a rare non-pathogenic polymor-

phism, or has an alternative yet to be defined mode of action.

Wnt signaling

The Wnt signal transduction pathway regulates multiple biological processes including cell

proliferation, migration, polarity, differentiation and axon outgrowth. Wnt proteins have also
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been shown to regulate effector T-cell development, regulatory T-cell activation and dendritic-

cell maturation, and to play an important role in the expression of inflammatory mediators

during bacterial infections [64, 65]. At least three Wnt-dependent pathways have been pro-

posed; one canonical Wnt/β-catenin pathway, and two non-canonical pathways, which include

the Wnt/Ca2+ pathway activated through the nuclear factor of activated T-cells (NFAT). Acti-

vation of the canonical pathway is initiated through binding of Wnt ligands to Frizzled (FZD)

receptors, causing an accumulation of β-catenin in the cytosol and subsequent translocation to

the nucleus, where it forms an active transcription factor complex with T-cell factor/lymphoid

enhancer factor (TCF/LEF) [64, 66]. Activation of the non-canonical Wnt/Ca2+ pathway by

FZD receptors triggers calcium release from intracellular stores. Increased intracellular cal-

cium concentrations in turn activates, calcineurin, which dephosphorylates NFAT unmasking

the nuclear localization sequence, facilitating nuclear translocation and activation of Wnt/Ca2+

target genes (Fig 3) [67].

Wnt signaling in microglial cells induces a strong pro-inflammatory response through the

activation of the canonical Wnt/β-catenin pathway. This activation mediates increased expres-

sion of cytokines, including IL-6, IL-1α and IL-15, chemokines such as C-X-C motif chemo-

kine ligand 2 (CXCL2), CXCL11, and C-C motif chemokine ligand 7 (CCL7), innate immune

response components including complement C3, and inflammasome components NLRP3 and

NOD2 [68]. The Wnt/β-catenin pathway is also a major key signaling mechanism for myeli-

nating processes, as well as oligodendrocyte development and differentiation [69–71]. The

canonical Wnt pathway is also required for angiogenesis in the CNS, maturation of the blood-

brain-barrier (BBB), and reduced immune cell infiltration [72, 73]. Activation of the Wnt/Ca2+

pathway regulates cytokine production in T-cells, but it is also integral for T-cell proliferation,

differentiation, and activation [74]. Activation of both, canonical and non-canonical Wnt path-

ways, is protective against neurotoxic injury and has been found to be deregulated in degenera-

tive and inflammatory CNS disorders [75]. In the EAE model of MS, activation of the canonical

Wnt signaling pathway promotes neurogenesis and repair, whereas its inhibition results in

exacerbated clinical scores [73, 76]. In contrast, activation of the Wnt/Ca2+ pathway in EAE

mice triggers an amplified pro-inflammatory response [77].

Ubiquitin protein ligase E3 component N-recognin 2 (UBR2). The analysis of a multi-

incident family with four family members diagnosed with MS led to the identification of a rare

missense variant in UBR2 (p.Ala1658Thr) segregating with disease (Fig 2). This variant, which

has not been previously described, was identified in all four family members diagnosed with

MS, one obligate carrier (II-5) and one unaffected family member (III-3). The clinical disease

course for this family appears to be mostly progressive with three family members (II-3, III-2,

4) presenting PPMS at the onset of disease, and one with RRMS (II-7) (S1 Table). The mean

age at MS onset was 37.5 years (SD ± 7.4) with a range of 29 to 47 years. The identification of

two carriers without clinical symptoms of MS at 52 (III-3) and 55 (II-5) years of age, suggests

that UBR2 p.Ala1658Thr has reduced penetrance. No clinical information is available for II-2,

who died at 47 years of age.

Although the substitution identified in UBR2 is not located in a known functional protein

domain, it is evolutionarily conserved in orthologs and one of two paralogs (Fig 4). UBR2 p.

Ala1658Thr is also predicted deleterious on protein function with a CADD score of 32.0. Gen-

otyping of cases, controls and Italian families for UBR2 p.Ala1658Thr failed to identify any

additional carriers (Table 1). Mining WES data identified three rare UBR2 variants in MS pro-

bands that were absent in WES controls; however, genotyping of additional family members

showed insufficient co-segregation with MS to support pathogenicity (S2 Table).

UBR2 encodes an E3 ubiquitin ligase of the N-end rule proteolytic pathway, and targets

proteins with destabilizing N-terminal residues for ubiquitination and proteasome-mediated
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degradation. Although its mechanism of action still remains to be elucidated, UBR2 has been

shown to regulate the activation of the Wnt/β-catenin pathway [78].

Catenin alpha 3 (CTNNA3). We identified a family with five members diagnosed with

MS (Fig 2), and analysis of WES data from III-3, III-11, and III-12 uncovered a CTNNA3 p.

Ala852Ser substitution co-segregating with MS in all affected individuals. This variant was also

identified in four obligate carriers and one of seven unaffected family members (III-5), who

was 48 years of age at examination. The age at onset of MS in this family presents a broad

range (15–39 years) with a mean of 26.6 years (SD ± 8.8), with two patients presenting PPMS

(III-10, 12) and three RRMS (III-3, 6, 11) clinical course (S1 Table). Disease severity appears to

be relatively mild for III-10 and III-11 with EDSS of 3.5 and 1.5 after 25 and 9 years of disease,

respectively. In contrast III-12 presented a EDSS of 7.0, 24 years after the onset of MS. Geno-

typing of CTNNA3 p.Ala852Ser in additional samples did not identify any more carriers

(Table 1). Mining WES data from MS patients identified six rare missense substitutions not

observed in WES controls (S2 Table). However, assessment of segregation within families did

not support a role for these variants in the onset of MS.

The p.Ala852Ser substitution occurs not only in a residue conserved in protein orthologs

and α-catenin paralogs CTNNA1 and CTNNA2, but also in a highly evolutionarily conserved

protein region (Fig 4). Despite this high level of conservation and the predicted damaging

effect on protein function (CADD = 26.2), this substitution is not known to affect a defined

protein domain or motif.

CTNNA3 encodes α-T-catenin; one of the critical mediators of the cadherin/catenin adhe-

sion complex, the major cell-cell adhesion system in the body [79]. Although α-T-catenin is

predominantly expressed in the heart and testis, lower expression has been observed in other

tissues including brain; specifically in the cytoplasm of neurons, neurite projections, and adhe-

rens junctions bordering active synapses [79–81]. Interestingly, α-catenins also participate in

Wnt signaling, with overexpression of α-T-catenin causing impaired activation of the β-cate-

nin pathway [81].

Mutations in CTNNA3 have been identified in families with arrhythmogenic right ventricu-

lar dysplasia, autism spectrum disorder, and several carcinomas [79, 82, 83]. In addition,

genetic associations have been described with steroid resistant asthma and inflammation,

essential tremor, and controversially Alzheimer’s disease [84–86]. A suggestive genetic associa-

tion between CTNNA3 and MS has been described (p = 0.001), but did not withstand multiple

testing correction [6]. Given the broad range of phenotypes ascribed to CTNNA3, it is impor-

tant to note that obligate carrier II-7 developed bronchitis, cancer and osteoporosis, whereas

III-10 and III-11 developed cancer and rheumatic fever, respectively, in addition to MS.

Nuclear factor of activated T-cells 2 (NFATC2). WES was performed in three family

members diagnosed with MS (III-4, 10, IV-3) from a large multi-incident family with seven

affected individuals. This analysis led to the identification of a novel NFATC2 p.Pro679Leu

substitution co-segregating with MS (Fig 2). It should be noted that one family member (III-9)

has conflicting clinical reports, and the affection status is unverified. Detailed clinical informa-

tion was available for four family members diagnosed with MS (S1 Table). III-2 and III-4 pre-

sented a clinical course consistent with PPMS, the latter with a disability score of 6.5 after 44

years of disease. In contrast, IV-3 and IV-4 were diagnosed with RRMS and with a EDSS of 1.5

after five and one year of disease duration, respectively. The mean age at onset of MS for

NFATC2 p.Pro679Leu carriers was 33.0 years (SD ± 8.3). Genotyping 2,502 MS patients, 1,075

controls, and 15 Italian families for this highly conserved (Fig 4) and predicted damaging

(CADD = 27.1) substitution, did not identify any additional carriers. Mining WES data from

MS patients revealed five rare missense variants, however segregation analysis within families

did not support pathogenicity (S2 Table).
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NFATC2 is one of several transcription factors regulated by calcineurin in the Wnt/Ca2+

signaling pathway that mediates T-cell function, oligodendrocyte differentiation, and coordi-

nates the induction of cytokines and immunoregulatory molecules [87–89]. Calcineurin acti-

vation is thought to be dependent on calcium release from intracellular compartments;

however, increased expression of NFAT target genes has been observed following extracellular

calcium influx through transport and cation exchange channels [90, 91].

The study of infection and allergy in NFATC2 knockout mouse models showed enhanced

immune responses, with increased cytokine production in peripheral T-cells [92]. In contrast,

NFATC2 deficiency in mast cells resulted in a strong reduction in cytokine production, and

delayed inflammatory response; indicating cell-specific functions [93, 94]. The induction of

EAE in NFATC2 knockout mice causes a markedly reduced clinical score, compared to wild-

type animals. This protective effect was shown to be mediated by a differential cytokine expres-

sion in CD4+ T-cells, and led to the suggestion of NFAT repression as a potential DMT for MS

[95]. These studies would also suggest that the mechanism of action for the p.Pro679Leu sub-

stitution is mediated through increased NFATC2 activity.

Ring finger protein 213 (RNF213). The analysis of five sisters diagnosed with MS led to

the identification of a rare RNF213 p.Asn2327Asp substitution segregating with disease (Fig

2). The mean age at onset of MS in this family is 31.2 years (SD ± 5.4). Detailed clinical infor-

mation was available for four patients (II-1, 3, 5, 6), all presenting RRMS course at the onset of

disease (S1 Table). Three family members (II-1, 3, 6) have mild symptoms, with EDSS between

0 and 1.5 and without signs of progressive MS after 3, 8 or 12 years of disease. In contrast, II-5

developed SPMS five year after the onset of MS, had a EDSS of 9 after 15 years of disease dura-

tion, and was deceased five years later at 44 years of age. The variant identified in these five sis-

ters was inherited from their mother (I-2), who at 68 years of age disclosed not to be suffering

from MS symptoms.

Genotyping of RNF213 p.Asn2327Asp in 2,502 MS patients and 1,075 healthy controls

from Canada identified this variant in eight additional familial probands and four patients

without a family history of MS, resulting in a MAF of 0.26%. Segregation analysis in these

additional families identified the variant in 16 out of 21 MS patients and 10 of 21 unaffected

family members (excluding parents of MS patients). Although the proportion of MS patients

harboring the RNF213 p.Asn2327Asp substitution is over the 75% threshold selected for posi-

tive co-segregation with disease, two patients without a family history of MS were found to

have three or four unaffected siblings carrying the variant; thus not fulfilling our criteria for

pathogenicity (Fig 2). Although no unrelated healthy controls were found to harbor RNF213

p.Asn2327Asp in our cohort, this substitution has been observed in populations of European

descent with a MAF of 0.13% [17]. Although the data from this publicly available database has

been generated primarily from diseased individuals, not healthy controls, and from a locale

geographically distinct to our MS cohort [96]; it suggests that RNF213 p.Asn2327Asp is a risk

factor for MS, with carriers having more than twice the risk of developing disease (OR = 2.07;

95% CI = 1.15–3.72).

Mining WES data from 441 MS patients identified one nonsense and 16 missense variants

in RNF213 with a reported MAF below 1%, and absent in WES data from control samples

(Tables 1 & S1). Genotyping additional family members provided evidence against pathogenic-

ity for all variants except RNF213 p.Ile2446Thr, which was only observed in one patient and

one unaffected sibling (Fig 2). Although one additional sibling diagnosed with MS was known

to exist in this family, a DNA sample was not available for study. Genotyping Canadian MS

patients and controls for RNF213 p.Ile2446Thr did not identify any additional carriers, thus not

providing any additional evidence for or against a role in MS. However, given that this variant

is not evolutionarily conserved, it may represent a rare benign polymorphism (Fig 4).
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RNF213 is an ATPase and E3 ubiquitin ligase protein which targets NFATC2 for proteasomal

degradation, attenuating the non-canonical Wnt/Ca2+ pathway (Fig 3). As a result, RNF213-defi-

ciency has been shown to trigger an increased expression of NFAT target genes [97]. Elevated

activity of the Wnt/Ca2+ pathway has also been observed in patients with Moyamoya disease

(MMD), which is caused by missense mutations in RNF213 [98]. MMD, a cerebrovascular disease

characterized by progressive occlusive or stenotic arterial lesion, is one of the major causes of

stroke in adults and children worldwide. The variant most commonly associated with MMD in

East Asian populations is RNF213 p.Arg4810Lys, which has been shown to modulate cerebral

blood flow through angiogenesis [99]. This mutation has incomplete penetrance resulting in a

spectrum of clinical phenotypes, termed quasi-MMD, and typically include intracranial atheroscle-

rosis and autoimmune diseases such as Grave’s disease, autoimmune thyroid disease, rheumatoid

arthritis, psoriasis, and autoimmune gastritis [100]. A variant associated with MMD in European

populations (p.Arg4019Cys) was identified in two Canadian families analyzed in this study [101].

Given its association with MMD and the described link between RNF213 and autoimmune dis-

eases, we genotyped p.Arg4019Cys in MS patients and controls from Canada (Table 1). This analy-

sis identified three additional families harboring the RNF213 p.Arg4019Cys substitution (S1B Fig).

Although assessment of segregation does not support pathogenicity, the identification of this sub-

stitution in five MS families and no controls warrants further studies to elucidate whether RNF213

p.Arg4019Cys causes a low-penetrance phenotype with a clinical presentation of MS.

Nuclear receptor complexes

Nuclear receptors are ligand-activated transcription factors that play integral roles in many

physiological processes by directly regulating gene expression. These processes include metab-

olism, immunity, homeostasis, cell proliferation and development, amongst others [102]. In

general, nuclear receptors bind to promoter-specific DNA sequences and interact with co-

repressor complexes to inhibit gene expression. Ligand-induced activation of nuclear receptors

triggers the dissociation of inhibitory complexes, and the recruitment of nuclear receptor co-

activator complex components that promote gene transcription [102].

Amongst others, the nuclear receptor family of transcription factors include vitamin D

receptor (VDR), peroxisome proliferator activated receptors (PPARs), and liver X receptors

(LXRs), which have been shown to play important roles in the pathophysiology of MS. VDR is

expressed in immune cells, and modulates the innate and adaptive immune responses. In addi-

tion, Vitamin D insufficiency is common in MS patients, and was found to correlate with dis-

ease activity, disability, and progression [103, 104]. The activation of PPAR and LXR have

been shown to inhibit canonical and non-canonical Wnt pathways, and the NF-κB signaling

pathway; resulting in dysregulated inflammatory response and impaired remyelination [69,

105–107]. These findings are supported by studies in the EAE model of MS, which showed

that PPAR and LXR-deficient mice presented an exacerbated clinical phenotype, higher cyto-

kine production, and more severe demyelination compared to wild-type or untreated animals

[107–110]. In addition, LXR-α which is encoded by NR1H3, was found to harbor a rare p.

Arg415Gln mutation co-segregating with MS in two multi-incident families, and common

alleles resulting in increased disease susceptibility [9]. Although this association was initially

controversial [96, 111], it has now been independently replicated [6, 112].

Nuclear receptor coactivator 3 (NCOA3). Exome sequencing in four family members

diagnosed with MS nominated NCOA3 p.Arg485Cys as the genetic factor responsible for the

onset of MS in this multi-incident family (Fig 2). Genotyping NCOA3 p.Arg485Cys in addi-

tional samples identified two patients from Canada harboring this variant. Segregation analysis

in these families, with only one exception (III-13), identified NCOA3 p.Arg485Cys in all

Genetics and pathogenesis of familial multiple sclerosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008180 June 6, 2019 18 / 40

https://doi.org/10.1371/journal.pgen.1008180


patients diagnosed with MS. In addition, three unaffected family members and four obligate

carriers, were also found to present this variant (Fig 2). Interestingly, these three families are

not ancestrally related, suggesting that this position is a mutational hotspot (S3A Table). Clini-

cal information for variant carriers is limited, but suggest that NCOA3 p.Arg485Cys patients

developed MS on average at 27.8 years of age (SD ± 5.6), predominantly with a progressive dis-

ease course, similar to patients with NR1H3 mutations [9]. Disability appears to be severe for

II-8 and mild for III-10, who is the only family member known to present RRMS (S1 Table).

With the exception of IV-5, who was 24 years old at examination, all other healthy NCOA3 p.

Arg485Cys carriers are markedly older than the mean age at onset for MS carriers, with ages

between 41 and 82 years at examination. Mining WES data from MS patients identified seven

additional rare variants causing NCOA3 substitutions; however, segregation analysis does not

support a role for any of these variants in MS (S2 Table).

Given the number of unaffected carriers in NCOA3 p.Arg485Cys families, we genotyped

this variant in a European cohort consisting of 3,752 MS patients and 2,803 healthy controls

from Spain and Austria to further define its role in MS. This analysis identified three addi-

tional carriers of NCOA3 p.Arg485Cys; two male patients diagnosed with RRMS at 24 and 34

years of age, and one healthy female. The allele frequency in the Canadian, Spanish and Aus-

trian populations combined is 0.04% for MS patients (5/6,252) and 0.01% for healthy controls

(1/3,877), suggesting that individuals with the NCOA3 p.Arg485Cys substitution have a

3.1-fold increased risk of developing MS (95% CI = 0.36–26.56). This data is further supported

by a strongly suggestive association observed between common genetic variants in NCOA3
and MS risk (p = 5.78×10-5, OR = 1.1) [6].

Although p.Arg485Cys does not occur within a known NCOA3 domain, the affected argi-

nine residue is evolutionarily conserved in orthologs and paralogs (Fig 4), and the substitution

predicted damaging for protein function (CADD = 26.8). Preliminary characterization of

NCOA3 p.Cys485 showed a 3.5-fold increased expression of iNOS in microglial cells trans-

fected with mutant protein (ANOVA, p = 3.7×10−5) compared to cells transfected with wild-

type NCOA3 (Tukey’s, p = 7.5×10−5) or empty vector (Tukey’s, p = 1.4×10−4) (Fig 5D). Thus

suggesting that NCOA3 p.Arg485Cys results in gain of function that triggers a pro-inflamma-

tory response under basal conditions.

NCOA3, also known as steroid receptor co-activator 3 (SRC3), is a transcriptional co-activa-

tor of nuclear receptor complexes, including PPAR and LXR, that recruits histone acetyltrans-

ferases and methyltransferases for chromatin remodeling and activation of gene expression

[113, 114]. NCOA3 has been shown to be involved in inflammatory responses, and to play an

important role in innate immunity and maintenance of T-cell function [115]. The induction of

EAE in NCOA3-deficient mice causes attenuated disease severity, decreased inflammation and

CNS infiltration, and reduced demyelination compared to wild-type animals. This neuroprotec-

tive effect was shown to be mediated by PPAR-β upregulation, which induced microglial

expression of anti-inflammatory cytokines, opsonins, and neurotrophic factors [114].

The identification of ten patients diagnosed with MS harboring a rare NCOA3 p.Arg485Cys

substitution capable of enhancing the expression of pro-inflammatory mediators, together

with a suggestive association between MS and NCOA3, and significant associations with

NCOA1, NCOA5, NR1D1 and NR1H3 [6, 9], suggests an important role for nuclear receptor

co-activators, and the LXR and PPAR pathways, in the pathophysiology of MS.

Cation channels and exchangers

Compared to the extracellular medium, most mammalian cells have low concentrations of

sodium and calcium, and large concentrations of potassium ions. This cation imbalance is
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regulated by membrane permeability and ion exchangers, which are critical to maintain cellu-

lar homeostasis. In cells of the innate and adaptive immune systems, ion channels and ion

transporters modulate membrane potentials and regulate several physiological functions,

including gene expression, apoptosis, proliferation, and migration [116]. Oscillations in intra-

cellular calcium concentrations, due to an intricate interplay between calcium, potassium,

sodium and chloride channels in the plasma membrane as well as intracellular organelles, reg-

ulate the function of many enzymes and transcription factors implicated in lymphocyte devel-

opment, innate and adaptive immune responses, and autoimmunity [116]. A role for ion

transporters in the pathophysiology of MS is supported by upregulation of calcium and potas-

sium channels in MS patients, triggering apoptotic signals, demyelination and neuronal degen-

eration [117]. In addition, significant associations with MS risk, and pathogenic mutations

have been described in P2RX4 and P2RX7, non-selective cation channels activated by extracel-

lular ATP [10, 118], and a missense variant in calcium voltage-gated channel subunit alpha1 H

(CACNA1H) was found nominally associated with MS clinical course [8]. Small molecules

capable of modulating voltage-gated calcium, sodium, and potassium channels have been

developed to treat pain, stroke, migraine, epilepsy, cancer, and autoimmune disorders

amongst others; and are thought to provide a good basis for the development of novel MS

treatments [119–121].

Potassium voltage-gated channel modifier subfamily G member 4 (KCNG4; Kv6.4).

Exome sequencing analysis in three MS patients (III-2, 4, 9) from a large multi-incident family

led to the identification of a KCNG4 p.Arg474His substitution co-segregating with disease (Fig

2). This variant was identified in six out of seven family members diagnosed with MS, and no

unaffected family members. The mean age at onset of MS for KCNG4 p.Arg474His carriers is

21.6 years (SD ± 5.0), and typically present a RRMS course with mild disability (S1 Table). The

clinical presentation for III-9 is quite distinct from the other family members, as she developed

PPMS at 14 years of age, had a EDSS of 9 after 34 years of disease duration, and was deceased

by 54 years of age. Genotyping of KCNG4 p.Arg474His in MS cases and controls from Canada

and Italian families did not identify any additional carriers (Table 1). Mining of exome data

identified three rare arginine to histidine substitutions (p.Arg208His, p.Arg343His, p.

Arg365His) in MS patients not present in WES control samples. Segregation analysis for p.

Arg208His and p.Arg343His did not fulfil our criteria for co-segregation with disease (S2

Table). In contrast, KCNG4 p.Arg365His was identified in two family members diagnosed

with MS and only one of five unaffected family members (Fig 2), thus co-segregating with MS.

No additional p.Arg365His carriers were identified in MS cases or controls. In contrast to p.

Arg474His, patients harboring the p.Arg365His substitution developed MS at an older age (49

and 37 years for III-3 and III-5, respectively), with PPMS disease course, and a higher level of

disability (EDSS of 6 and 7, after 8 and 21 years of disease duration) (S1 Table). III-1, who also

carries the KCNG4 p.Arg365His substitution, was interviewed at 65 years of age and did not

report suffering MS.

The arginine residues replaced by p.Arg365His and p.Arg474His are evolutionarily con-

served in most orthologs and paralogs (Fig 4), and the substitutions predicted damaging to

protein function (Table 1). Voltage-gated potassium (Kv) channels are selective membrane

proteins, forming a tetrameric complex activated in response to changes in membrane poten-

tial. KCNG4 encodes Kv6.4, a silent Kv subunit that requires assembly with Kv2 subunits to

form functional heterotetramers. Each Kv subunit contains six transmembrane segments; 1 to

4 form the voltage-sensing domain and segments 5 and 6 form the central pore structure. Acti-

vation of Kv channels is thought to be regulated by dynamic coupling of the cytoplasmic linker

between transmembrane segments 4 and 5 and the lower half of segment 6 [122]. Interestingly,

KCNG4 p.Arg365His is located in the regulatory linker between transmembrane segments 4
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and 5, and p.Arg474His in the cytoplasmic C-terminal domain, 13 amino acids from trans-

membrane segment 6.

The biological properties for KCNG4 are yet to be resolved; however, a role for potassium

channels in MS is supported by increased expression of several Kv channels in inflammatory

infiltrates, and demyelinated lesion areas and axonal segments in pathological samples from

MS patients [123, 124]. In addition, blocking the activity of Kv channels has been shown to

suppress the immune response, and reduce severity in EAE mice by preventing demyelination

and axonal degeneration [124, 125]. Potassium channels have also been postulated as potential

targets for the development of immunomodulatory therapies for MS, and some non-selective

potassium channel inhibitors have been approved for the treatment of MS patients [126, 127].

Solute carrier family 24 member 1 (SLC24A1; NCKX1). The analysis of WES data from

three family members diagnosed with MS (II-2, III-1, 2) nominated a SLC24A1 p.Leu26Phe

substitution as the putative genetic factor responsible for the onset of disease. This variant was

identified in all six family members diagnosed with MS and none of their unaffected siblings

(Fig 2). Genotyping SLC24A1 p.Leu26Phe in Italian families and MS patients and controls

from Canada identified two additional carriers diagnosed with MS (Table 1), and assessment

of segregation in blood relatives from these probands (III-4 and II-14) identified the variant in

one additional family member diagnosed with MS (II-10) and one unaffected sibling (III-5)

who was 63 years of age at last examination (Fig 2). One family member (III-9) diagnosed with

MS not harboring this variant, was also identified. In total, nine patients from three families

were found harboring the SLC24A1 p.Leu26Phe substitution. Haplotype analysis shows that

these families are not ancestrally related, suggesting that at least three independent mutational

events resulting in the same p.Leu26Phe substitution have occurred (S3B Table). The mean

age at MS onset for SLC24A1 p.Leu26Phe carriers is 31.8 years (SD ± 10.0), with a clinical

course consistent with RRMS (II-9, III-2, 3, 4), PPMS (II-2, 4, III-1) or SPMS (II-14) (S1

Table). Mining WES data from MS patients identified one rare nonsense and four missense

variants not present in controls; however, segregation analysis within additional family mem-

bers does not support a role for these variants in MS (S2 Table).

SLC24A1 encodes a sodium/calcium, potassium exchanger (NCKX1) that removes intracel-

lular calcium by exchanging four sodium ions for one calcium and one potassium [128]. The p.

Leu26Phe substitution identified in MS patients is part of an uncleaved signal peptide sequence

required for efficient membrane targeting and integration [129]. This signal sequence is highly

conserved in mammals, including the p.Leu26 residue (Fig 4), but no homologous region exist

in paralogs. The substitution of leucine for phenylalanine is predicted moderately damaging for

protein function (CADD = 15.9), but further analyses are necessary to address whether p.Phe26

disrupts SLC24A1 membrane integration and protein conformation.

Although SLC24A1 is thought to be most highly expressed in retinal rods photoreceptors, it

is also expressed in other cell types, including cells of the immune system [130]. In retinal

rods, SLC24A1 is the principal extruder of calcium ions during light adaptation, and recessive

mutations have been described in families presenting congenital stationary night blindness

(CSNB1D), a non-progressive retinal disorder associated with impaired night vision [131,

132]. Limited information is currently available for SLC24A1 in other cell types; however in

the EAE model, several calcium channel blockers have been shown to reduce cytokine produc-

tion, inflammation and axonal pathology, while promoting remyelination [133–135].

Solute carrier family 8 member B1 (SLC8B1; NCLX). The analysis of WES data from

three cousins (III-2, 3, 7) diagnosed with MS, identified a rare missense variant in SLC8B1 (p.

Ser94Gly) segregating with disease (Fig 2). This substitution was identified in four out of five

family members diagnosed with MS, and none of the unaffected siblings. A single rare pro-

tein-altering variant shared amongst all five family members diagnosed with MS could not be
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identified. One additional family member diagnosed with MS was known to exist (III-8), but

DNA was not available for study. Genotyping of SLC8B1 p.Ser94Gly in MS patients and

healthy controls from Canada and Italian families did not identify any additional carriers

(Table 1). On average, the age at onset of MS for patients harboring the SLC8B1 p.Ser94Gly

substitution was 29.8 years (SD ± 13.5), although one family member is a clear outlier (III-5).

This patient was suspected of suffering from MS for many years, but confirmation was only

obtained at 50 years of age, more than a decade after the initial presentation of clinical symp-

toms (S1 Table). Detailed clinical course is available for III-2 and III-7, and they both pre-

sented RRMS at the onset of disease. Thirty-two years after the onset of MS, the clinical course

for III-2 was SPMS with a EDSS of 6.5; in contrast, III-7 continued to present RRMS after 22

years of disease, with a EDSS of 6.0.

Analysis of SLC8B1 in WES data from Canada and Italy identified one nonsense and four

missense variants in MS patients not observed in WES controls, and with a MAF below 1% in

publicly available databases. Segregation analysis in additional family members did not sup-

port a role for any of the missense substitutions in the onset of MS (S2 Table). In contrast, the

nonsense variant (SLC8B1 p.Tyr564Ter) was found to co-segregate with disease in a small

family with two members diagnosed with MS (Fig 2). This nonsense variant was not observed

in any additional samples from MS patients or healthy controls (Table 1).

SLC8B1 encodes NCLX (also known as SLC24A6), a mitochondrial transporter that medi-

ates calcium extrusion in exchange for either sodium or lithium ions [136]. This mitochondrial

inner membrane exchanger provides calcium to the endoplasmic and sarcoplasmic reticulum,

and plays a key role in cellular and mitochondrial calcium homeostasis [137]. The SLC8B1 p.

Ser94Gly substitution identified in four patients diagnosed with MS is located in the extracel-

lular N-terminal domain, adjacent to the first of thirteen transmembrane segments. In contrast

to the variants identified in the other 11 multi-incident families, this serine to glycine substitu-

tion is not predicted detrimental to protein function (CADD = 0.005), or evolutionarily con-

served (Fig 4). SLC8B1 p.Tyr564Ter, which is predicted to be damaging to protein function

(CADD = 39.0), is located in the thirteenth transmembrane domain of SLC8B1, and produces

a protein lacking most of the last transmembrane segment, and the entire cytoplasmic C-ter-

minal domain.

Although a direct link between SLC8B1 and the biological processes implicated in the onset

of MS has not been described, efflux of mitochondrial calcium has been shown to promote the

aggregation of the inflammasome, and to regulate the activation of calcium dependent signal-

ing pathways; including the NFATC-mediated non-canonical Wnt pathway (Fig 3) [138–140].

In addition, SLC8B1 is essential for B-cell motility and chemotaxis, astrocyte function, and

synaptic transmission [140–142].

Discussion

The existence of Mendelian forms of MS has been a recurrent topic of controversy, despite the

evidence for familial aggregation, and the measurable increased disease risk for blood-relatives

of MS patients [7, 143]. In this study we present the genetic characterization of 34 multi-inci-

dent MS families, which have nominated pathogenic variants in 12 genes. Therefore, our data

support the existence of Mendelian forms of MS, which can be attributed to a single rare vari-

ant of major effect that is largely responsible for the onset of MS and its transmission across

generations. However, it should be noted that replication of our findings is warranted as the

extremely low MAF observed for these variants, and the relatively low number of carriers

within families, precludes sufficient statistical power for meaningful linkage and association

analysis.
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A monogenic cause for MS could not be identified for 22 families. This was not an unex-

pected outcome given that complex diseases frequently are genetically heterogeneous, even

within families [144, 145]. In these families, pathogenic variants might have been overlooked

given that WES technologies are not only unable to assess variants in non-coding regulatory

regions, but also do not efficiently capture and sequence all coding exons, and are largely

unsuited for the identification of copy number variations and rearrangements which may be

responsible for the onset of disease [146]. It is also plausible that our reduced penetrance and

phenocopy frequency thresholds are overly stringent, resulting in the exclusion of disease-rele-

vant variants.

The genes harboring rare disease-causing variants for familial MS, herein or previously

described [9–12], play critical roles in cellular cation homeostasis, and the regulation of tran-

scription and activation of inflammatory mediators; suggesting a disruption of the innate

immune system as the common underlying biological mechanism for the initiation of MS

symptoms (Fig 3). Variants in PLAU, MASP1, and C2, as well as risk alleles in PLG and PLAU
[6, 20], suggests a disruption in the fibrinolysis and complement cascade in response to micro-

bial threads or cellular debris as a trigger for MS. In addition, PLAU activation increases angio-

genesis, which has been associated with MS severity, and sustains the inflammatory response

by providing oxygen and nutrients to the sites of inflammation [147, 148]. Complement genes

are necessary for the generation of anaphylatoxins C3a and C5a, opsonisation of pathogens,

and formation of the membrane attack complex [39]. Inhibition of the complement system

has been shown to reduce the expression of inflammatory mediators, and promote the activa-

tion of anti-inflammatory pathways, including the LXR and PPAR nuclear receptor pathways,

halting neuroinflammation in the chronic relapsing EAE model [149]. Anaphylatoxins C3a

and C5a bind to their corresponding membrane-bound receptors (C3aR, C5aR1 and C5aR2)

on the surface of monocytes and macrophages regulating the aggregation of the inflammasome

(Fig 3). This complex regulatory mechanism activates or inhibits inflammasome formation in

distinct cell types [150, 151], and is mediated through the mobilization of calcium and potas-

sium cations from the extracellular space and intracellular stores to the cytoplasm [26]. Activa-

tion of C5aR directly promote the influx of extracellular calcium and release from intracellular

stores, whereas activation of C3aR triggers the efflux of intracellular ATP which activates puri-

nergic receptors that mediate calcium influx and potassium efflux through the plasma mem-

brane [152–154]. These include purinergic receptors P2RX4 and P2RX7 in which digenic

mutations for familial MS and risk alleles have been described [10, 118]. Regulation of the

inflammasome has also been observed in response to increased intracellular calcium concen-

trations due to sublytic deposition of the membrane attack complex, or decreased expression

of NLRP3 and increased expression of NLRP12 in response to C1q (complement component

1, q subcomponent); indicating that numerous elements of the fibrinolysis and complement

cascades are capable of regulating the inflammatory response (Fig 3) [150, 155]. A disruption

of cellular cation homeostasis in the pathophysiology of MS is further supported by disease-

causing variants for multi-incident MS families in potassium channel KCNG4 and cation

exchangers SLC24A1 and SLC8B1 (Fig 2).

The activation of the inflammasome has been proposed as a mechanism of autoimmunity

in MS patients [156], a hypothesis that is supported by rare variants in inflammasome compo-

nents NLRP1, NLRP3, NLRP5 and NLRP9 which were identified in MS families, or found to

correlate with disease course and severity [8, 11, 54, 56]. In this study we describe two missense

substitutions in NLRP12, a NOD-like receptor family member that negatively regulates inflam-

mation and NF-κB signaling, while promoting T-cell activation and differentiation [53]. Muta-

tions in NLRP12 that cause increased secretion of IL-1β have been described in patients with

FCAS, and supports a role for NLRP12 in the onset of autoimmune diseases [52]. Interestingly,
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the NLRP12 p.Leu972His substitution identified in MS patients seems to have the opposite

effect (Fig 5C), which may explain why the p.Arg352Cys substitution associated with FCAS

had similar frequencies in MS patients and controls, and failed to co-segregate with disease in

families.

Activation of purinergic receptors and increased cytosolic calcium concentrations also reg-

ulate Wnt signaling pathways by inhibiting glycogen synthase kinase-3-β (GSK3β) and activat-

ing the phosphatase activity of calcineurin [90, 91, 157]. GSK3β inhibits both the canonical

and non-canonical Wnt signaling pathways by phosphorylating β-catenin and NFAT, thus

promoting their nuclear export and degradation [67, 87, 158]. Interestingly, inhibition of

GSK3β has been shown to accelerate myelin debris clearance and axonal remyelination [159].

Calcium-bound calcineurin dephosphorylates NFAT which translocates to the nucleus and

activates the transcription of the Wnt/Ca2+ target genes, including several cytokines, chemo-

kines, and PLAU (Fig 3) [160]. Activated calcineurin also blocks NF-κB and MAPK pathways,

inhibiting toll-like receptor signaling in response to pathogens and cellular damage, thus pro-

viding another means of innate immune regulation [161]. NFATC2, is one of five NFAT tran-

scription factors, and one of the four genes in the Wnt signaling pathway found to harbor

disease-causing variants for familial MS (Fig 2).

In the Wnt/Ca2+ pathway, we also identified rare missense variants in RNF213, which tar-

gets NFATC2 for proteasomal degradation [97]. As previously described, mutations in

RNF213 are associated with MMD, a progressive cerebral angiopathy which may lead to cere-

bral infarction, but also quasi-MMD which encompasses various clinical entities including

autoimmune disease and atherosclerosis [100]. RNF213 mutations cause these phenotypes

through the disruption of cerebral blood flow and reduction of angiogenesis [162]. It is unclear

whether KCNG4 and SLC24A1 also play a key role in the activation of the Wnt/Ca2+ signaling

pathway; however, rapid calcium influx via plasma membrane channels, which is buffered by

mitochondrial calcium uptake and slow release through SLC8B1, has been proposed as the

mechanism for sustained activation of NFATC2 [139, 163]. Interestingly, mitochondrial dys-

function and impaired calcium sequestration amplify NLRP3 inflammasome signaling [164,

165].

In the canonical Wnt/β-catenin pathway, which is upregulated in response to demyelinat-

ing events [159], we identified pathogenic variants in UBR2 and CTNNA3 (Fig 2). The activa-

tion of the canonical Wnt pathway modulates the immune response by initiating a pro-

inflammatory signaling cascade, which includes several cytokines and chemokines, and com-

plement and inflammasome components (Fig 3) [68, 69]. UBR2 has been shown to regulate

the activation of the canonical Wnt pathway upstream of β-catenin; and although its mecha-

nism of action still remains to be resolved, depletion of UBR2 leads to reduced expression of β-

catenin target genes [78]. In contrast, CTNNA3 as well as CTNNA1 and CTNNA2, the other

two members of the α-catenin protein family (Fig 4), inhibit the Wnt/β-catenin pathway [81].

These proteins also play an important role in cell-cell adhesion in ependymal cells, and thus

variants identified in MS families could not only disrupt the Wnt signaling pathway, but also

BBB integrity [72, 80].

In oligodendrocyte and glial cells, the expression of major components of the canonical

Wnt signaling pathway, including β-catenin, is regulated by oxysterols and LXRs [107, 166].

Oxysterols, which can modulate the innate and adaptive immune response, bind LXRs activat-

ing the nuclear receptor complex and promoting the initiation of transcription [167]. Genetic

association and familial mutations for MS have been described in components of the oxysterol

synthesis pathways and nuclear receptor complex [6, 9, 168, 169]. In addition, a missense vari-

ant in nuclear receptor co-activator NCOA3, causing increased expression of inflammatory

mediators in microglial cells (Fig 5D), was identified in three multi-incident MS families (Fig
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2). Although NCOA3 is considered a co-activator that directly binds to nuclear receptors pro-

moting transcriptional activities, it can also serve as a co-activator for NF-κB, enhancing the

expression of target genes and maintaining the immune response [170, 171]. Moreover, mole-

cules acting as NR1H3 (LXR-α) agonists have been shown to inhibit NLRP3 inflammasome by

downregulating the expression of its components, and NF-κB signaling by suppressing the

phosphorylation of IκB (Fig 3) [172]; thus providing additional links between these pro-

inflammatory pathways. The identification of rare variants co-segregating with disease in fami-

lies and genetic associations in components of the nuclear receptor complex and oxysterol syn-

thesis pathways, suggest an important role for these genes in the pathophysiology of MS by

regulating not only the synthesis of inflammatory mediators, but also neuronal development,

oligodendrocyte differentiation and myelin synthesis [114, 115, 166, 173, 174].

Although replication of our findings in additional multi-incident MS families is necessary

to confirm a pathogenic role for these genes and rare variants, they suggest disruption of

innate immunity, inflammation, angiogenesis and cation homeostasis as critical processes in

the onset of Mendelian forms of MS. Although these genes provide a mechanistic insight into

the etiology of disease, it should be noted that not all family members harboring the nominated

disease-causing variants developed MS (Fig 2). Therefore, despite the highly susceptible

genetic background created by these variants, additional genetic, epigenetic or environmental

factors are likely required to trigger the onset of MS.

Although the variants identified in these families are rare, they provide the means for the

development of cellular and animal models based on human genetic etiology. Models in which

to further characterize the biological pathways disrupted in MS patients, and develop and

assess the efficacy of novel therapeutic options tackling the pathophysiological processes of

MS. In addition, we envision gene screening being used as a tool for disease confirmation, and

accurate risk assessment in healthy family members of MS patients. Following the confirma-

tion of pathogenicity in additional MS families, and with the knowledge gained from charac-

terizing newly developed models of MS based on the identified variants, we foresee the

development of personalized treatments for MS patients, and preventative strategies for at risk

individuals. These may include PPAR and LXR agonists for MS patients and unaffected family

members harboring substitutions in NCOA3, and calcium channel blockers for those with var-

iants in SLC24A1 or SLC8B1.

In conclusion, the implementation of WES in multi-incident MS families have nominated

pathogenic variants in 12 genes, which highlight innate immunity and inflammatory response

as critical processes leading to the onset of MS. A global effort towards the analysis of addi-

tional MS families, and the characterization of the biological processes disrupted by these vari-

ants, is necessary to expand our knowledge and understanding of the molecular and biological

mechanisms underlying the genesis of MS. This gained knowledge is essential to drive the

development of personalized medicine approaches with the potential to improve treatment

efficacy and patient prognosis.

Methods

Participants

A total of 33 multi-incident MS families of European descent from Canada and 1 from Ger-

many were selected for this study. DNA was available for 191 family members diagnosed with

MS, 423 unaffected family members and 48 married-in individuals. In each family, DNA was

available for at least 4 MS patients (mean = 5.46, SD ± 1.58, range = 4–11). Additional samples

from Canada, and Italy were available for the replication of all nominated variants. NCOA3 p.

Arg485Cys was additionally genotyped in cohorts from Spain and Austria. The Canadian
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cohort was collected through the longitudinal Canadian Collaborative Project on the Genetic Sus-

ceptibility to Multiple Sclerosis (CCPGSMS), and consists of 13,870 samples (2,502 MS probands

which include 2,039 with a family history of MS, 2,390 additional family members diagnosed

with MS, 7,903 family members free of MS symptoms, and 1,075 unrelated healthy controls)

[175, 176]. The male to female ratio for MS probands and unrelated controls was 1:2.76 and

1:0.96, respectively; and with a mean age at onset for MS patients of 30.8 years (SD ± 9.6). The

Spanish cohort consisted of 3,200 MS patients and 2,803 healthy controls, with a male to female

ratio of 1:1.88 and 1:1.49, respectively, and a mean age at MS onset of 30.7 years (SD ± 11.7). The

Austrian cohort consisted of 552 MS patients with a male to female ratio of 1:2.4 and a mean age

at MS onset of 31.4 years (SD ± 9.7). The Italian cohort included 46 MS patients and 32 healthy

relatives from 15 multi-incident families recruited as part of the InTegrative Analysis of famiLies

with MultIple Sclerosis of ItaliAN Origins (ITALIANO) multicenter study.

The large majority of CCPGSMS probands self-report European descent (98.0%), and the

remainder reported Asian ancestry (1.6%), African ancestry (0.3%) or First Nations (0.1%).

Samples from European cohorts are of Caucasian ancestry. All patients were diagnosed with

MS according to Poser or McDonald criteria [177, 178]. The ethical review boards at each

institution approved the study [University of British Columbia ethical review board (H08-

01669); Medical University of Vienna ethics committee (EK Nr:2195/2016); San Raffaele Ethi-

cal Committee (NEUFAM); Comité Ético de Investigación de Euskadi (CEIC_E300911);

Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III—Fondo Europeo de Desar-

rollo Regional (FIS PI13/00879 and PI16/01259); Hospital Regional Universitario de Málaga

(CTS7670/11, sample collection: C-36-003); and Hospital Virgen Macarena de Sevilla (PI13/

01527 and 2254)], and all participants provided written informed consent.

Sequencing and genotyping analysis

WES data for Canadian samples was generated on an Ion Torrent Proton (Thermo Fisher Sci-

entific) system with a 100× minimum average sequencing depth. The Ion Torrent Server v4

was used to map reads to NCBI Build 37.1 reference genome using the Torrent Mapping

Alignment Program (TMAP) and to identify variants differing from the reference. Sequences

with a mapping Phred quality score under 20, fewer than five reads or over 95% strand bias

were excluded from further analysis [9, 169]. German and Italian samples were sequenced on a

HiSeq 2500 (Illumina), and the raw sequences were aligned against the human reference

genome (hg19) with BWA and processed with a GATK best practices pipeline using Unified

Genotyper variant caller. Annotation of variants was performed with ANNOVAR [179].

WES data for 132 MS patients from 34 families was generated for the identification of path-

ogenic variants (S4 Table). Heterozygote non-silent variants identified in WES data from all

patients in a single family, and with a MAF below 1% in public (ExAC) or proprietary data-

bases of variants [17], were genotyped in all family members to validate WES genotype calls

and assess segregation with disease, and Canadian MS probands and healthy controls to assess

population frequencies, as previously described [9]. To account for reduced penetrance and

the presence of phenocopies, variants were deemed to segregate with disease when found in at

least 75% of individuals diagnosed with MS and no more than one unaffected family member,

excluding unaffected parents of MS patients. When a variant segregating with disease could

not be found, additional affected family members for whom DNA was available were analyzed

by WES, and rare non-silent variants identified in all but one MS patient were assessed for seg-

regation with disease. Additional variants in each gene of interest were identified by mining

WES data from 426 MS patients from Canada, 15 probands from multi-incident MS families

from Italy, 100 healthy controls from Canada, and 955 multi-ethnic diseased controls.
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Missense or nonsense variants identified exclusively in MS patients, and with a MAF below

1% in public databases of variants [17] were assessed for segregation within families.

All variants deemed to co-segregate with disease were genotyped using Sequenom MassAr-

ray iPLEX platform or TaqMan genotyping probes (Tables 1 & S5). For every additional

patient identified harboring a variant of interest, all blood-related family members for whom

DNA was available were genotyped using Sanger sequencing to confirm genotype calls and

assess segregation with disease as previously described [169, 180].

Haplotype analysis were performed using microsatellite markers spanning each locus of

interest. Primer sequences are available at the National Centre for Biotechnology and Informa-

tion (https://www.ncbi.nlm.nih.gov/probe). PCR reactions were performed under standard

conditions with one primer pair for each marker labeled with a fluorescent tag. PCR products

were run on an ABI 3730xl (Applied Biosystems) and analyzed using GeneMapper 4.0. Marker

sizes were normalized to those reported in the Centre d’Etude du Polymorphisme Humain

(CEPH) database (http://www.cephb.fr/).

Construct design, western blotting and luciferase analysis

Plasmids containing FLAG-tagged full length wild-type, p.Gln475 or p.His972 human

NLRP12 were kindly donated by Dr. Beckley Davis (Franklin & Marshall College, USA). Full

length cDNA encoding wild-type NCOA3 was PCR amplified from total human brain cDNA,

and the p.Arg485Cys substitution introduced by fusion PCR. After restriction digestion, PCR

products were inserted into pcDNA4-myc-his A (pZ) between KpnI and XhoI.

1–2μg of empty vector or expression vectors for NLRP12 wild-type (WT), NLRP12 p.

Gln475 (L475Q), NLRP12 p.His972 (L972H), NCOA3 wild-type (WT), or NCOA3 p.Cys485

(R485C) was transfected into mouse microglial cell line BV2 using polyethylenimine (PEI).

Twenty-four hours after transfection, whole cell lysates were subjected to Western blot for Cas-

pase-1/p10 (Santa Cruz, Cat# sc-56036, RRID: AB_781816), FLAG-NLRP12 (Sigma, Cat#

F7425, RRID: AB_439687) and β-actin (Sigma, Cat# A5316, RRID: AB_476743), or iNOS (Cell

Signaling Technology, Cat# 13120, RRID: AB_2687529), NCOA3 (Cell Signaling Technology,

Cat# 2126S, RRID: AB_823642) and β-actin. Activation of NF-κB was assessed in HEK293

cells transfected with 200ng of a pcDNA4 vector containing the coding region for either wild-

type, p.Gln475 or p.His972 NLRP12, together with 200ng of a reporter PGL3 plasmid with a

response element for NF-κB. Cells were co-transfected with a vector to express p65 in order to

induce NF-κB activation. 15ng of a vector containing Renilla Luciferase was transfected into

cells as an internal control. Twenty-four hours post-transfection cells were lysed, and luciferase

activity in cell lysates was measured using a luciferase assay kit (Promega, Cat# E1500). All

experiments were performed at least in triplicate, and protein bands quantified with Quantity

One (Bio-Rad). One-way ANOVA and Tukey’s Honest Significant Difference (HSD) post hoc

test were used to identify statistically significant differences between groups.

Supporting information

S1 Table. Clinical phenotype for MS patients harboring mutations in nominated MS

genes. RR, relapsing-remitting MS; PP, primary progressive MS; RR (SP), relapsing-remitting

which became secondary progressive; n/a, not available. �Disease course was determined post

hoc from clinical charts.

(PDF)

S2 Table. Non-segregating variants identified in MS patients. �excluding parents of MS patients.

(PDF)
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S3 Table. NCOA3 and SLC24A1 disease haplotypes. Microsatellite markers are shown with

their physical locations (NCBI Build 37.1, hg19). Allele sizes are given in base pairs consistent

with Centre d’Etude du Polymorphisme Humain (CEPH) standards, and include CEPH sam-

ples 1331–1 and 1331–2 as reference.

(PDF)

S4 Table. WES variants identified in the 34 MS families characterized in this study. Geno-

mic coordinates from NCBI Build 37.1 (hg19) and dbSNP refSNP (rs) identifiers from build

147 are provided. Minor allele frequency (MAF) for MS families and the Genome Aggregation

Database (GnomAD) are given.

(ZIP)

S5 Table. Allele frequencies in Canadian case-control samples for additional variants seg-

regating with disease in MS families. Genomic coordinates from NCBI Build 37.1 (hg19) and

minor allele frequencies (MAF) are provided.

(PDF)

S1 Fig. Segregation analysis and conservation for a) MASP1 p.Pro462Thr and b) RNF213

p.Arg4019Cys. Males are represented by squares and females by circles, a diagonal line indi-

cates subjects known to be deceased. Black filled symbol, MS; gray filled, unaffected obligate

carrier. Heterozygote carriers (M) and wild-type (wt) genotypes are provided. MS patients

with inferred genotypes are indicated with an asterisk. Organism and RefSeq accession num-

bers are provided for orthologs and gene name and RefSeq accession numbers for human

paralogs, which were obtained from Ensembl release 91. Evolutionarily conserved positions

for nominated pathogenic variants are highlighted in black.

(PDF)

S2 Fig. NLRP12 inhibition of NF-κB pathways. Relative NF-κB promoter activity ± standard

error for wild-type and mutant NLRP12 constructs is provided; n.s., not significant.

(PDF)
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Funding acquisition: Carles Vilariño-Güell, Alexander Zimprich, Filippo Martinelli-Bone-

schi, Fuencisla Matesanz, Elena Urcelay, Koen Vandenbroeck, Laura Leyva, Anthony L.

Traboulsee, Antonio Alcina, Weihong Song, A. Dessa Sadovnick.

Investigation: Filippo Martinelli-Boneschi, Bruno Herculano, Zhe Wang, Fuencisla Matesanz,

Elena Urcelay, Denis Gris, Charbel Massaad, Jacqueline A. Quandt, Anthony L. Traboulsee,

Genetics and pathogenesis of familial multiple sclerosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008180 June 6, 2019 28 / 40

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008180.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008180.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008180.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008180.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008180.s007
https://doi.org/10.1371/journal.pgen.1008180


Mary Encarnacion, Cecily Q. Bernales, Jordan Follett, Irene M. Yee, Maria G. Criscuoli,

Angela Deutschländer, Eva M. Reinthaler, Tobias Zrzavy, Elisabetta Mascia, Andrea Zauli,

Federica Esposito, Antonio Alcina, Guillermo Izquierdo, Laura Espino-Paisán, Jorge Mena,
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