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Abstract
The fact that drugs currently used in the treatment of Leishmania are highly toxic and associ-

ated with acquired resistance has promoted the search for new therapies for treating Ameri-

can tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind

paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combina-

tion of nitric oxide (NO) donor (cis-[Ru(bpy) 2imN(NO)](PF6)3) (Ru-NO), given by intraperito-

neal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the

lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histo-

logical and immunological parameters of chronic inflammation showed that this combined

treatment increased the efficacy of macrophages, determined by the decrease in the num-

ber of parasitized cells, leading to reduced expression of proinflammatory and tissue dam-

age markers. In addition, these drugs in combination fostered wound healing, enhanced the

number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion

site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazil-

ian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that

can be considered for further in vivo investigations as a candidate for the treatment of

cutaneous leishmaniasis.
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Introduction
Leishmania (Leishmania) amazonensis is an obligatory intracellular parasite of mammalian
cells and one of the causative agents of American tegumentary leishmaniasis (ATL). Infection
occurs from the bite of an infected phlebotomine sand fly, and depending on the host immune
response, various clinical manifestations may result, ranging from a single granulomatous skin
lesion at the site of the bite to diffuse lesions, where it may or may not affect the mucous mem-
branes or even progress to visceral disease [1].

The first choice of antiparasitic agent for treating this disease in Brazil since the 1940s has
been Glucantime (N-methyl glucamine antimoniate); however, despite being used against all
forms of leishmaniasis, it has serious limitations in clinical practice, due to its extensive toxicity
and limited efficacy [2].

Experimental models have shown that the outcome of Leishmania infection is critically de-
pendent on the activation of CD4 T cell subsets [3]. Host susceptibility is ascribed to Th2 im-
mune response, which leads to the development and multiplication of the parasite [4]. On the
other hand, resistance is established by preferential activation of a Th1 subpopulation of lym-
phocytes, which produce IFN-γ and TNF-α, leading to macrophage activation and increased
activity of inducible nitric oxide synthase (iNOS) and NADPH oxidase, with consequent in-
crease in the production of nitric oxide (NO) and reactive oxygen species (ROS), respectively
[4–6]. Among the microbicidal mechanisms exhibited by phagocytic cells, NO production has
been shown to be one of the most important for eliminating Leishmania spp.[7, 8].

Nevertheless, Leishmania has numerous escape mechanisms [9]. For instance, it can reduce
NO production in macrophages by increasing the expression of arginase, which catalyzed the
cleavage of L-arginine [10–12]. Therefore, the parasite can multiply and escape from the mi-
crobicidal actions of the host, and in attempt to eliminate it and control the infection, there is
an intense activation of many defense mechanisms, resulting in a strong inflammatory re-
sponse, increasing tissue damage and exacerbation of the injury [13, 14].

Synthetic or natural substances with leishmanicidal and even anti-inflammatory capacity
have emerged as an alternative to conventional treatment. In this context, the use of exogenous
compounds that can donate microbicidal molecules, such as NO, can be an important strategy
for the effective treatment of leishmaniasis. Some in vitro studies had already reported that NO
donors can inhibit mitochondrial respiration in amastigote and promastigote forms of Leish-
mania spp., killing the parasite [15, 16]. Moreover, NO plays an important role in wound heal-
ing and collagen deposition [17, 18]. Accordingly, ruthenium-NO-donor complexes have
emerged as a potential therapeutic approach for disease models that require NO as the effector
microbicidal molecule. The advantages of such drugs include controlled release of NO, low tox-
icity and stability in aqueous media. NO molecules are released from such complexes by reduc-
ing agents commonly present in biological media [19, 20].

Another compound of interest that has been widely investigated in parasitic infections is
propolis extract. Propolis has been widely employed in several disease models, showing great
potential in protective immune response against leishmaniasis [21–23]. The major components
of this bee product are phenolic compounds (flavonoids, aromatic acids and benzopyranes),
di- and triterpenes and essential oils [24], which have already been described as having antiin-
flammatory [25, 26], antioxidant [27], immunomodulatory [28–31] properties and being able
to promote wound healing and reepithelization process [32, 33]. Furthermore, it has been
shown that propolis is able to increase the generation of hydrogen peroxide, suggesting that
this product modulates the activation of macrophages and acts against intracellular parasites
[34, 35].
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Since NO and propolis can play an important role in the control of various parasite diseases,
the objective of this study was to evaluate the effect of combined therapy using the NO donor
cis-[Ru(bpy)2imN(NO)](PF6)3 (Ru-NO), where bpy = 2,2’-bipyridine and imN = imidazole,
and Brazilian propolis against infection with L. amazonensis.

Material and Methods

Parasite
L. amazonensis (MHOM/BR/1989/166MJO) was used as promastigote forms in the stationary
growth phase for the infection. The parasites were obtained from popliteal lymph nodes of
L. amazonensis-infected mice and maintained in 199 culture medium (GIBCO-Invitrogen)
supplemented with 10% fetal bovine serum (FBS; GIBCO-Invitrogen), 1 M Hepes, 0.1%
human urine, 0.1% L-glutamine, 10 U/mL penicillin and 10 μg/mL streptomycin (GIBCO-
Invitrogen) and 10% sodium bicarbonate. Cells were maintained in 25-cm2 flasks in a BOD-
type incubator at 25°C.

Chemicals, drugs, and reagents
Propolis was collected in the Beekeeping Section of the Lageado Farm, São Paulo State Univer-
sity (UNESP), Botucatu, SP, Brazil, from Apis mellifera L. colonies. Propolis was ground and a
30% extract in 70% ethanol was prepared. Its chemical composition was analyzed using gas-
chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and thin layer chro-
matography (TLC) [24]. The final concentration of the solvent, ethanol, in the experiments did
not exceed 0.1%. NO donor compound cis-[Ru(bpy)2imN(NO)](PF6)3 (Ru-NO) was synthe-
sized and characterized as described previously by Silva et al. [36]. Glucantime (Sanofi-Aventis,
Brazil; 300 mg/ml, 81 mg/ml SbV) was used as standard drug for treatment of ACL[15].

Animals and infection
Female BALB/c mice weighing approximately 25–30 g, aged 6–8 weeks old, were obtained
from the Institute Carlos Chagas-Fiocruz, Curitiba-PR, Brazil. They were infected in the right
hind paw with 1x105 L. amazonensis promastigote forms. Mice were kept under pathogen-free
conditions and used according to protocols approved by the Institutional Animal Care and
Use Committee. This study was approved by Londrina State University Ethics Committee for
Animal Experimentation (No. 56/2012).

Experimental procedures
Groups of five L. amazonensis- infected BALB/c were treated for 30 consecutive days, starting
after lesion appearance in all mice, which occurred 8 weeks post-inoculation (p.i.). The treat-
ment groups were as follows: Glucantime (33 μmol.kg-1 day-1) by intraperitoneal (i.p.) injec-
tion; propolis diluted in PBS, administered orally (p.o.) (5 mg.kg-1 day-1) [35]; Ru-NO diluted
in PBS (0.385 μmol.kg-1 day-1, i.p.) [37]; and Ru-NO (0.385 μmol.kg-1 day-1, i.p.) plus propolis
(5 mg.kg-1 day-1, p.o.). Uninfected and infected mice were used as control groups and received
only PBS vehicle (p.o. and i.p.). The lesion size (in mm) was measured weekly during the treat-
ment using a digital caliper (Starrett 799). At the end of therapy (86 days p.i.), animals were eu-
thanized. Plasma was collected and the injured hind paw of each animal was excised, which
was divided into four fragments for analysis.

Nitric Oxide and Propolis Combined in Experimental Leishmaniasis

PLOS ONE | DOI:10.1371/journal.pone.0125101 May 14, 2015 3 / 19



AST and ALT levels
Five BALB/c mice were treated for 30 consecutive days with Ru-NO (0.385 μmol.kg-1 day-1,
i.p.) plus propolis (5 mg.kg-1 day-1, p.o.). Plasma was collected for measurement of aspartate
aminotransferase (AST) and alanine aminotransferase (ALT), markers of hepatocellular dam-
age, using a colorimetric assay with a commercial kit from Labtest Diagnóstica (Lagoa Santa,
MG, Brazil).

Ruthenium detection by energy dispersive spectroscopy (EDS)
Injured paw fragments were immersed in 8% paraformaldehyde and 0.2 M cacodylate buffer
fixing solution for 48 h at room temperature. The paws were then dehydrated in an increasing
graded ethanol series (70, 80, 90 and 100% GL) and critical-point dried in CO2 (Bal-Tec CPD
030). The samples were placed on stubs and coated with carbon using a sputter coater (Bal-Tec
SCD 050). For the detection of ruthenium, samples were analyzed by spectroscopy energy dis-
persive (EDS, Oxford), INCA software, coupled to a scanning electron microscope (SEM) FEI
Quanta 200.

Real-time detection of NO/peroxynitrite by high sensitivity
chemiluminescence
NO production was evaluated employing a highly sensitive NO detection system described by
Kikuchi et al. (1993) [38], with some modifications. In this method, NO/peroxinitrite reacts
with hydrogen peroxide, which in the presence of luminol produces triplet oxygen, which de-
cays to singlet oxygen and emits photons, detected by a luminometer system coupled to a com-
puter. One of the hind paw fragments was mechanically homogenized (Tissue-tearor,
BioSpec), and the supernatants (100 mg/ml) were diluted 1:1 in fresh sterile 2 mM Na2CO3

buffer, pH 8.5, previously degassed with bubbling N2 for 20 min to eliminate the presence of
molecular oxygen and oxidation of NO to nitrite/nitrate. The final reaction volume was 500 μl
of macerated paw plus 500 μl of Na2CO3 buffer. The starting reagent was prepared by mixing
equal volumes of luminol solution (4.39 μM dissolved in 1 M KOH) diluted 1:10 in 36.58 μM
desferrioxamine and 2.44 μMH2O2, with 3 parts degassed Na2CO3 buffer. This mixture was
vortexed for 5 min before use. All solutions were sterile and kept at 25°C in covered tubes, pro-
tected from light. Finally, the luminometer chamber was injected with 50 μl of starting reagent
and the reaction was performed in a Glomax luminometer (Promega), with automatic reagent
injector, employing a kinetic protocol which allowed following the reaction at 10 readings per
second. All chemicals were purchased from Sigma.

DNA extraction and parasite quantification by real-time PCR
Real-time quantitative PCR (RT-qPCR) was performed to determine the tissue parasite load in
each group. A hind paw fragment was weighed, washed in PBS, and homogenized in lysis buff-
er (50 mM Tris-HCl [pH 7.6], 10 mM EDTA, 0.5% SDS, and 0.2 mg/ml proteinase K (Invitro-
gen, Carlsbad, CA), followed by phenol-chloroform extraction of DNA. Briefly, samples were
mechanically homogenized (Tissue-tearor, BioSpec), incubated at 55°C for 12 h, and extracted
twice with phenol-chloroform-isoamyl alcohol (25:24:1). Two volumes of cold ethanol
(Merck) were added to the aqueous phase, and samples were stored at -20°C for 12 h. Samples
were then centrifuged for 30 min at 10,000 g, washed with 70% ethanol, dried at room tempera-
ture, and resuspended in 10 mM Tris HCl (pH 8.5) [39]. Real-time PCR was performed by
using Platinum SYBR Green qPCR SuperMix UDG with ROX reagent (Invitrogen Corpora-
tion, New York, NY) with 100 ng total genomic DNA (gDNA). Parasite quantification was
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performed using JW11 (forward, 50-CCTATTTTACACCAACCCCCAGT-30) and JW12 (re-
verse, 50-GGGTAGGGGCGTTCTGCGAAA-30) Leishmania-specific primers [40]. The samples
were amplified with a Corbett Rotor-Gene thermal cycler under the following PCR conditions:
an initial step of 2 min at 50°C, a second step of 10 min at 95°C, and 40 cycles of 30 s at 95°C,
30 s at 57°C, 30 s at 72°C, and 15 s at 82°C, followed by a dissociation step. The results were
based on a standard curve constructed with DNA from culture samples of L. amazonensis
promastigote forms.

Histological analysis
Hind paw fragments collected were fixed in Bouin’s solution, decalcified for 45 days in 5%
EDTA, processed for paraffin embedding, sectioned (4 μm) and stained with hematoxylin-
eosin (H&E) or sirius red by the picrosirius technique to assess the presence of collagen. Cellu-
lar profile was scored by counting the different cell types (macrophages, vacuolated macro-
phages, fibroblasts and lymphocytes) in H&E-stained paw sections, analyzed with a
photomicroscope (Olympus, Miami, FL, USA) at a final magnification of 200x. Five images
from each mouse were captured using Motic Images Plus v.2.0 (Motic China Group Co. Ltd.,
Xiamen, China). These images were divided into four quadrants, two of which were randomly
selected for cell quantification with ImageJ 1.45 s software (NIH, USA—2011). Collagen quan-
tification of the lesion site was determined in sirius red-stained paw sections under polarized
light using a photomicroscope (Nikon Eclipse 80i) with a camera (Nikon DSFi1C) coupled to a
computer using Nis Element software (Shinjuku, Japan), at a final magnification of 200x. Four
images of four sections from each mouse were considered for the study and analyzed by Image
Pro Plus (version 4.5). The results were expressed as percentage of area with the presence of
collagen compared to the total measured area.

Immunohistochemistry
The paw sections were also analyzed by immunohistochemistry [41] to identify CD4+ and
CD8+ T lymphocytes, iNOS and nitrotyrosine (3NT) by the labeled streptavidin—biotin meth-
od using an LSAB kit (DAKO Japan, Kyoto, Japan). The paraffin-embedded sections were
deparaffinized and rehydrated, treated for 40 min with 2% BSA and incubated overnight at 4°C
with primary antibody (anti- CD4+, anti- CD8+, anti-iNOS and anti-3NT rabbit polyclonal an-
tibody diluted 1:500, Sigma). Horseradish peroxidase activity was visualized by treatment with
H2O2 and 3, 30—diaminobenzidine (DAB) for 5 min. In the last step, the sections were weakly
counterstained with Harry’s hematoxylin (Merck). For each assay, negative controls were pre-
pared on serial sections. Intensity and localization of immunoreactivity with all primary anti-
bodies used were examined on all sections using a light microscope (Olympus BX41, Olympus
Optical Co., Ltd., Tokyo, Japan). As a negative control, the primary antibody was omitted. For
the image analysis study, color photomicrographs of representative areas (magnification of
400x) were digitally acquired. For semi-quantitative scoring, images were evaluated by using
the color deconvolution tool in Image J software (NIH, USA). Pixels were categorized as previ-
ously described by Chatterjee et al. [42] as strong positive (3+), positive (2+), weak positive
(1+) and negative (0).

Determination of cytokine profile by Western blotting
The supernatants from hind paw fragments (100 mg/ml) was used to measure the cytokines
and transcription factor expressed in the lesion by Western blotting [43]. Supernatant samples
were first centrifuged and total protein determined by Lowry's method modified by Miller [44].
Supernatant samples were diluted 1:2000 in 0.9% NaCl and incubated with 300 μl of cupric
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reagent for 10 min. Afterwards, the mixture was vortexed and added to 900 μL of Folin-Cio-
caulteau's reagent and kept at 50°C in a water bath for 10 min. Absorbance of the samples was
read at 660 nm, and the protein concentration was obtained from the standard curve of bovine
serum albumin. A volume of sample corresponding to 20 μg protein was subjected to 10% ac-
rylamide gel electrophoresis followed by transfer to a nitrocellulose membrane [43]. Mem-
branes were blocked in 5% milk and incubated overnight with antibodies to NF-κB (p65),
STAT3, TNF-α, IL-10 and TGF-β1 diluted 1:1000 (Santa Cruz Biotechnology, USA). Subse-
quently, the membranes were washed in PBS-0.1% Tween for 30 min and incubated with sec-
ondary antibody specific for each primary antibody for 2 h at room temperature (diluted
1:2000). The detection of the bands of respective antibodies was performed using the ECL Plus
kit (GE Healthcare, United Kingdom). The images of the bands were scanned (Labscan Soft-
ware, EG Healthcare) and quantified in Image J software (NIH, USA).

Statistical analysis
Results were expressed as the mean ± standard error of the mean (SEM) and analyzed with the
Prism 5.0 statistical program (GraphPad Software, San Diego, CA), using the Student t-test,
comparing with infected control. Differences were considered significant when P< 0.05.

Results

Ru-NO by intraperitoneal injection was able to reach the site of
Leishmania-induced lesion
Initially, we checked if the route of drug administration delivered Ru-NO to the injured paw.
Energy dispersive spectroscopy (EDS) analysis of the infected control revealed the presence of
many elements including carbon, oxygen, iron, sodium, chlorine, phosphorus, magnesium and
sulfur in the paw section (Fig 1A). Ru-NO treated mice showed the same elements plus the
presence of ruthenium, proving that the intraperitoneal injection of Ru-NO donor was suffi-
cient to ensure the delivery of this compound to the lesion site (Fig 1B). The presence of silicon
and calcium are from mouse hair and bone, respectively.

Intraperitoneal injection of Ru-NO increased NO levels at the lesion site
Experimental interest in the use of NO-donors in ATL is based on the fact that Leishmania par-
asites are able to deplete NO levels by several mechanisms, reducing the bioavailability of NO
for microbicidal action [9].

The complex cis-[Ru(bpy)2imN(NO)](PF6)3 releases NO through electrochemical, photo-
chemical and chemical processes [36]. The reaction of this compound with antioxidants could
lead to the availability of free NO [37]. Since we demonstrated that the drug reached the lesion,
we wondered if NO was released at the site of injury, employing a high-sensitivity chemilumi-
nescence method based on the detection of NO/nitrosative stress [38].

According to our results, the infected group showed a marked depletion of NO levels when
compared to uninfected control (Fig 2). Infected BALB/c mice treated with Ru-NO, i.p.,
showed increased NO levels at the lesion site, indicating its local release by the Ru-NO donor
(Fig 2), which demonstrated that systemic administration of Ru-NO donor could represent a
useful strategy for NO release at the lesion site, overcoming the NO depleting mechanisms of
Leishmania.
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Treatments delayed the development of the cutaneous lesion and
significantly reduced the parasite load
Several studies have reported that Brazilian propolis exerts important immunomodulatory ef-
fects [22, 23], which could improve the effects of the Ru-NO donor against the Leishmania
pathogenic mechanisms. Therefore, we aimed to investigate the immunomodulatory effect of
combined propolis and Ru-NO in experimental leishmaniasis. BALB/c mice were infected with
L. amazonensis and the lesion was monitored for 30 days, with or without treatments.

The lesions of the infected control group increased progressively, and the ulcer size ranged
from 9.7 to 12.5 mm at day 30 of treatment (Fig 3A). In contrast, the lesions in all treated
groups showed a significantly slower development compared to infected control. At day 30,
mean lesion size was 8.75±1.32 mm in the propolis-treated group, 8.20±1.13 mm with RuNO,
8.91±1.03 mm with RuNO plus propolis and 8.10±1.01 mm with Glucantime (Fig 3A).

Concerning the efficacy of treatments on parasite load, we determined parasite DNA levels
at the lesion site by real-time PCR. A marked reduction in L. amazonensis number at the lesion
site was found in all treated groups with no difference between them (Fig 3B). Interestingly,
treatment with Ru-NO, propolis or Ru-NO plus propolis produced similar results as the

Fig 1. Ru-NO by intraperitoneal injection is able to reach the center of the lesion. Animals were inoculated with 1 x 105 L. amazonensis promastigote
forms in the right hind paw, and after lesion appearance, they were treated intraperitoneally with Ru-NO (0.385 μmol.kg-1 day-1). A) EDS analysis of paw
sections was performed in infected control andB) RuNO treated group, to identify the elements present at the lesion site.

doi:10.1371/journal.pone.0125101.g001

Fig 2. NO level was increased in the lesion after treatment with Ru-NO.NO/peroxynitrite was estimated
by chemiluminescence in supernatant of macerated paw. The result was expressed as the mean ± SEM of
five animals per group. Bars are represented by the medians of each group. (AUC: area under the curve).
Significant difference relative to the infected control * P<0.05 and ** P<0.01, unpaired t-test.

doi:10.1371/journal.pone.0125101.g002
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Glucantime group. Furthermore, cutaneous lesions and parasite load in all treated animals
were smaller than those found in the untreated infected control, showing the establishment of
an inflammatory process with reduced tissue parasitism and severity of lesions.

It was important to assess the possible toxicity of combined treatment, and we found that
Ru-NO plus propolis treatment daily for 30 days did not foster hepatic lesions since the hepatic
enzymes ALT and AST remained unchanged (S1 Fig).

Ru-NO plus propolis treatment increased the infiltrating macrophage
population and modulated the expression of inflammatory markers
The complex interactions between Leishmania and immune cells have fundamental effects on
the outcome of the disease. The success or failure of infection depends on the development of
adaptive immune response. To investigate which immune cells migrate to the site of lesion and
their role in the modulation on the cytokines synthesis after the treatment with Ru-NO and
propolis, we performed histopathological analysis of the cellular infiltrate by light microscopy,
immunohistochemical analyses for inflammatory markers andWestern blotting to determine
the expression of cytokines and transcription factor.

Regarding the cell profile of the lesion, the number of infiltrating macrophages was signifi-
cantly increased at the lesion site in all treated groups when compared with infected control
(Fig 4A). T cells were similar in the infected control and Glucantime-treated group. However,
mice treated with propolis, Ru-NO or Ru-NO plus propolis exhibited a reduced T cell popula-
tion (Fig 4B).

Immunohistochemical studies using specific monoclonal antibodies for CD4+ and CD8+ T
labeling revealed that treatment with propolis and Glucantime increased the number of CD4+

and CD8+ T cells, respectively (Fig 4C and 4D). Nevertheless, Ru-NO only and the combined
treatment Ru-NO plus propolis did not induce CD4 and CD8 recruitment to the lesion site
(Fig 4C and 4D).

Fig 3. Effect of Ru-NO and propolis treatment on lesion development and parasite load of BALB/c mice infected with L. amazonensis. Animals were
inoculated in the right hind paw with 1 x 105 promastigote forms.A) After eight weeks of infection, mice were treated with saline (i.p.) (&), Glucantime
(33 μmol.kg-1 day-1, i.p.) (□), propolis (5 mg.kg-1 day-1, p.o.) (▼),Ru-NO (0.385 μmol.kg-1 day-1, i.p.) (◆) or Ru-NO plus propolis (0.385μmol.kg-1 day-1,
i.p. + 5 mg.kg-1 day-1, p.o.) (�) for 30 days, and the lesion was measured once a week.B) At the end of treatment, the number of Leishmania kDNA was
determined by real-time quantitative PCR. The results represent the mean ± SEM of lesion size for each group (n = 5). Significant difference relative to the
infected control * P<0.05 and ** P<0.01, unpaired t-test.

doi:10.1371/journal.pone.0125101.g003
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Fig 4. Effect of Ru-NO plus propolis on inflammatory process at lesion site. BALB/c mice were infected with 1x105 promastigotes of L. amazonensis in
the right hind paw and treated with Ru-NO (0.385 μmol.kg-1 day-1,i.p.), propolis (5 mg.kg-1 day-1, p.o.) or Glucantime (33 μmol.kg-1 day-1, i.p.) for 4 weeks
post-lesion appearance. The paw sections were analyzed for number ofA)macrophages (H&E),B) lymphocytes (H&E), C) CD4+ T (IHC), andD)CD8+ T
(IHC) at a final magnification of 200x. The paw supernatants were assayed for expression of E) NF-κB(p65), F) TNF-α,G) IL-10 andH) STAT3 byWestern
blotting. The dotted line (—) represents the uninfected control. Bars represent the mean ± SEM (n = 5). Significant difference relative to the infected control
* P<0.05, ** P<0.01 and ***P < 0.0001, unpaired t-test.

doi:10.1371/journal.pone.0125101.g004
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We evaluated the signaling pathways during the infection by measuring the expression of
NF-κB (p65) (Fig 4E), TNF-α (Fig 4F), IL-10 (Fig 4G) and STAT3 (Fig 4H) by Western blot
analysis of hind paw supernatant of each group. The expression of all markers was significantly
altered during infection.

Glucantime treatment caused an increase in NF-κB and IL-10 expression compared to the
infected control group. The animals treated with propolis showed a proinflammatory profile,
with significant increase in expression of NF-κB, TNF-α and STAT3, associated with a reduced
expression of IL-10, compared to infected control. The Ru-NO-treated group showed increased
expression of NF-κB and STAT3 with concomitant reduction in the expression of TNF-α and
IL-10 when compared to the infected control. Treatment with Ru-NO plus propolis caused a
reduction in the expression of NF-κB, TNF-α and IL-10 and increased expression of STAT3,
compared to the infected control. According to these findings, the combined use of Ru-NO
and propolis seems to primarily impact the innate immune response, by improving the recruit-
ment of effective macrophages to the lesion site, resulting in parasite killing besides the attenu-
ation of the inflammatory process without any impact on the number of infiltrating T cells.

Ru-NO plus propolis treatment did not promote the formation of NO-
derived nitrotyrosine residues, favoring the control of lesion
exacerbation
NO has been shown to be a crucial and versatile molecule in the control of a variety of intracel-
lular organisms. In leishmaniasis, this compound is mainly produced by macrophages through
the activation of inducible NO synthase (iNOS), which catalyzes the production of a huge
amount of NO during infectious processes. Nevertheless, excess NO can yield peroxynitrite,
which causes protein oxidation by nitration of tyrosine residues, resulting in nitrotyrosine for-
mation and consequently increased tissue damage [45, 46]

To determine iNOS activity in treated groups and whether the administration of exogenous
NO exacerbates tissue damage, we performed immunohistochemistry analysis. The results
showed that after 30 days of treatment, the groups treated with Glucantime and with Ru-NO
plus propolis showed lower iNOS expression when compared with the infected control group,
returning to levels found in animals without infection (Fig 5A).

Concerning nitrotyrosine expression, the results were complementary and although all
treated groups tended to show a decline in labeling, Glucantime and Ru-NO plus propolis
groups showed similar nitrotyrosine levels as baseline levels also found in uninfected control
(Fig 5B). Thus, the results indicated a reduction in the inflammatory process, demonstrating
that exogenous NO supply along with the protective effects of propolis was beneficial to the
host, favoring the control of the inflammatory response.

Ru-NO plus propolis treatment induced tissue repair
Nitric oxide and propolis are also significant regulators of wound healing, and during healing
of Leishmania lesions, there is a production of collagen and metalloproteinases [47]. We inves-
tigated the presence of tissue repair markers in the injured area.

Only the animals treated with Ru-NO plus propolis showed a considerable increase in fibro-
blasts at the lesion site, accompanied by the upregulation of TGF-β1 synthesis (Fig 6A and 6B).
The groups that received propolis or Glucantime showed a decrease in fibroblasts in the le-
sions, and the Ru-NO group did not show any change in this cell type (Fig 6A). TGF-β 1 levels
were also altered with a reduction in the propolis group and an increase in the group treated
with Ru-NO only (Fig 6B).
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Concerning the synthesis of collagen, picrosirius staining showed significantly greater levels
of collagen deposition at the lesion site in the Ru-NO plus propolis group, indicating enhanced
wound healing (Fig 6C and 6D). The group that received Glucantime also showed a slight in-
crease in the amount of collagen fibers. However, in all other groups analyzed, collagen fibers
were only weakly visualized at the injury site.

Discussion
The inflammatory response developed during Leishmaniasis is essential for controlling the par-
asite burden, and the clinical outcome of ATL is a result of the immune capacity of the host in
building an effective adaptive response against the parasite. In most cases, this host-parasite
fight results in chronic disease and development of severe cutaneous lesions, where uncon-
trolled or continued inflammation is correlated with extended collateral damage and may con-
stitute a crucial factor for the development of features of chronic disease (e.g., deforming
ulcers) and subsequent morbidity [13, 14, 48].

Fig 5. Ru-NO plus propolis decreased protein nitration at the lesion site. Expression ofA) iNOS andB) Nitrotyrosine determined by
immunohistochemical assays of paw sections of infected mice at 12 weeks post-infection. Infected BALB/c mice were treated with Ru-NO (0.385 μmol.kg-1
day-1,i.p.), propolis (5 mg.kg-1 day-1, p.o.) or Glucantime (33 μmol.kg-1 day-1, i.p.) for 4 weeks post-lesion appearance. The dotted line (—) represents the
uninfected control. The result was expressed as the mean ± SEM of five animals per group. Significant difference relative to infected control * P<0.05,
unpaired t-test.

doi:10.1371/journal.pone.0125101.g005
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Fig 6. Effect of Ru-NO + propolis on healing process at the lesion site. The paw sections were analyzed for A) number of fibroblasts (H&E), B) TGF-β1
byWestern blotting.C) Photomicrographs of paw sections stained with picrosirius technique D) and the quantification of collagen deposition. The paw
sections were analyzed at a final magnification of 200x. The data represent the mean±SEM of five animals per group. The dotted line (—) represents the
uninfected control. Significant difference relative to infected control ** P<0.01, ***P<0.0001, unpaired t-test. Scale bars = 50 μm.

doi:10.1371/journal.pone.0125101.g006
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In this context, the present study provided new perspectives for the treatment of experimen-
tal cutaneous leishmaniasis, especially regarding the use of combined therapy with the microbi-
cidal molecule Ru-NO and the immunomodulatory propolis extract. Our data demonstrated
that this combined therapy was able to increase the infiltration of competent macrophages at
the site of leishmanial infection, decreasing the parasite load, modulating the inflammatory re-
sponse and accelerating the healing of the lesion.

The analysis of the lesion development in infected footpad at 86 days p.i. showed that all
treatments tested resulted in the control of the lesion, due to the enhanced recruitment of com-
petent macrophages, consequently controlling the parasitic burden.

Several studies have shown that NO is involved in the death of Leishmania amastigotes dur-
ing macrophage burst [7, 8, 49]. Recently, Olekhnovitch et al.[8] showed a new perspective of
NO action in an experimental model of Leishmania. These authors proved that the collective
production and subsequent diffusion of NO creates an antimicrobial environment that permits
parasite killing in cells, demonstrating a cooperative mechanism at the tissue level to control
L.major amastigotes, reinforcing our choice of an exogenous nitric oxide donor to control
this disease.

Some molecules of a group commonly known as NO donors have been tested against Leish-
mania spp., showing a considerable effect against cutaneous leishmaniasis. The leishmanicidal
effects of trans-[Ru(NO)(NH3)4L](X)3 have been demonstrated in vitro and in vivo against
L.major [15]. L. amazonensis, when co-cultured with sodium nitroprusside in vitro, also
showed a decrease in the number of promastigotes and axenic amastigotes in a concentration-
dependent manner [50], and S-nitrosoglutathione (GSNO) was found to be cytotoxic to amas-
tigotes and to promote the healing of topically treated L.major or L. braziliensis skin lesions
[51].

Nevertheless, topical treatment of cutaneous leishmaniasis with NO donors, potassium ni-
trite and transdermal patches for continuous NO delivery, did not perform well against the dis-
ease [52, 53]. These variable results could possibly be related to the instability of NO release.

Our results demonstrated for the first time that the i.p. inoculation route of Ru-NO was ef-
fective in delivering NO to the lesion site, and consequently, the noted effect was due to the
presence of NO and its reaction with compounds at the injury site and not to a systemic effect
of this compound.

Regarding Brazilian propolis, our earlier study demonstrated that this propolis had antil-
eishmanial and immunomodulatory effects against L. braziliensis in and in vitro experimental
infection, increasing macrophage internalization and further killing of parasites [23]. The
propolis tested contains mainly phenolic compounds, including flavonoids, di- and triterpenes,
and essential oils [24]. In experimental leishmaniasis, propolis components such as prenylated
compounds and benzophenones [54] have already been associated with the inhibition of amas-
tigote proliferation by macrophage activation or by direct effect on promastigote forms (caffeic
acid, p-coumaric acid, aromadendrine-4'-methyl ether, 3-prenyl-p-coumaric and 3,5-diprenyl-
p-coumaric) [55]. Besides the leishmanicidal effects, peritoneal macrophages were activated by
Brazilian green propolis, increasing the phagocytic ability [56].

When evaluating the combination of Ru-NO and propolis only with regard to amastigote
number, we did not observe a greater reduction in parasite load; however, unlike with the other
treatments, we found a considerable synergistic effect of these compounds in reducing the in-
flammatory process at the lesion site.

The effect of Ru-NO plus propolis on cell profile found in the lesions revealed a moderate
inflammatory infiltrate, composed mainly of macrophage cells, and the quantification of CD4+

and CD8+ T lymphocytes showed a significant decrease in mice treated with Ru-NO plus prop-
olis. It is possible that this attenuated inflammatory response had been, in part, due to reduced
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parasite load, suggesting that the combined drugs are crucial to promote parasite clearance and
modulation of the local inflammatory response.

This immunosuppressive activity of NO has already been reported in in vitro and in vivo
models, including microfilarie [57], mycobacterial [58] and Toxoplasma gondii [59] infections.
NO donors are able to decrease the rolling and adhesion of leukocytes to endothelial cells, re-
ducing transmigration to inflammatory sites [60–62].

Proving the alleviation of inflammation, we also observed reduced expression of TNF-α lev-
els and transcription nuclear factor NF-κB, which induces several genes that are responsible
for the coding of various proinflammatory mediators [63, 64], in mice treated with Ru-NO
plus propolis. Propolis and Ru-NO, when administered alone, caused an increase in NF-κb
transcription, and TNF-α level were also higher in the group treated with propolis.

Pavanelli et al. [65] also observed that treatment with the NO donor cis-[Ru(bpy)2(NO)
SO3](PF6) decreased TNF-α production and consequently inflammation in an paracoccidioi-
domycosis infection model. The reduced production of TNF-α, IL-10 and INF-γ was also asso-
ciated with reduced myocarditis in mice treated with the ruthenium NO donor trans-[RuCl
([15]aneN4)NO]

2+ in a Chaga’s infection model [66].
When evaluating the presence of protein tyrosine nitration, another marker of inflamma-

tion associated with the upregulation of iNOS [67], we observed that the expression of iNOS
and nitrotyrosine levels were significantly diminished only in the groups treated with Ru-NO
plus propolis and Glucantime, similar to that observed in the group without infection. Indeed,
NO can control its own production by inhibiting iNOS activity, an important feedback control
mechanism [68]. Interestingly, this result allows us to infer that while iNOS expression was low
in the combined treatment group, NO delivered to the injury site did not aggravate the process
of protein nitration, suggesting that this molecule may be consumed in another process. Taken
together, the data suggest that the drug combination is crucial for parasite elimination and to
modulate the local inflammatory response.

Another important property of both NO and propolis is the ability to promote tissue repair.
In fact, in recent years, NO has emerged as a critical molecule in wound healing, where it in-
creases collagen content in experimental wounds [69–71]. It should be noted that propolis ex-
tract is already used for wound healing, burns, external ulcers, shortening healing time,
increasing wound contraction and accelerating tissue repair [72].

Soneja et al. [18] support the strategy of accelerating the wound healing process with antiox-
idants, leading to decreased oxidative stress and delivery of NO to the lesion site. The Ru-NO
plus propolis treatment would be ideal for this approach, since various compounds in propolis
have been described as powerful antioxidants, capable of scavenging free radicals, making the
donated NO available for the healing process [73, 74].

Our results showed that only Ru-NO plus propolis treatment was able to induce the healing
process, because it increased fibroblasts, a cell type that is a central player in tissue repair [17,
18], TGF-β and STAT3 levels and collagen deposition. IL-10 production was not altered by
combined treatment, indicating that repair of tissue damage was not dependent on
this cytokine.

TGF-β is a cytokine involved in orchestrating wound repair and participates in all phases of
the healing process [75]. This cytokine helps in the chemotaxis of fibroblasts to the site of inju-
ry and stimulates collagen deposition [76, 77]. Nakamura et al. [78] and Frank et al. [17]
showed that NO was able to convert latent TGF-β1 to the active form in fibroblasts, regulating
collagen synthesis, where it is predominantly expressed during the repair process [79]. Tran-
scription factor STAT3 when activated by various cytokines and growth factors plays a key role
in wound healing [80]. Studies have shown that tissue-specific STAT3 gene deletion leads to
impaired tissue remodeling [80–82].
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Propolis, NO and TGF-β1 play central roles in collagen synthesis and can cross-regulate
each other [33, 83, 84]. The synergistic signals of Ru-NO and propolis at the lesion site, provide
a rapid deposition of remodeling tissue at the lesion site. Our data are in line with the findings
of Baldwin et al. [85] in an ear model of Leishmania infection, which showed that the collagen
deposition was more prominent in areas where re-epithelialization had occurred, when para-
sites had been cleared and inflammation controlled.

The data clearly showed that combined therapy resulted in alleviation of the inflammatory
response, protected against tissue damage, and significantly accelerated the healing process
when compared to the other groups.

It is important to emphasize that our therapy showed very similar effects as Glucantime
conventional treatment, in relation to the control of lesion size and reduced amount of para-
sites. However, when considering the inflammatory response, which can be so aggravating in
this parasitosis, and the induction of the healing process, there is no doubt that the effect of
Ru-NO plus propolis was superior to that of Glucantime, also highlighting the lack of hepato-
toxic damage in this treatment period.

In summary, the data obtained strongly suggest that the combination of cis-[Ru(NO)(bpy)
2imN] (PF6)3 and Brazilian propolis is effective against L. amazonensis in vivo, allowing us to
infer that this combined therapy can be an alternative for the treatment of leishmaniasis.

Supporting Information
S1 Fig. Effect of treatment with Ru-NO + propolis or saline on ALT and AST levels. BALB/
c mice were treated with Ru-NO (0.385 μmol.kg-1 day-1, i.p.) and propolis (5 mg.kg-1, p.o.) for
30 consecutive days. ALT and AST were measured 24 h after the last treatment day (n = 5). Re-
sults are expressed as mean ± SEM � indicates P< 0.05 versus control, unpaired t-test.
(TIF)
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