
ORIGINAL RESEARCH
published: 29 April 2022

doi: 10.3389/fnbot.2022.846219

Frontiers in Neurorobotics | www.frontiersin.org 1 April 2022 | Volume 16 | Article 846219

Edited by:

Adam Safron,

Johns Hopkins Medicine,

United States

Reviewed by:

Adeel Razi,

Monash University, Australia

Ikuko Smith,

University of California, Santa Barbara,

United States

*Correspondence:

Subutai Ahmad

sahmad@numenta.com

†These authors have contributed

equally to this work

Received: 30 December 2021

Accepted: 31 March 2022

Published: 29 April 2022

Citation:

Iyer A, Grewal K, Velu A, Souza LO,

Forest J and Ahmad S (2022)

Avoiding Catastrophe: Active

Dendrites Enable Multi-Task Learning

in Dynamic Environments.

Front. Neurorobot. 16:846219.

doi: 10.3389/fnbot.2022.846219

Avoiding Catastrophe: Active
Dendrites Enable Multi-Task
Learning in Dynamic Environments

Abhiram Iyer 1,2†, Karan Grewal 1†, Akash Velu 3†, Lucas Oliveira Souza 1, Jeremy Forest 4

and Subutai Ahmad 1*†

1Numenta, Redwood City, CA, United States, 2Department of Electrical and Computer Engineering, Carnegie Mellon

University, Pittsburgh, PA, United States, 3Department of Computer Science, Stanford University, Stanford, CA,

United States, 4Department of Psychology, Cornell University, Ithaca, NY, United States

A key challenge for AI is to build embodied systems that operate in dynamically

changing environments. Such systems must adapt to changing task contexts and

learn continuously. Although standard deep learning systems achieve state of the

art results on static benchmarks, they often struggle in dynamic scenarios. In these

settings, error signals from multiple contexts can interfere with one another, ultimately

leading to a phenomenon known as catastrophic forgetting. In this article we investigate

biologically inspired architectures as solutions to these problems. Specifically, we show

that the biophysical properties of dendrites and local inhibitory systems enable networks

to dynamically restrict and route information in a context-specific manner. Our key

contributions are as follows: first, we propose a novel artificial neural network architecture

that incorporates active dendrites and sparse representations into the standard deep

learning framework. Next, we study the performance of this architecture on two separate

benchmarks requiring task-based adaptation: Meta-World, a multi-task reinforcement

learning environment where a robotic agent must learn to solve a variety of manipulation

tasks simultaneously; and a continual learning benchmark in which themodel’s prediction

task changes throughout training. Analysis on both benchmarks demonstrates the

emergence of overlapping but distinct and sparse subnetworks, allowing the system

to fluidly learn multiple tasks with minimal forgetting. Our neural implementation marks

the first time a single architecture has achieved competitive results in both multi-task

and continual learning settings. Our research sheds light on how biological properties

of neurons can inform deep learning systems to address dynamic scenarios that are

typically impossible for traditional ANNs to solve.

Keywords: dendrites, continual learning, reinforcement learning, neuroscience, embodied cognition

1. INTRODUCTION

Creating embodied systems that thrive in dynamically changing environments is a fundamental
challenge for building intelligent systems. Humans handle such environments with ease, but today’s
deep learning systems struggle with them. Standard Artificial Neural Networks (ANNs) often
fail dramatically when learning multiple tasks, a phenomenon known as catastrophic forgetting
(McCloskey and Cohen, 1989; French, 1999) where the network forgets previously-learned

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.846219
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.846219&domain=pdf&date_stamp=2022-04-29
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sahmad@numenta.com
https://doi.org/10.3389/fnbot.2022.846219
https://www.frontiersin.org/articles/10.3389/fnbot.2022.846219/full

Iyer et al. Avoiding Catastrophe

information. ANNs are inherently designed for static
environments with batch training, and learning multiple
sequential tasks can lead to significant interference between
tasks. Embodied systems, where an agent actively behaves in a
changing environment, pose additional challenges. In dynamic
scenarios, the training dataset itself is not fixed. Sensory inputs
are dependent on an agent’s actions and as an embodied agent
learns, the actions taken for a given context change as well. Thus,
a network learning in these situations needs to avoid forgetting
relevant information, update only the information that requires
fine tuning, and forget the information that is no longer
relevant. The network must distinguish between these types
of information categories instead of treating all information
as equivalent. The optimal algorithms and architectures for
learning in dynamic environments are unknown and remain a
fundamental research challenge for AI.

We investigate these questions by looking to neuroscience and
biological systems for clues to inform ANNs. In particular we
hypothesize that biological properties of pyramidal neurons in the
neocortex can enable targeted context-specific representations
that avoid interference. Most ANNs today rely on an idealized
(but inaccurate) model of neurons known as the point neuron
model, consisting of a linear weighted sum of inputs followed by
a non-linearity (Figure 1, left). Proposed over a hundred years
ago (Lapique, 1907), the point neuron model continues to form
the basis for current deep learning systems (McClelland et al.,
1986; LeCun et al., 2015). In contrast, pyramidal neurons, which
comprise most cells in the neocortex, are significantly more
sophisticated and demonstrate a wide range of complex non-
linear dendrite-specific integrative properties (Spruston, 2008;
Figure 1, right). Experimental evidence suggests that dendrites
are important for learning task-specific patterns (Yang et al.,
2014). In this article we incorporate into an ANN two properties
of biological neural networks: active dendrites, and sparsity via
local inhibition.

We explore the impact of these properties in two non-
traditional machine learning scenarios: multi-task reinforcement
learning (multi-task RL) and continual learning. In multi-task RL,
a robotic agent learns to perform a diverse set of independent
tasks (Yu et al., 2019). Even though tasks are interleaved through
training, standard ANNs suffer from significant task interference.
In continual learning, a network is trained sequentially on a set
of tasks and evaluated on all tasks after training (McCloskey and
Cohen, 1989; van de Ven and Tolias, 2019). Here, standard ANNs
do not perform well due to catastrophic forgetting. Specifically,
because ANNs with point neurons overwrite most of their
connections during each iteration of learning, tasks learned at
the beginning of training are forgotten and receive low accuracy
scores during the evaluation phase (French, 1999; Parisi et al.,
2019).

The rest of the article is arranged as follows. After discussing
background material, we propose a new architecture that
incorporates dendrites and sparse representations into deep
learning. We then test our architecture on one representative
benchmark from each of the two scenarios, multi-task RL and
continual learning. We show experimental results on a standard
multi-task RL benchmark, Meta-World. We also show results

FIGURE 1 | (Left) The point neuron prevalent in most ANNs today computes

a simple linear weighted sum of its inputs followed by a non-linearity. (Right)

Morphology of a representative pyramidal neuron. Pyramidal cells in the brain

exhibit a vastly more complex structure and functionality. Inset shows a

prototypical basal dendritic segment that acts as an independent

computational unit.

on a standard continual learning benchmark, permutedMNIST.
The results in both cases show that an identical architecture with
active dendrites performs well in both benchmarks. Finally, we
analyze the results and show that active dendrites and sparse
representations help with catastrophic forgetting and gradient
interference by learning to create task-specific subnetworks
where representations are sparse and mostly orthogonal. Overall,
our results suggest that detailed biological properties of neurons
can be used to address dynamic scenarios that are difficult for
traditional ANNs to solve.

2. BACKGROUND

2.1. Multi-Task Learning
The goal of multi-task learning (Caruana, 1997) is to learn a
single function that can solve a variety of different learning tasks.
The literature in multi-task learning spans many subfields of
machine learning, including computer vision (Misra et al., 2016;
Kendall et al., 2019; Liu et al., 2019; Purushwalkam et al., 2019),
and natural language processing (Dong et al., 2015; McCann
et al., 2018). The fields of multi-task RL and continual learning
can be seen as subsets of multi-task learning. In the former, tasks
are learned in parallel. Conversely, in continual learning, tasks
are learned in an ordered sequence.

Compared to single-task machine learning, learning multiple
distinct tasks introduces new challenges. When using gradient-
based learning algorithms such as backpropagation1, one
challenge is that error gradients and accumulated knowledge
from different tasks can interfere with one another. The weight
changes necessary to reduce the error for one task may be very
different from the changes required for another task. This is a
common problem sometimes defined as catastrophic forgetting
(French, 1999) or catastrophic interference (McCloskey and
Cohen, 1989) in continual learning.

Yu et al. (2020) propose a method to modify conflicting
gradients through gradient projection. Several other works
demonstrate that using or changing the gradients via various
normalization, gradient-similarity, and regularization techniques

1In this article, the term backpropagation refers to the learning method used

in deep learning (Rumelhart et al., 1986) and not the phenomenon of back

propagating action potentials in dendrites.

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

can improve learning in multi-task settings (Zhang and Yeung,
2014; Chen et al., 2018; Sener and Koltun, 2018; Du et al.,
2020). Novel network architectures are an alternate strategy for
avoiding interference in multi-task computer vision settings.
Rosenbaum et al. (2018) implement routing networks, learned
functions that use task information to determine how to compose
a set of function blocks. Liu et al. (2019), Maninis et al.
(2019) demonstrate that attention-based architectures could also
prevent task interference in multi-task learning scenarios.

2.1.1. Multi-Task Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning in
which an agent acts in an environment and receives rewards for
each action taken (Sutton and Barto, 2018). The goal is to train
an agent, whose actions are determined by a policy function, to
maximize the total reward received. One fundamental challenge
of RL is that the training set itself is highly dynamic. As the agent
learns and updates its policy function, it chooses different actions,
which in turn changes the sequence of inputs that are received.

Deep RL uses deep learning networks to represent the policy
function (see Arulkumaran et al., 2017 for a review). Recent years
have witnessed the promise of deep RL in a variety of different
settings. Mnih et al. (2013) demonstrate that an agent trained
with their Deep Q-Network can surpass the performance of
expert humans in Atari video games. A few years later, Silver et al.
(2018) achieve superhuman performance in more challenging
games such as Chess and Go. Other algorithms achieve strong
performance in continuous environments with continuous
action inputs (Lillicrap et al., 2016). Other methods attempt to
induce beneficial learning behaviors such as more stable training
(Schulman et al., 2017) and improved exploration (Haarnoja
et al., 2018b).

Multi-task reinforcement learning combines Deep RL with
multi-task learning (Wilson et al., 2007; Yang et al., 2020; Yu
et al., 2020). Multi-task RL leads to particularly challenging
and interesting scenarios where the system must address both
dynamic training regimes and interference from multiple tasks.
The idea of separating a neural network into different modules
which are composed in a task-dependent manner is proposed in
multi-task RL to prevent gradient interference (Andreas et al.,
2017; Devin et al., 2017; Sahni et al., 2017; Haarnoja et al., 2018a;
Goyal et al., 2020; Yang et al., 2020). Policy distillation, in which
information from a “teacher” network is condensed to a smaller
“student network,” is another popular approach to combine
information from different tasks in an effective manner (Rusu
et al., 2016).

2.1.2. Continual Learning
While multi-task RL requires the simultaneous acquisition
of multiple skills, continual learning requires the sequential
acquisition of multiple skills. More generally, continual learning
is the ability to acquire new knowledge over time while retaining
relevant information from the past. A typical scenario involves
training a network on a set of distinct tasks presented in a
strict sequence of training phases. Testing the network involves
measuring accuracy on all past tasks. van de Ven and Tolias
(2019) and Parisi et al. (2019) extensively review the field.

Two common approaches to catastrophic forgetting in continual
learning involve regularization and subnetworks methods.

Regularization-based methods in continual learning regulate
plasticity levels throughout the network during the course of
training. In recent years, two of the most prominent examples
of regularization are Elastic Weight Consolidation (EWC)
(Kirkpatrick et al., 2017) and Synaptic Intelligence (SI) (Zenke
et al., 2017). Both methods (EWC and SI) estimate the relevance
of each weight of the network in solving each task. Inspired by the
complex synapse structures seen in biology, SI uses an additional
parameter per weight with internal dynamics that depend on the
relevance of each weight to each task.

Subnetwork-based methods reduce task interference by
identifying subpopulations of neurons that each learn one of
the many tasks in the sequence. Gated Linear Networks (Veness
et al., 2021) and Dendritic Gated Networks (Sezener et al., 2021)
are examples of this type of approach and work by applying
a gating mechanism that selects subnetworks based on the
input. Context-dependent Gating (XdG) (Masse et al., 2018)
selects predetermined subnetworks of neurons, but exact task
information must be provided both at training and test times.
Similarly, in Wortsman et al. (2020) each task is designated a
sparse subset of neurons in the network.

2.2. Properties of Biological Neurons
Biological neural networks have evolved in ways that make
them much more resilient to catastrophic forgetting and are
able to perform significantly better in dynamical scenarios than
any ANN to date. ANNs and their component point neurons
emerged as simplified abstractions of the complex processes
occurring in biological networks and neurons respectively. In this
section, we explore the complexities of biological neural networks
and review a few properties that are relevant to our work.

2.2.1. Neurons and Active Dendrites
The pyramidal neuron is the most prevalent neuron type
found in the neocortex and hippocampal areas (Spruston,
2008; Ramaswamy and Markram, 2015). In particular they
represent the most common excitatory neuron type found in
areas associated with advanced cognitive functions (Spruston,
2008). A typical pyramidal neuron has an extensive dendritic
tree containing thousands of synapses, each receiving input
from another neuron (y Cajal, 1894; Bentivoglio and Swanson,
2001; Kandel, 2012). The point neuron model (Lapique, 1907)
postulates that all of these synapses have a linear impact on the
cell. This simple assumption formed the basis for Rosenblatt’s
original Perceptron (Rosenblatt, 1958) and continues to form the
basis for current deep learning systems and ANNs (McClelland
et al., 1986; LeCun et al., 2015).

Today it is well-known that the point neuron assumption is
an oversimplified model of biological computations. Proximal
synapses (close to the cell body) have a linear impact on the
neuron, but the vast majority of synapses are located on distal
dendritic segments (far from the cell body) and individually have
minimal impact on the cell. These distal segments process groups
of synapses locally in a non-linear fashion, and are known as
active dendrites (Magee, 2000; Antic et al., 2010;Major et al., 2013;

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

Stuart and Spruston, 2015; Stuart et al., 2016). Empirical evidence
(London and Häusser, 2005; Branco and Häusser, 2010) suggests
that each distal dendritic segment acts as a separate active
subunit performing its own local computation. Modeling studies
show that neurons with active dendrites are more powerful and
complex than the point neuronmodel can accommodate (Poirazi
et al., 2003; Jadi et al., 2014; Poirazi and Papoutsi, 2020; Beniaguev
et al., 2021).

When input to an active dendritic segment reaches a
threshold, the segment initiates a dendritic spike (Antic et al.,
2010). In basal dendritic segments, dendritic spikes travel to
the cell body and can depolarize the neuron for an extended
period of time, sometimes as long as half a second (Antic et al.,
2010; Major et al., 2013; Gao et al., 2021). During this time, the
cell is significantly closer to its firing threshold and any new
input is more likely to make the cell fire. This suggests that
basal active dendrites have a modulatory, long-lasting impact on
the cell’s response, with a very different role than proximal, or
feedforward, inputs (Hawkins and Ahmad, 2016; Antic et al.,
2018). Active dendritic segments typically receive contextual
input that is a different input than received in proximal segments.
These context signals can arrive from other neurons in the
same layer, neurons in other layers, or in the form of top-
down feedback. Recent experimental evidence has shown that the
input on active segments can drive context-dependent activity
(Takahashi et al., 2020). In our model, we incorporate these
ideas and explore the possibility of using context to create task-
specific subnetworks.

2.2.2. Sparse Representations
Neural circuits in the neocortex are highly sparse. Studies show
that relatively few neurons spike in response to a sensory stimulus
across multiple sensory modalities (Attwell and Laughlin, 2001;
Barth and Poulet, 2012; Liang et al., 2019). Sparsity is also present
in neural connectivity; cortical pyramidal neurons show sparse
connectivity to each other and receive relatively few excitatory
inputs from most surrounding neurons (Holmgren et al., 2003).
These two phenomena are significantly different from standard
ANNs, where both activations and connectivity are dense.

When modeling sparsity in ANNs, sparse neural
representations are translated into vectors where most of
the entries are off (i.e., equal to zero; Majani et al., 1989). Just
like in dense representations, individual entries in a sparse
representation can correspond to the presence of certain
features (e.g., the unique position of an edge in an input
image). One advantage of sparsity in representations is that
vectors for two separate entities have low overlap, which means
the set of features/entries that are non-zero in both vectors
is small. Previous studies show that sparse representations
are more resistant to noise than dense representations, and
slight perturbations in the input are less likely to hinder
a trained pattern recognizer (Ahmad and Hawkins, 2016;
Ahmad and Scheinkman, 2019; Paiton et al., 2020). The idea
of low representation overlap among unrelated inputs may be
particularly useful when an ANN is learning multiple, unrelated
tasks. If the representations of two different tasks have near-zero

overlap, it is possible to significantly reduce task interference.
We explore this question in our simulations below.

3. ACTIVE DENDRITES NETWORK MODEL

Our primary goal is to augment standard ANNs with the
biological properties described above. The extensions should be
general and applicable to a range of complex scenarios such as
multi-task RL and continual learning. The key aspects of our
model are summarized as follows, with details noted in the rest
of this section:

1. Pyramidal neurons integrate a range of diverse inputs on
multiple independent dendritic segments. To model this, we
implement neurons that separate out contextual inputs from
feedforward inputs. Each neuron processes the feedforward
input using a linear weighted sum. A set of independent
dendritic segments process the contextual input using a
separate set of weights.

2. Contextual inputs on active dendrites can modulate a
neuron’s response, making it more likely to fire. To
model this, we implement a function that can up-modulate
or down-modulate the feedforward activation based on
dendritic activation.

3. Neural activity and connectivity are highly sparse. To model
this, we incorporate a k-Winner-Take-All function (kWTA)
that mimics biological inhibitory networks (Cui et al., 2017)
and guarantees sparse activations.

The above properties are implemented such that the entire
network is differentiable and trainable end-to-end using
backpropagation. This makes the architecture suitable for testing
on any standard deep learning scenario.

3.1. Active Dendrites Neuron
Building on the original HTM neuron model (Hawkins and
Ahmad, 2016), our Active Dendrites Neuron [Figure 2 (right
inset)] receives two sources of input, analogous to the proximal
and distal inputs in pyramidal neurons. Feedforward activation
is computed by a linear weighted sum of the feedforward
input vector, identical to the mechanism in a point neuron.
Meanwhile, multiple dendritic segments process a context
vector, and the subsequent dendritic output modulates the
feedforward activation. This computation produces a neuron
where the magnitude of the response to a given stimulus is
highly context-dependent.

Given input vector x, weights w, and bias b, our neuron
computes the following feedforward activation:

t̂ = w⊤x+ b (1)

Similarly, each dendritic segment j computes u⊤j c, given weight uj
and context vector c. (The method we use to compute the context
vector, c, is described in later sections.) We select the segment
with the strongest response to the context when computing
dendritic activation d, which is used to modulate the neuron:

d = max
j

u⊤j c (2)

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 2 | [Right (inset)] Illustration of a single Active Dendrites Neuron. Feedforward weights (green) receive regular feedforward input while dendritic segments

(blue) receive a context vector. After all dendritic segments compute an activation value, the highest value modifies the linear weighted sum computed by feedforward

weights. (Left) An overview of the base network structure used in our experiments. There are two hidden layers. Each layer outputs sparse activations, as determined

by a kWTA activation function. In addition, the weights between layers can be sparse. A context vector is computed for each input. The dendritic segments in each

layer receive this context vector as input.

In order to modulate feedforward activation t̂ by the dendritic
activation d, we use modulation function f (t̂, d) where f (m, n) =
m × σ (n). Here, σ (·) is the sigmoid function which takes a
real number and maps it into the range [0, 1]. Therefore, by
combining (1) and (2) with f , we can write the output of a single
Active Dendrites Neuron as:

ŷ = f
(

t̂, d
)

(3)

= f

(

w⊤x+ b, max
j

u⊤j c

)

(4)

=
(

w⊤x+ b
)

× σ

(

max
j

u⊤j c

)

(5)

Here, a strong positive dendrite response to the context vector
will retain the feedforward activation. Conversely, weak or
negative responses to the context vector will significantly reduce
the activation. We note that there are many variations of (2) that
are possible. We found that the network works best when we
select the dendrite activation with the largest absolute value and
retain the sign in d (Section 6.3).

3.2. Sparse Representations
We apply a kWTA activation function (Ahmad and Scheinkman,
2019) as our choice of non-linear activation in each hidden layer
of the network:

k(ŷi) =

{

ŷi if ŷi is one of the top k activations over all i

0 otherwise
(6)

where i indexes neurons in the same layer. The effect of kWTA is
to ensure sparsity by selecting the top k activations and setting
all others to zero. Feedforward layers that are modulated by
dendritic segments and apply kWTA thus produce sparse activity
patterns that are highly context-dependent. Additionally, our
feedforward layers also use sparse weights as proposed in Ahmad
and Scheinkman (2019).

3.3. Active Dendrites Network Architecture
Figure 2 (left) shows our Active Dendrites Network, trained
end-to-end with backpropagation, where all neurons in each
hidden layer are Active Dendrites Neurons. We make two
notes: first, only the neurons that were selected by the kWTA
function will have non-zero activations (and thus non-zero

Frontiers in Neurorobotics | www.frontiersin.org 5 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 3 | The Meta-World v2 Multi-Task 10 (MT10) environment, where a single robotic arm must learn to solve a variety of tasks ranging in difficulty.

gradients). Therefore, during the backward pass, only the weights
corresponding to those winning neurons will be updated. Second,
for each of those winner neurons, only the dendritic segment
j that was chosen by the max operator is updated; all other
segments uj′ for j′ 6= j remain untouched. Thus a very
small sparse subset of the full network is actually updated for
each input.

We hypothesize that a functional specialization will emerge
where different dendritic segments will each learn to identify
specific context vectors. Since most dendritic segments that don’t
respond to a specific context will not be updated, any context-
dependent modulation of the neuron should be preserved from
task to task. Ideally, the whole process will preserve any context-
dependent modulation of a neuron between tasks, reduce
gradient interference, and prevent catastrophic forgetting.

4. RESULTS

4.1. Results With Multi-Task Reinforcement
Learning
The multi-task RL problem we investigate uses the Meta-World
v2 environment and its associated v2 tasks (Yu et al., 2019). Meta-
World contains multiple different object manipulation tasks
that a single robotic arm must learn to solve simultaneously.
We use the MT10 environment, which contains 10 tasks
ranging in complexity as depicted in Figure 3. Although the
concrete outcome of each task is unique, all tasks share a
common structure that enables the agent to leverage some shared
information during training. For instance, learning how to grasp
an object is a shared concept among many of the tasks.

The algorithm we use to train our robotic agent is multi-
task Soft Actor-Critic (MTSAC) as introduced by Yu et al.
(2019), an adaptation of the popular Soft Actor-Critic (SAC)
framework proposed earlier by Haarnoja et al. (2018b). MTSAC
is an actor-critic deep RL algorithm that maximizes an agent’s
cumulative reward to solve a task while also maximizing entropy
to encourage environment exploration. To maintain consistency
with the codebase of Yu et al. (2019) which fixes goal states
(e.g., position of an object in the environment) through training,
we also keep goal locations constant across all our experiments.

A deeper explanation about our multi-task RL setup and the
algorithm we use to train the agent can be found in Section 6.1.
As in many RL problems, there is no static training and testing
dataset. Rather, past experiences from the agent are used to
iteratively train the agent. We freeze the network at regular
intervals to test accuracy on all tasks.

4.1.1. Network Structure for Multi-Task RL
Figure 4 shows our network architecture for multi-task RL. We
use a network with 2 hidden layers—each with 2,800 neurons
and followed by a kWTA activation function—and a final output
layer. The first hidden layer has standard neurons whereas the
second hidden layer contains Active Dendrites Neurons which
are modulated by the context vector. The primary feedforward
input to the network is a state vector consisting of the agent’s
position in the world as well as the position and orientation of the
target object. The output of the network is an action vector that
describes the joint torques and gripper forces of the robotic arm.
The structure of the state and output vectors is identical across all
tasks. All feedforward weights are sparse.

For our multi-task RL experiments, the context vector c

encodes the task ID as a one-hot encoded vector. We considered
other options to generate c, such as first pre-processing the one-
hot encoding by a linear layer, but found that a one-hot encoding
was adequate. Each Active Dendrites Neuron in our network has
exactly 10 dendritic segments (same as the number of tasks to
learn) so that each segment can potentially learn to recognize a
unique context vector.

We compare our Active Dendrites Network to baselines
reconstructed2 from Yu et al. (2019) which are multi-layer
perceptrons (MLPs) with dense weights and ReLU activations.
These MLP baselines are used to model both the policy and the
Q function. Additionally, these MLP baselines receive context
information c in the form of feedforward input concatenated to
the state vector. Thus, both the Active Dendrites Network and the
baseline network receive identical information at each time step;

2We are unable to directly present the published baseline results because their

plots contain inconsistencies between success rates per-task and across all tasks.

To present a fair comparison, we re-run the baseline networks using their codebase

and hyperparameters.

Frontiers in Neurorobotics | www.frontiersin.org 6 April 2022 | Volume 16 | Article 846219

Iyer et al. Avoiding Catastrophe

FIGURE 4 | An overview of the network structure used in our multi-task RL experiments. A kWTA activation is applied to both hidden layers. The context vector is the

task ID. The dendritic segments in the second hidden layer receive this context vector as input.

FIGURE 5 | The success rate of our network when learning 10 tasks compared to the MLP baseline with context. (Left) Experiment 1—the average of 10 Active

Dendrites Network runs and 10 MLP baseline network runs that all share the same training hyperparameters. (Right) Experiment 2—the average of the five best

Active Dendrites Network experiments and the five best MLP baseline experiments. The shaded region in each plot represents the standard deviation of the success

rate from the average.

the primary difference between the two architectures is how the
context vector is handled.

Table 2 in Section 6.1.4 shows the networks we ran, the
number of non-zero parameters in each network, and the
hyperparameters used to train each network. Although we
control the hidden sizes to yield approximately the same
number of total non-zero parameters across our experiments,
we note that the MLP baseline network contains nearly 500,000
more non-zero parameters than our Active Dendrites Network.
We chose a network with two hidden layers to draw fair
comparisons with the MLP baselines presented in Yu et al.
(2019). Supplementary Materials (Section 1) includes the results
of additional experiments detailing the impact of some of our
architectural choices.

4.1.2. Dendrites Improve Multi-Task RL Accuracy
We show results from two different experiments that compare
our Active Dendrites Network to the MLP baseline network.
Experiment 1: In this experiment, we assess the overall

performance of each architecture. We ran both an Active

Dendrites Network and a MLP baseline network with identical
training hyperparameters. Figure 5 (left) shows the mean overall
success rate for each architecture during the course of training
over 10 independent trials. To identify which architecture
performs the best for each task, we compute the mean success
rate per task for the last 500,000 environment steps of training
and list these values in Table 1. Additionally, we show the
per-task training statistics during this same segment of training,
as seen in Figure 6.

We see in Figure 5 (left) that although the Active Dendrites
Network has lower success rates early in training, it overtakes the
baseline architecture and is about 10% better by the end. Table 1
shows that the average end success rate for the Active Dendrites
Network (across the last 500,000 steps of training) is 87.5%. In
comparison, the average success rate for the MLP baseline is
76.6%. We also note that the push, peg-insert-side, and pick-place
tasks were the hardest to solve because they are the most unlike
the other tasks. Specifically, these three tasks require that a robot
grasp and move a small object to a specified location. As evident
in Figure 6 for these three tasks, the median success rate of an

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

TABLE 1 | The mean per-task success rate produced by each network in

Experiment 1.

Tasks Model

Active Dendrites

Network (%)

MLP baseline (%)

Drawer-close 100.0 100.0

Window-close 99.7 95.3

Button-press-topdown 95.7 97.3

Reach 99.7 86.3

Window-open 99.3 93.7

Drawer-open 99.7 86.0

Door-open 94.7 84.3

Push 67.3 59.0

Peg-insert-side 71.7 47.0

Pick-place 47.7 17.3

Overall 87.5 76.6

The success rates are averaged over the last 500,000 steps of training. The best success

rate between the Active Dendrites Network and MLP baseline is highlighted in bold.

Active Dendrites Network is far greater than that of the MLP
baseline network. We hypothesize that these tasks are hard to
learn because of significant gradient interference with the other
tasks, and that the context-specific sparsity imposed by the Active
Dendrites Network helps remove this interference.
Experiment 2: The high variance in Figure 5 (left) is inherent in

many RL scenarios (Irpan, 2018; Ibarz et al., 2021). This is in large
part due to the highly stochastic and dynamic training process.
For instance, small variations in the trained policy can result
in large variations in the agent’s behavior which significantly
impacts the data collected during training. Additionally, a policy
can generate different behaviors during training when sampling
from its predicted action distribution.

To control for some of this variation in training, for each
network initialization we select the best result across different
training runs. For each of five different Active Dendrites Network
initializations, we ran five training runs and picked the run with
the highest end success rate across the last 500,000 environment
steps of training. We then compute the mean overall success rate
across these five best runs. We follow the same procedure for
finding the five best MLP baseline networks and compare the
results in Figure 5 (right).

We find that this process significantly reduces the variance
and that the best Active Dendrites Networks still outperform the
bestMLP baseline networks. Across the five best Active Dendrites
Network runs, the average overall end success rate is 95.6%. In
comparison, across the five best MLP baseline runs, the average
overall end success rate is 88.2%.

4.2. Results With Continual Learning
A typical continual learning problem consists of training a neural
network on a discrete number of tasks in sequence. Once a
network is trained on a particular task, it does not encounter that
task during training again. The goal is to learn all the tasks in
sequence without forgetting previously-learned tasks.

We use the permutedMNIST dataset (Goodfellow et al., 2014),
a common benchmark in continual learning where each task
requires classifying images of handwritten digits (0–9) after a
unique pixel-wise permutation has been applied. Since the data
distribution of each task changes and because neural networks
are generally not permutation-invariant, forgetting occurs.

We use the original MNIST training dataset of 60, 000 images
to construct the dataset for a single task. Since we train on
T consecutive tasks, the network is trained on a total of T ×
60, 000 images. Once training is complete, the network accuracy
is calculated using a test set consisting of all T permutations
applied to the MNIST test dataset of 10, 000 images.

We train our model to learn up to 100 tasks in sequence.
The network is tested at the end of training by computing
accuracy on the test set for all tasks. When attempting to learn
T consecutive tasks, the hidden neurons are equipped with T

dendritic segments each to give it sufficient capacity to recognize
a unique context vector for each task. We report accuracy
numbers by averaging over 8 independent runs each with a
randomly-picked seed. See Section 6.2 for additional details.

4.2.1. Computing the Context Vector
As with multi-task RL, we need to compute an appropriate
context vector. For continual learning, we use a simple prototype
method (Rosch, 1975; Snell et al., 2017) to select the context
vector where a single vector represents each task [Figure 7
(left)]. We implement two different variations of the prototype
method depending on the knowledge available to the system
during training.

4.2.1.1. Training Method 1 (Task Information Provided)
In the first method, we assume that the system receives task
information during training, when all training samples for a
particular task are assigned a single prototype context vector. We
compute the prototype vector for task τ by taking the element-
wise mean over all the training samples across all features:

pτ =
1

|Vτ |

∑

x∈Vτ

x

where Vτ denotes the set of all data samples x that the model
observes to train on task τ . The dimensionality of the context
vector is thus identical to the dimensionality of the input vectors.
This context vector is specific to each task and agnostic to the
target label.

4.2.1.2. Training Method 2 (Task Information Not Provided)
In the second method, we relax the constraint that the identity
of the task is given during training and instead implement
prototypes that are automatically selected during training. To
achieve this, we use a statistical clustering approach that builds
context prototypes on the fly. When the system receives a new
batch of training samples from a task, we use an unpaired
multivariate t-test to compare the current samples to previously-
observed training samples. If the new batch of samples is similar
to earlier training samples, they are assigned to an existing
prototype. If not, the new batch of samples is assumed to

Frontiers in Neurorobotics | www.frontiersin.org 8 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 6 | Box plots of the accuracies for each MT10 task for our Active Dendrites Networks and MLP baseline networks in Experiment 1. We discard outliers for all

runs for clarity.

FIGURE 7 | (Left) An illustration of the prototype method for computing the context vectors. The blue circles are training samples in input space for task A, while the

orange circles are training samples for task B. The blue star is a vector that represents the prototype for task A, and the orange star represents the prototype for task

B. (Right) An overview of the network structure used in our continual learning experiments. There are two layers of hidden units, each with a kWTA activation function.

A context vector is computed from each image by locating the nearest prototype vector.

correspond to a new task, and a novel prototype is instantiated.
In this case, there isn’t necessarily a one-to-one mapping between
tasks and prototype context vectors. More details on this method
are described in Section 6.2.3.

4.2.1.3. Selecting Prototypes During Inference
For both methods above, we do not provide any task information
to the system during evaluation. Instead it must dynamically
select the correct context vector and provide that to the network.
We enable this dynamic approach by selecting the closest

prototype vector to each test example using Euclidean distance.
That is, for a test example x′, the chosen prototype is:

argmin
pτ

||x′ − pτ ||2

computed over all prototypes pτ stored in memory.

4.2.2. Network Structure for Continual Learning
Figure 7 (right) shows the network that we used for our continual
learning experiments. Each of the two hidden layers contain

Frontiers in Neurorobotics | www.frontiersin.org 9 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 8 | (Left) The accuracy of our Active Dendrites Networks when learning 2, 5, 10, 25, 50, and 100 permutedMNIST tasks in sequence. We show results

using both prototype methods while training: when the model is provided with a prototype, and when it must select the vector in an online manner. (Right) The

accuracy of the Active Dendrites Network and SI. The accuracy when combining SI + active dendrites is greater than either one on its own.

2,048 Active Dendrites Neurons followed by a kWTA activation
function. The output of the network is a standard layer with
10 neurons. We choose our network layer sizes to be similar to
previous studies that report results on this dataset (Kirkpatrick
et al., 2017; Zenke et al., 2017; Masse et al., 2018). (Section 6.2
details the hyperparameters used for each experiment).

4.2.3. Dendrites Mitigate Catastrophic Forgetting in

Continual Learning
As shown in Figure 8 (left), we achieve accuracies of 94.6

and 81.4% on 10 and 100 consecutive permutedMNIST tasks,
respectively, when context is provided during training, and
accuracies of 94.3 and 76.9%when context is dynamically chosen
during training. Since there are always 10 categories, chance
accuracy is 10% independent of the number of tasks. This
demonstrates that the network successfully retains the majority
of the knowledge from previous tasks. Note that a standard
feedforward network performs poorly on this benchmark
(Kirkpatrick et al., 2017; Zenke et al., 2017; van de Ven and Tolias,
2019; see also Section 4.3.3 for more direct comparisons).

We also compare the results with SI (Zenke et al., 2017;
see Section 2.1.2). SI is inspired by the complex structure of
biological synapses and known to do well on this benchmark.
SI operates solely at the level of synapses: it maintains an
additional parameter per weight that controls the speed of
weights adapting to specific tasks. In SI, the weight updates are
sprinkled throughout the network and not grouped according
to units or dendrites. On the other hand, the dendrites in
our network impact a small subset of the neurons, and only
the weights on these neurons and dendrites are modified. As
such, our two approaches seem to be complementary. Figure 8
(right) shows the benefits of combining these two techniques.
The accuracy of Active Dendrites Networks combined with SI
improves to 97.2 and 91.6% accuracy on 10 and 100 consecutive
tasks, respectively. Combining the two leads to higher accuracy
than either method on its own. This suggests that biological

mechanisms at the synapse, neuron, and network levels can
operate together to handle continual learning. Note that SI as
described in Zenke et al. (2017) requires knowledge of the task
during training; therefore we only combine it with our first
prototype method. It may be possible to remove this restriction,
which is a direction for future research.

4.2.4. Comparison With Context Dependent Gating
The idea of leveraging sparse representations and subnetworks
within an ANN to combat catastrophic forgetting is not
entirely novel. The implementation closest to ours is XdG
(Masse et al., 2018) that uses a hard-coded distinct subnetwork
for each task. When training on a task, the implementation
invokes the task-specific subset of the hidden layer of the
ANN; other neurons are forced to have an activation value
of zero. The XdG implementation requires a task ID that
determines exactly which neurons to turn on or off. Training
Active Dendrites Networks in a continual learning scenario
also yields subnetworks and sparse representations. However,
we emphasize two major distinctions between our model
and XdG:

1. Task information is inferred in our system (via prototyping)
whereas XdG provides the system with a task ID during
training and testing. As such, our system is solving a problem
that is known to be significantly more challenging (van de Ven
and Tolias, 2019).

2. Subnetworks automatically emerge via the use of dendritic
segments for each new task whereas XdG pre-allocates a
different subnetwork for each task, which also indicates our
system is solving a more challenging problem.

We compare Active Dendrites Networks to XdG in Figure 9. Just
as we augment Active Dendrites Networks with SI, so too does
XdG. Our results with a large number of tasks are significantly
better than XdG, and slightly worse than XdG combined with SI,
but without their limitations.

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 9 | (Left) Final accuracy of the Active Dendrites Network in comparison to XdG when learning 2, 5, 10, 25, 50, and 100 permutedMNIST tasks. The more

tasks learned by the system, the greater the accuracy of the Active Dendrites Network. (Right) Final accuracy of each method when augmented with SI, and SI itself.

XdG results are taken from Masse et al. (2018).

FIGURE 10 | The fraction of instances for which each of the first 64 hidden units in the hidden layer became active (after applying kWTA), when training an Active

Dendrites Network on MT10 tasks (Left) and 10 permutedMNIST continual learning tasks (Right). Both figures separate instances by task. For MT10, the figure tests

the trained RL policy on each task three times during evaluation. For permutedMNIST, the figure uses 5,000 randomly-chosen test examples across all tasks. Note

that each hidden layer contains more than 2,000 hidden units, but we show just 64 for ease of visualization.

Learning is more challenging in our system as dendritic
segments must learn the mapping between context vectors
and different subnetworks. In effect, sparse representations and
minimally overlapping subnetworks emerge organically in our
model. We note that perhaps this makes learning more effective
as dendritic segments can choose subnetworks that overlap more
for tasks that are more semantically related, thus requiring less
network capacity.

4.3. Analysis
4.3.1. Are Dendrites Invoking Subnetworks?
The hypotheses of our work are two-fold. First, Active Dendrites
Networks modulate an individual neuron’s activations for each
task. Second, kWTA activations use this modulation to activate

subnetworks that correspond to each task. To test these
hypotheses, we train and analyze an Active Dendrites Network
for 10 tasks inmulti-task RL and continual learning scenarios and
investigate the representations of a layer of neuronsmodulated by
dendritic segments.

Figure 10 shows the average activation frequency per task

(after applying kWTA) for the first 64 neurons in the second
hidden layer for both multi-task RL and continual learning.
Looking horizontally across the rows, each task appears to select
a different sparse subset of neurons. Looking vertically across the
columns, each neuron appears to activate frequently only for a
small fraction of tasks. According to this measure, it appears that
the network has indeed learned to invoke minimally overlapping
subnetworks for different tasks.

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 11 | The behavior of the dendritic segments of two separate neurons in a hidden layer of an Active Dendrites Network during three random evaluations of

each MT10 task and 5,000 random evaluations of each permutedMNIST task. These charts show the activation computed by each dendritic segment given the

context vector corresponding to each task, before (Top) and after (Bottom) training. Note that the dendritic segments for a particular neuron are completely separate

of the segments of another in both multi-task RL and continual learning scenarios (e.g., Neuron A’s first segment is unrelated to Neuron B’s first segment).

What is the effect of dendrites on a single neuron? In
Figure 11, we analyze a few Active Dendrites Neurons and their
responses to different context vectors before and after learning
10 multi-task RL and permutedMNIST tasks in sequence. At the
beginning of training, the responses are random with scattered
positive, negative, and near-zero responses. After training, most
responses are weak and only a few are either strongly positive
or negative. Notably, across the neurons, dendrites only have
strong responses to a few contexts as different neurons participate
in different subnetworks. We note that in the multi-task RL
scenario, we observe both strong positive and negative responses
while the continual learning scenario only shows strong positive
activity. We are unclear as to why this particular behavior
emerges in continual learning but not multi-task RL.

4.3.2. Impact of Sparsity Level and the Number of

Dendrites
We show that an Active Dendrites Network is competitive
with benchmarks in both multi-task RL and continual learning.
However, to what extent are active dendrites and sparse
representations both contributing factors toward alleviating
catastrophic forgetting?

We investigate this question in the context of continual
learning. We find that both active dendrites without sparse
representations and standard point neurons with sparse
representations are better than chance in a continual learning
scenario. However, the combination of both active dendrites and

sparse representations yield significantly better results than either
one on its own. As Figure 12 (left) shows, the accuracy of both
methods evaluated independently and evaluated together on 10
and 100 permutedMNIST tasks demonstrates the importance of
implementing both active dendrites and sparse representations.

To further test the impact of dendrites and sparsity, we run
two additional tests in the continual learning scenario. First, we
fix the level of sparsity in our hidden representations and vary the
number of dendritic segments per hidden neuron. Second, we fix
the number of dendritic segments per hidden neuron and vary
the sparsity in our hidden representations (i.e., vary k in kWTA).
As seen in Figure 13 (left), increasing the number of dendritic
segments leads to a small monotonic increase in accuracy.
Figure 13 (right) shows that reducing sparsity translates to
a sharp drop in accuracy, further highlighting the need for
sparse representations.

4.3.3. Are Networks With Dendrites Equivalent to

Larger Networks?
Over the last couple of decades, multiple studies have suggested
that dendritic computations performed by pyramidal neurons
can be approximated by ANNs that have one or more hidden
layers. For example, Poirazi et al. (2003) shows that a larger
two-layer neural network can well-approximate the post-synaptic
responses of a pyramidal neuron with active dendrites. Various
follow-up studies also make similar claims (Jadi et al., 2014;
Beniaguev et al., 2021), with Beniaguev et al. (2021) suggesting

Frontiers in Neurorobotics | www.frontiersin.org 12 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

FIGURE 12 | (Left) Continual learning test accuracy on permutedMNIST using active dendrites and dense representations (green), regular ANNs with sparse

representations (orange), and Active Dendrites Networks (blue) which use both active dendrites and sparse representations. (Right) Continual learning test accuracy

for our Active Dendrites Network compared to regular feedforward networks with more layers. Our Active Dendrites Network has three layers; the two hidden layers

contain neurons modulated by dendritic segments. In all experiments (left and right subfigures), we average results over 8 independent runs, each with a randomly

initialized seed, and omit standard error bars as they highlight a very small range.

FIGURE 13 | (Left) Final accuracy on test examples across all tasks when varying the number of dendritic segments per neuron and keeping activation sparsity

constant when learning 10 (top) and 50 (bottom) permutedMNIST tasks. (Right) Final accuracy on test examples across all tasks for a fixed number of dendritic

segments per neuron and varying activation density level on 10 (top) and 50 (bottom) permutedMNIST tasks.

that a pyramidal neuron is equivalent to a larger ANN with
seven hidden layers. In this section we show that in the dynamic
scenarios considered here, an Active Dendrites Network is not
equivalent to larger or deeper ANNs.

In the case of multi-task RL, a pyramidal neuron’s activity
cannot be approximated by a neural network with more
parameters. For instance, classical deep networks that are trained
on a variety of tasks are incapable of performing well due to
gradient interference, an issue that cannot be solved with simply
more hidden neurons. When comparing a three-layer Active
Dendrites Network and a three-layer MLP with 500,000 more
learnable, non-zero parameters, Figure 5 shows that networks
with dendrites and sparse representations far outperform the
MLP baseline. We also experiment with larger 3-layer MLPs
that have 1,700,000 more non-zero parameters than our Active

Dendrites Network (hyperparameters found in Table 2 of
Section 6.1.4). In this case, we find that the MLP produces a
success rate of 73.1% across 10 tasks (averaged over the last
500,000 environment steps of training), which underperforms
our Active Dendrites Network yielding an average success rate
of 87.5%.

In addition, in the continual learning setting, our network
with dendrites cannot be approximated by a neural network
with multiple layers. When considering continual learning,
classical deep networks are incapable of performing well
due to catastrophic forgetting, regardless of network depth.
This specific trend can be observed in Figure 12 where
our Active Dendrites Network outperforms standard MLPs
that have (a) the same number of layers but no dendrites
(for 10 and 100 permutedMNIST tasks), and (b) many

Frontiers in Neurorobotics | www.frontiersin.org 13 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

more layers and roughly the same number of learnable
parameters (for 10 permutedMNIST tasks). (Other ablation
studies, not shown in Figure 12, are described in the
Supplementary Materials section.)

These results for both multi-task RL and continual learning
suggest that standard ANNs that are wider or deeper are still
prone to gradient interference and catastrophic forgetting while
active dendrites can help retain knowledge from previous tasks.
In these dynamic settings, our experiments show that a standard
feedforward network with more hidden units or additional layers
is not as powerful as a network with active dendrites.

5. DISCUSSION

The exact mechanistic details of how a biological neuron converts
incoming signals into action potentials (i.e., spikes) remain
unclear. Ever since Rosenblatt (1958), models of biological
neurons favor a single linear weighted sum (the point neuron)
as a tractable abstraction. This idea continues to serve as the
prevalent paradigm in machine learning today for the individual
computational unit. One shortcoming is that standard ANNs
with point neurons can suffer from catastrophic forgetting. They
overwrite many of their connections for each learning iteration,
and thus quickly lose previously-acquired knowledge (French,
1999; Parisi et al., 2019).

In this article we show that augmenting point neurons
with biological properties such as active dendrites and
sparse representations significantly improves a network’s
ability to learn multiple tasks at once. In the multi-task
RL setting, a three-layer Active Dendrites Network can
achieve an average accuracy of about 88% when learning
10 Meta-World tasks together. In the continual learning
setting, an almost identical network can achieve greater than
90% accuracy when learning 100 permutedMNIST tasks
in sequence. These results, on two very different scenarios,
suggest that Active Dendrites Networks may represent a
general purpose architecture for avoiding interference and
forgetting in complex settings. In the rest of this Discussion
we elaborate on this idea and describe some relationships to
other research.

5.1. Dendrites Enable Dynamic Context
Integration and Routing
In this section, we attempt to elucidate how active dendrites
help in dynamic scenarios such as multi-task and continual
learning, and discuss our theory of their underlying role in
the neocortex. Following experimental evidence (Section 2.2.1),
our model suggests that dendritic segments in each neuron
identify specific contexts and then modulate neuronal activity
based on this identification. Combined with subsequent local
inhibition (kWTA function), the modulation can impact whether
the neuron activates.

We propose that the consequence of this behavior is to
invoke sparse context-specific subsets of the network. Two
different context vectors can lead to different winners and
different sparse activation patterns (illustrated in Figure 14). As

FIGURE 14 | A representation of subnetworks within an Active Dendrites

Network. By receiving different context vectors as input, dendritic segments

invoke different subnetworks for a fixed feedforward input. The subnetworks

are distributed, i.e., they may share some of the same neurons.

suggested by the figure, the same feedforward input can activate
completely different neurons based on the specific context. Note
that the subnetworks are distributed and that two different
subnetworks may share some neurons. In Section 4.3.1, we
showed that task-specific representations do indeed emerge in
our experiments (Figure 10).

Why do subnetworks help? In dynamic conditions, the
system must react and learn in constantly changing situations.
Subnetworks restrict the flow of information to be highly context-
dependent and relevant to each specific situation. In addition,
errors will only propagate through the active subnetwork. Only
the active neurons will update their feedforward weights and only
the winning segment within those active neurons will update
their dendritic weights. Thus, by utilizing context the brain can
isolate information flow, and direct learning itself in a highly
localized and task specific manner. The last two decades have
seen significant experimental support for highly localized task
specific learning in the dendrites of pyramidal neurons (Losonczy
et al., 2008; Yang et al., 2014; Kerlin et al., 2019; Limbacher and
Legenstein, 2020).

What is the role of context? In this article we have
used a context vector that represents the current task. Prior
experimental and modeling work shows the utility of various
other types of context. In recurrent networks, it is possible to
use the previous activity of the network as context for dendrites.
In this case a layer of neurons becomes a powerful sequence
memory system (Hawkins and Ahmad, 2016). For sensorimotor
inference, if the coordinates of an external reference frame is
used as context, neurons can perform object recognition with
actively moving sensors and by integrating information over
time (Hawkins et al., 2017). Schmidt-Hieber et al. (2017) and
Heald et al. (2021) also provide experimental evidence for the
role of dendrites in separating out information in continuous
sensorimotor streams. In the neocortex, if the inference results of
neighboring cortical areas are used as context, dendrites can be
used to disambiguate uncertain information and perform voting
(Hawkins et al., 2017).

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

In each of the above scenarios, although the nature of the
context greatly impacts emerging behavior, the fundamental
operations remain the same. Dendrites recognize patterns that
best match their synapses, and up-modulate their neurons such
that they are more likely to win. This in turn invokes context
specific subnetworks that route information flow and gate
learning in order to effectively learn and perform the task at hand.
Contextual routing mediated by dendrites may thus be a general-
purpose and powerful capability that underlies much of cognitive
function (Phillips, 2015; Phillips et al., 2015). Indeed, the ability
to generate context-dependent output based on a common set of
operations could be a crucial building block of cognitive maps
able to cover any domain (Whittington et al., 2022). Flesch et al.
(2022) provide experimental evidence for contextual gating in a
study of human continual learning and memory.

In our implementation we have focused primarily on
feed-forward information flow and basal dendrites, and have
ignored recurrent and feedback connections and apical dendrites
(Larkum et al., 1999; Larkum, 2022). Interestingly, lateral
connections and feedback connections seem to segregate
onto different dendritic integration zones (Guest et al., 2021;
Lafourcade et al., 2022). Recent experimental evidence suggests
that apical dendrites also process feedback context and have
a modulatory impact on the cell leading to task specific
functionality (Kerlin et al., 2019; Takahashi et al., 2020;
Schoenfeld et al., 2022). From a modeling perspective, there is
additional complexity related to generating top-down context
(Siegel et al., 2000) and simultaneously processing three separate
input streams (Phillips, 2015; Larkum, 2022), an interesting area
for future research.

In this article, we have focused on modeling the dendritic
properties of pyramidal neurons, but we note that dendritic
modulation and gating may occur with other neuron types.
For example, thalamocortical neurons may exhibit analogous
dendrite initiated gating properties (Errington and Connelly,
2011). As such, dendrite mediated contextual integration and
gating may be a more general phenomenon of biological neural
systems. Modeling other neuron types is an interesting area for
future work.

5.2. Comparison to Other Multi-Task RL
Systems
Many techniques in multi-task RL make manual changes to the
network structure or learning scheme in order to account for
the learning of new tasks. In multi-task scenarios, optimizers
struggle to learn different tasks that vary in gradient magnitude
and have conflicting gradient direction. In these cases, tasks with
larger magnitudes are usually preferred during optimization over
others. To rectify this issue, Yu et al. (2020) minimizes gradient
interference by orthogonally projecting the gradients of tasks
that conflict with each other. Additionally, in most scenarios, a
policy trained on a specific task with a specific agent cannot be
adapted to similar problem settings. Devin et al. (2017) proposes
a framework to learn separate policy modules corresponding to a
particular task or robotic agent. Ultimately, they show how these
modules can be mixed to perform new task–agent combinations

or serve as a starting point for good initializations when learning
complex behaviors. Many multi-task problems also highlight the
issue of parameter sharing between distinct tasks. To that end,
Yang et al. (2020) introduces a base policy network composed of
multiple modules and a separate routing network. The routing
network uses a task embedding and the current state of the
agent to reconfigure the base network’s modules with a learned
routing strategy.

In contrast, our Active Dendrites Network activates sparse
subnetworks by introducing control over individual neurons
in a network. By dynamically integrating a context vector
to modulate these neurons, the network automatically creates
distinct subnetworks to learn each task. Unlike prior approaches,
our network does not require modified learning rules, separate
modules, or dedicated routing networks to train new tasks.
Rather, a single architecture is capable of reducing gradient
interference, learning a diverse range of tasks, and can be applied
to scenarios beyond multi-task RL.

5.3. Comparison to Other Continual
Learning Systems
There are a few papers on continual learning that are very
related to the core ideas in this paper. Our networks create
representations composed of different sparse subnetworks of
neurons. Abbasi et al. (2022) use kWTA in conjunction with a
modified gradient update method to avoid task interference. XdG
(Masse et al., 2018) and Supermasks (Wortsman et al., 2020)
also explicitly utilize sparse subnetworks per task. XdG, discussed
extensively in Section 4.2.4, hard-codes a sparse subnetwork
for each task. This extra supervision step removes the need to
dynamically gate activations but requires knowledge of the task
identity during inference. In addition, as seen in Figure 9, XdG
does not scale as well as our networks. In contrast, Supermasks
uses a randomly initialized network and focuses on locating
the best subnetwork for each task and forgoes any further
training. The technique shows impressive scaling behavior, but
it’s unclear whether complex tasks can be solved without any
network training.

Our Active Dendrites Neurons dynamically determine a
representation for each feedforward input based on auxiliary
contextual inputs. In the case where the modulation function
f involves multiplication, our Active Dendrites Networks are
an instance of multiplicative networks. Jayakumar et al. (2020)
demonstrated that multiplicative networks can excel in multi-
task scenarios by learning dynamic representations in a task-
specific manner.

Several ANN-based techniques leverage the idea of auxiliary
contextual inputs. For instance, Gated Linear Networks (Veness
et al., 2021) and Dendritic Gated Networks (Sezener et al.,
2021) gate activation values for each neuron based on contextual
information. Although inspired by dendrites these models
(1) don’t activate sparse subnetworks, (2) have fixed random
dendritic weights (to model cerebellar dendritic branches), and
(3) are binary classifiers (i.e., 10 Dendritic Gated Networks
are required to classify MNIST digits). Furthermore, because
Sezener et al. (2021) test Dendritic Gated Networks only up to 10

Frontiers in Neurorobotics | www.frontiersin.org 15 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

permutedMNIST tasks using a very different metric, we cannot
provide a direct comparison with our model.

5.4. Future Work
Our initial results show that active dendrites and sparse
representations can mitigate catastrophic forgetting and
interference in multi-task RL and continual learning settings.
One crucial next step is to test this framework on more
real-world scenarios with greater complexity than MT10 or
permutedMNIST. The majority of existing work in MTRL
considers tasks with shared input and action spaces. Dendrites
may be beneficial in scenarios where this assumption does
not hold. Extending to tasks with very different input and
output spaces is an interesting area for future research. Another
interesting area is to combine our two scenarios and explore
continual multi-task RL. While testing on more diverse
benchmarks, it will also be important to explore additional
methods for generating context vectors for a given task. Another
important direction for future research is to investigate sparse
dendritic segments, following neuroscience evidence suggesting
that each segment relies on just a handful of synapses (Branco
and Häusser, 2011).

6. METHODS

6.1. Multi-Task Reinforcement Learning
Experiments
In this section, we provide the details of our multi-task RL
experiments3. We use the Multi-Task Soft Actor-Critic algorithm
(MTSAC) originally discussed in Yu et al. (2019), which is
described as an adaptation of the Soft Actor-Critic algorithm
(SAC; Haarnoja et al., 2018b). We adapt the code in the original
Meta-World GitHub repository4 to fit our experiments.

6.1.1. Basics of Reinforcement Learning
To formalize our specific RL problem, we define some
fundamental concepts. The state of the RL agent and the action it
will take at a specific time t are denoted as st and at , respectively.
The RL algorithm trains a policy π to take at given st in order to
maximize total return G =

∑

t γ
tr(at , st) across all time-steps t,

where r(at , st) is the reward given by the environment and γ is a
discount factor to strongly consider immediate rewards.

To optimize this policy, our RL formulation uses Markov
Decision Processes (MDPs) to model decision making in
stochastic environments. Following the notation introduced in
Sutton and Barto (2018), we consider a finite-horizon MDP
defined by the tuple (S,A, P, r,T) that operates in a state space S
and action space A. The MDP also uses the transition probability
P between any two states st and st+1 by taking action at , which is
explicitly defined across all states and actions as P(st+1|st , at) : S×
A→ R. Agents in this setting receive a reward r : S×A→ R that
is also defined across all states and actions. Additionally, agents

3PyTorch source code for our experiments is available at https://github.com/

numenta/htmpapers.
4Meta-World source code is available at https://github.com/rlworkgroup/

metaworld.

must make decisions within a fixed number of steps, denoted by
the finite-time horizon T.

The RL algorithm we consider computes a value function
that estimates the total return accrued at a specific state. More
precisely, the value function describes the significance of starting
at some state st and following some policy π . The value function
for policy π can be defined below:

Vπ (st) = Eat∼π

[

r(st , at)+ Est+1∼P

[

γVπ (st+1)
]]

(7)

= Eat∼π

r(st , at)+
∑

st+1∈S

P(st+1|st , at)
(

γVπ (st+1)
)

 (8)

=
∑

at∈A

π(at|st)

r(st , at)+
∑

st+1∈S

P(st+1|st , at)
(

γVπ (st+1)
)

(9)

Note that Equation (7) establishes a recursive relation with
respect to the function Vπ . To estimate the value at a given state
st , an agent must take an action at sampled from policy π to
calculate the expected value at the next state st+1. By repeating
this process until a terminal state is reached, the agent can use the
value function to choose actions that lead to highly valued states.

The RL algorithm we consider also estimates an action-value
function Qπ . While value functions estimate the value of starting
at st and following π , action-value functions estimate the value
of starting at st , taking action at , and then following π until a
terminal state is reached. This is known as the Q function, which
can be described explicitly below:

Qπ (st , at) = r(st , at)+ Est+1∼P

[

γEat+1∼π

[

Qπ (st+1, at+1)
]]

(10)

Fundamentally, value functions and Q functions can be related
by the following two expressions:

Qπ (st , at) = r(st , at)+ Est+1∼P

[

γVπ (st+1)
]

(11)

Vπ (st) = Eat∼π

[

Qπ (st , at)
]

(12)

Throughout the training process, explored state, action, reward,
and next state transitions–namely (st , at , rt , st+1)–are used to
train π . In some algorithms, including ours, these transitions are
stored in a replay buffer D and are sampled by batch during each
step of training to dynamically compute either the value or Q
function. After a suitable period of exploration, the agent will take
actions that yield the maximum Vπ (st) or Qπ (st , at) value. Note
that while V , Q, and π are expressed in discrete state and action
spaces above, they can be easily extended to work in continuous
state and action spaces using function approximations such as
neural networks.

6.1.2. Basics of Multi-Task Reinforcement Learning
We can extend the ideas in Section 6.1.1 to our multi-task RL
experiments inMeta-World. Specifically, the problem framework
uses a separate MDP to model each task τ . In the context
of the Meta-World multi-task environment, each task shares

Frontiers in Neurorobotics | www.frontiersin.org 16 April 2022 | Volume 16 | Article 846219

https://github.com/numenta/htmpapers
https://github.com/numenta/htmpapers
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

TABLE 2 | The hyperparameters for each multi-task RL model.

Active dendrites network MLP baseline Large MLP

Network hyperparameters

Feedforward input size 39 49 49

Hidden sizes 2 × [2,800] 2 × [2,800] 2 × [3,000]

Output size 4 4 4

Feedforward weight sparsity 10% 0% 0%

Activation function kWTA ReLU ReLU

Activation sparsity 25% ∼ 50% ∼ 50%

Num. dendritic segments per neuron 10 0 0

Num. weights per dendritic segment 10 — —

Num. hidden layers modulated 1 — —

Dendritic segment weight sparsity 0% — —

Non-zero feedforward parameters 7,169,964 7,994,004 9,165,004

Non-zero dendritic parameters 280,000 0 0

Non-zero parameters (total) 7,449,964 7,994,004 9,165,004

Training hyperparameters

Number of epochs 3,000 3,000 3,000

Number of timesteps 15,000,000 15,000,000 15,000,000

Number of gradient steps per epoch 250 250 250

Buffer sampling batch size 2,560 2,560 2,560

Replay buffer size 1,000,000 1,000,000 1,000,000

Policy learning rate 3× 10−4 3× 10−4 3× 10−4

Q-function learning rate 3× 10−4 3× 10−4 3× 10−4

Target Q-function update rate 5× 10−3 5× 10−3 5× 10−3

Policy (Min, Max) Std e−20, e2 e−20, e2 e−20, e2

Action sampling distribution type Tanh normal Tanh normal Tanh normal

identical state and actions spaces and defines common transition
probabilities and time horizons. However, each task defines
separate reward functions, although all functions share a similar
scale and structure to allow a single agent to uniformly learn
all tasks. We assume a uniform distribution of tasks p(τ) and
train a task-conditioned, stochastic policy π(a|s, c) to solve all
T tasks, where c is a context vector that provides information
about a specific task. Explicitly, the policy is trained to maximize
the total return from the task distribution p(τ) as expressed by
Eτ∼p(τ)

[

Eπ

[

6T
t=0γ

trt(st , at)
]]

.

6.1.3. The Multi-Task Soft-Actor Critic Algorithm
The MTSAC algorithm we use in our experiments is based on
the SAC algorithm and slightly modified to solve τ various
tasks simultaneously. In SAC, an RL algorithm uses a V or Q
network (known as the critic) to train a policy π (known as
the actor) to take better actions. SAC modifies the original value
function definition to also consider the entropy of the policy
π . By maximizing both expected return and entropy, an agent
is motivated to explore new states while computing an optimal
policy. More details about the SAC algorithm can be found
in Haarnoja et al. (2018b).

In MTSAC, both π and Q are conditioned by context
vector c and are thus denoted as π(at|st , c) and Q(st , at|c),
respectively. MTSAC also uses τ different entropy coefficients

ατ to control the exploration per task. More details about the
MTSAC algorithm can be found in Yu et al. (2019).

The Meta-World environment we use is MT10, which
contains 10 different tasks that a single robotic arm must solve.
All tasks share an identical state space st ∈ R

39 and action
space at ∈ R

4. Because there are 10 different tasks, c is a 10-
dimensional one-hot encoded vector that describes the task ID.

6.1.4. Experiment Settings
The training hyperparameters are identical for the Active
Dendrites Network and the MLP baseline. For every run, the
model is trained for 3,000 epochs. Each epoch comprises of
one episode of 500 timesteps for each of the 10 tasks. In
total, this amounts to 5,000 timesteps per epoch and 15,000,000
timesteps for the entire run. Our implementation parallels the
baseline implementation. In our experiments, we use one Active
Dendrites Network to model the policy π and another to model
the Q function.

The model is also used to collect new data to be stored in a
replay buffer. At the end of each epoch, the model is then trained
for 250 gradient steps. For each gradient step, the algorithm
randomly samples a batch of 2,560 experiences from the replay
buffer. The replay buffer is a queue of limited size, capped at 1
million, with newer experiences replacing older experiences.

To allow a better comparison between the models, we set
the learning rates, target Q function update rate, and policy

Frontiers in Neurorobotics | www.frontiersin.org 17 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

minimum and maximum standard deviations to be the same
for all runs. The difference between the models is the network
architecture of the policy and Q functions. The Active Dendrites
Network modulates each neuron in the second hidden layer
with 10 dendritic segments, where each segment is a vector of
size 10. In total, this dendritic layer adds an additional 280,000
parameters to the overall network.We apply a fixed sparsity mask
of 10% to the weights of the feedforward layers of the Active
Dendrites Network to reduce the number of free parameters
and keep it of comparable size to the MLP baseline. The Active
Dendrites Network also uses a kWTA activation function instead
of ReLU, which effectively selects the top 25% of units and zeroes
out the remaining during every forward step.

6.2. Continual Learning Experiments
We discuss the setup of the continual learning experiments.
Our model is trained on T discrete tasks in sequence. More
specifically, our model first trains on task τ = 1. Once learning
task τ is complete, the model then starts training on task τ + 1.
After training on task τ = T , all learning is complete. Each task τ

consists of standard batch learning with i.i.d. training data. While
training on task τ where 1 ≤ τ ≤ T , our model only receives
training data corresponding to task τ . Once the model finishes
learning task τ , it never again receives information about any task
τ ′ ≤ τ for training purposes. The model is, however, evaluated
on the test data for each task to determine how well it performs.

6.2.1. PermutedMNIST
We train our model on the permutedMNIST dataset, a
benchmark dataset for continual learning (Goodfellow et al.,
2014), which is derived from MNIST. MNIST comprises
approximately 60,000 black and white images of handwritten
digits 0–9 where each such image has dimensions 28 × 28 pixels
and the associated target digit as the label. During training,
roughly 50,000 images are used for training and the remaining
10,000 for testing.

In permutedMNIST with T tasks, MNIST is replicated T

times, but each time with a unique pixel-wise permutation
applied to all 60,000 images. That is, each task randomly re-
arranges the pixels of all images exactly the same way while
preserving the associated target label. The first task (τ = 1)
corresponds to the identity permutation (i.e., regular MNIST)
and every subsequent task generates a random pixel-wise
permutation. As permutedMNIST is synthesized from regular
MNIST, there can be an arbitrary number of tasks, T . Figure 15
illustrates a single image taken from different tasks.

Our model, and all comparisons we made, uses a single output
head. Each model has 10 output units in the final layer of the
network representing the 10 categories. These output units are
re-used for each task, i.e., the model is trained to predict the first
output unit for label “0” regardless of which task the input data
corresponds to. In this setup chance accuracy is 10%.

6.2.2. Experiment Settings
When employing the prototype method described in Section
4.2.1 to select context signals at test time only, we train an Active

FIGURE 15 | A visual illustration of permutedMNIST. Each task applies a

unique pixel-wise permutation to the same original image (leftmost image)

while preserving the target label. A model’s task is to identify the digit in each

case regardless of permutation.

Dendrites Network with two hidden layers that comprise Active
Dendrites Neurons. We find that having just a single hidden
layer reduced accuracy by a few percentage points while 3 hidden
layers provided a minimal performance boost. For 100 tasks, a
single layer reduced accuracy by 3% and three layers improved
accuracy by 0.5%. For all training, we use the Adam optimizer
(Kingma and Ba, 2015) and a batch size of 256 samples. Table 3
gives the exact hyperparameters and model architecture for each
model we train and evaluate on permutedMNIST. Note that
hyperparameters were optimized individually for each setting.

To combine Active Dendrites Network with SI, and to
compare against XdG, we reduce the number of units in each
hidden layer from 2,048 to 2,000 as to exactly match the
architectures (with the exception of dendritic segments) used
in the SI and XdG papers. (See Supplementary Materials for a
discussion on the number of parameters.) In addition, the SI-
and-Active-Dendrites network is trained for 20 epochs per task
instead of just three as this significantly improves results. We fix
the learning rate to be 5 × 10−4 for all numbers of tasks, and we
use SI regularization strength c = 0.1 and damping coefficient
ξ = 0.1. Both (a) training for 20 epochs per task and (b) the c, ξ
values that we use here align with the training setups of Zenke
et al. (2017) and Masse et al. (2018).

6.2.3. Constructing Prototypes During Training

Without Task Information
When task information is not given during training nor
testing, the task corresponding to each input example must be
inferred. This section describes the online clustering method
we implemented to infer task information during training. One
inductive bias in our procedure is that all training examples in
a batch correspond to the same task, since continual learning
scenarios usually only observe examples from a single task within
a given batch.

Formally, let X = {x(1), . . . , x(n)} be a batch of n training
examples (in the case of permutedMNIST, each x(i) is a 784-
dimensional vector for 1 ≤ i ≤ n). Suppose M individual
prototypes are designated thus far: p1, . . . , pM . For each pj (where
1 ≤ j ≤ M), the individual examples used to construct that
prototype are also stored in memory: Yj = {y

(1), . . . , y(mj)},
where mj gives the number of examples for cluster j. These

Frontiers in Neurorobotics | www.frontiersin.org 18 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

TABLE 3 | The hyperparameters used to train each model on permutedMNIST.

Active dendrites network

(task info. provided)

Active dendrites network

(task info. not provided)

3-Layer MLP 10-Layer MLP

Network hyperparameters

Feedforward input size 784 784 784 784

Hidden sizes 2 × [2,048] 2 × [2,048] 2 × [2,048] 10 × [2,048]

Output size 10 10 10 10

Feedforward weight sparsity 50% 50% 0% 0%

Activation function kWTA kWTA ReLU ReLU

Activation sparsity 5% 5% ∼ 50% ∼ 50%

Num. dendritic segments per neuron T T 0 0

Num. weights per dendritic segment 784 784 — —

Dendritic segment weight sparsity 0% 0% — —

Non-zero feedforward parameters 2,914,314 2,914,314 5,824,522 35,198,986

Non-zero dendritic parameters T × 3, 211, 264 T × 3, 211, 264 0 0

Non-zero parameters (total) See Supplementary Materials 5,824,522 35,198,986

Training hyperparameters

(T = 2) Learning rate 5× 10−4 10−3 — —

(T = 2) Number of epochs 1 5 — —

(T = 5) Learning rate 5× 10−4 10−3 — —

(T = 5) Number of epochs 1 5 — —

(T = 10) Learning rate 5× 10−4 10−3 3× 10−6 3× 10−6

(T = 10) Number of epochs 3 3 5 3

(T = 25) Learning rate 3× 10−4 3× 10−4 — —

(T = 25) Number of epochs 5 1 — —

(T = 50) Learning rate 3× 10−4 10−4 — —

(T = 50) Number of epochs 3 3 — —

(T = 100) Learning rate 10−4 10−4 10−6 3× 10−7

(T = 100) Number of epochs 3 3 3 3

previous training examples are observed by the learner during
previous batches of learning and stored in memory. We identify
if the new batch X is similar enough to any cluster of training
examples Yj such that the corresponding prototype pj should be
used as the context signal. If a cluster j is found such that X is
“similar” to Yj, then Yj is expanded to include X. Subsequently,
pj is updated to incorporate samples from X. Otherwise, if X is
deemed significantly different from Yj for all j, then a new cluster
is formed: YM+1 ← X and its prototype is the element-wisemean
of all x ∈ X. Algorithm 1 describes the procedure for clustering
during training when task information is not provided.

In the pseudocode, how do we determine when X is similar
enough to some Yj? If we have univariate data (i.e., if each
x ∈ X and y ∈ Yj is a scalar quantity), we could use an
unpaired t-test do this. Instead, we use a generalized version
of an unpaired t-test that applies to multivariate data. In our
hypothesis testing setup, the null hypothesis is that for any
given j, the same underlying process generates samples from
both X and Yj. When we accept the null hypothesis, we
assume each x ∈ X and each y ∈ Yj are training examples
from the same permutedMNIST task—and therefore pj can be
used as the context signal when training an Active Dendrites
Network on examples in X (albeit pj is first updated to account
for X).

Algorithm 1 : Clustering algorithm by which a new batch of
inputs X either gets assigned to one of M existing clusters or
initiates clusterM+1. This procedure is greedy since it assigns X
to the first cluster j that it suitably matches.

1: procedure CLUSTER(X, Y)
2: M← 0 ⊲ Number of existing clusters
3: while not done learning do
4: X← new batch
5: assigned← False

6: for j = 1 toM do

7: if ¬ assigned and IS_MATCH(X, Yj) then
8: assigned← True

9: Yj ← Yj ∪ X
10: update pj to include each x ∈ X

Hotelling (1931) proposed Hotelling’s t-squared statistic (t2)
as a generalization of the t-statistic used to perform single-
variable t-tests; it is computed as

t2 =
|X||Yj|

|X| + |Yj|

(

x̄− ȳ
)⊤

6
−1

(

x̄− ȳ
)

Frontiers in Neurorobotics | www.frontiersin.org 19 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

where x̄ and ȳ are simply the element-wise means of all x ∈ X
and y ∈ Yj, respectively, and 6 is the pooled, sample-adjusted
covariance matrix of samples in X and Yj. The test statistic t2

can be compared to a chosen p-value to accept or reject the
null hypothesis by first transforming it to a value drawn from
an F-distribution (whose cumulative density function is more
well-studied than that of the t-squared distribution) as follows:

f =
|X| + |Yj| − d − 1

d
(

|X| + |Yj| − 2
) t2

where d is the dimensionality of the samples.
We fix a p-value and derive a value for f based on t2 as

give above. If f > p, then we reject the null hypothesis since
the probability that the same generative process explains both
X and Yj is extremely low, and thus create a new cluster. Since
we perform pairwise multivariate t-tests between X and Yj for all
existing prototypes j, a new cluster and prototype emerge if and
only if we reject the null hypothesis for allM t-tests.Algorithm 2

describes the procedure for performing the multivariate t-test via
the t-squared statistic given two sets of multivariate samples.

Algorithm 2 : Unpaired multivariate t-test using Hotelling’s
t-squared statistic. Here, we use a slight abuse of notation
when computing covariance matrices by assuming sets of d-
dimensional vectors can also be treated as matrices whose rows
correspond to their d-dimensional elements. We assume a p-
value is fixed a priori. In our implementation, we replace all
standard matrix inversions with the Moore-Penrose pseudo-
inversion.
1: procedure IS_MATCH(X, Y)
2: x̄← 1

|X|

∑

x∈X x ⊲ Compute X mean

3: ȳ← 1
|Y|

∑

y∈Y y ⊲ Compute Y mean

4: 6X ←
1
|X|−1 (X − x̄)(X − x̄)⊤ ⊲ Compute X covariance

5: 6Y ←
1
|Y|−1 (X − ȳ)(Y − ȳ)⊤ ⊲ Compute Y covariance

6: 6← (|X|−1)6X+(|Y|−1)6Y
|X|+|Y|−2 ⊲ Compute pooled covariance

7: t2 ←
|X||Yj|

|X|+|Yj|

(

x̄− ȳ
)⊤

6
−1

(

x̄− ȳ
)

⊲ Compute t2

8: f =
|X|+|Yj|−d−1

d(|X|+|Yj|−2)
t2 ⊲ Convert t2 to f

9: if f > p then:
10: return False ⊲ Reject null hypothesis
11: else

12: return True ⊲ Accept null hypothesis

6.3. Absolute Max Gating
We outline how we implement gating in Active Dendrites
Networks. In Section 3, we present gating as modifying the value

of the weighted linear sum computed by the point neuron based
on the maximum activation, i.e., σ (maxj u

⊤c). One problem with
this formulation is that it becomes difficult to turn a neuron off
(i.e., force it’s activation value to be zero) due to themax operator.
That is, if dendritic segment j learns to turn off the unit, then
based on sigmoidal gating, we should expect that u⊤j c is a small

number with large absolute value (very negative). However, it’s
likely that for some other segment j′ (j 6= j′), u⊤j′ c > 0 > u⊤j c

which means that segment j′ will be selected by the max operator
instead of segment j, hence increasing the chance that the neuron
will be selected by the kWTA process.

This motivates absolute max gating in which the activation
with the largest magnitude is selected and its sign is kept. More
formally, a point neuron augmented with absolute max gating
computes its output as

j∗ = argmax
j

∣

∣

∣
u⊤j c

∣

∣

∣
,

ŷ =
(

w⊤x+ b
)

σ
(

u⊤j∗ c
)

.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SA conceived of the overall theory and the mapping to
neuroscience. KG and SA implemented the core dendrites code.
KG and JF implemented the continual learning experiments and
their analysis. AV originally conceived of the mapping to multi-
task RL and designed the original RL experiments. AI, LS, and
AV implemented and ran the multi-task RL experiments. SA,
AI, AV, and KG contributed to the article design and wrote the
text. All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

We thank Jeff Hawkins, Ben Cohen, Greg Maltz, Luiz
Scheinkman, and the rest of the Numenta team for helpful
feedback throughout the editing process.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2022.846219/full#supplementary-material

REFERENCES

Abbasi, A., Nooralinejad, P., Braverman, V., Pirsiavash, H., and Kolouri, S. (2022).

Sparsity and heterogeneous dropout for continual learning in the null space of

neural activations. arXiv:2203.06514. doi: 10.48550/arXiv.2203.06514

Ahmad, S., and Hawkins, J. (2016). How do neurons operate on sparse distributed

representations? A mathematical theory of sparsity, neurons and active

dendrites. arXiv:1601.00720. doi: 10.48550/arXiv.1601.00720

Ahmad, S., and Scheinkman, L. (2019). How can we

be so dense? The benefits of using highly sparse

Frontiers in Neurorobotics | www.frontiersin.org 20 April 2022 | Volume 16 | Article 846219

https://www.frontiersin.org/articles/10.3389/fnbot.2022.846219/full#supplementary-material
https://doi.org/10.48550/arXiv.2203.06514
https://doi.org/10.48550/arXiv.1601.00720
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

representations. arXiv:1903.11257. doi: 10.48550/arXiv.1903.

11257

Andreas, J., Klein, D., and Levine, S. (2017). “Modular multitask reinforcement

learning with policy sketches,” in Proceedings of the 34th International

Conference on Machine Learning (Sydney, NSW).

Antic, S. D., Hines, M., and Lytton, W. W. (2018). Embedded ensemble encoding

hypothesis: The role of the “prepared” cell. J. Neurosci. Res. 96, 1543–1559.

doi: 10.1002/jnr.24240

Antic, S. D., Zhou, W.-L., Moore, A. R., Short, S. M., and Ikonomu, K. D. (2010).

The decade of the dendritic NMDA spike. J. Neurosci. Res. 88, 2991–3001.

doi: 10.1002/jnr.22444

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).

A brief survey of deep reinforcement learning. IEEE Signal Process. Mag. 34,

26–38. doi: 10.1109/MSP.2017.2743240

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in

the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

doi: 10.1097/00004647-200110000-00001

Barth, A. L., and Poulet, J. F. a. (2012). Experimental evidence for sparse

firing in the neocortex. Trends Neurosci. 35, 345–355. doi: 10.1016/j.tins.2012.

03.008

Beniaguev, D., Segev, I., and London, M. (2021). Single cortical

neurons as deep artificial neural networks. Neuron 109, 2727–2739.

doi: 10.1016/j.neuron.2021.07.002

Bentivoglio, M., and Swanson, L. W. (2001). On the fine structure

of the PES hippocampi major. Brain Res. Bull. 54, 461–483.

doi: 10.1016/S0361-9230(01)00430-0

Branco, T., and Häusser, M. (2010). The single dendritic branch as a fundamental

functional unit in the nervous system. Curr. Opin. Neurobiol. 20, 494–502.

doi: 10.1016/j.conb.2010.07.009

Branco, T., and Häusser, M. (2011). Synaptic integration gradients

in single cortical pyramidal cell dendrites. Neuron 69, 885–892.

doi: 10.1016/j.neuron.2011.02.006

Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41–75.

doi: 10.1023/A:1007379606734

Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A. (2018). “Gradnorm:

gradient normalization for adaptive loss balancing in deep multitask networks,”

in Proceedings of the 35th International Conference on Machine Learning

(Stockholm).

Cui, Y., Ahmad, S., and Hawkins, J. (2017). The HTM Spatial Pooler–a neocortical

algorithm for online sparse distributed coding. Front. Comput. Neurosci.

11:111. doi: 10.3389/fncom.2017.00111

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine, S. (2017). “Learning

modular neural network policies for multi-task and multi-robot transfer,” in

Proceedings of the IEEE International Conference on Robotics and Automation

(Singapore). doi: 10.1109/ICRA.2017.7989250

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). “Multi-task learning

for multiple language translation,” in Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Beijing: Association for

Computational Linguistics), 1723–1732. doi: 10.3115/v1/P15-1166

Du, Y., Czarnecki, W. M., Jayakumar, S. M., Farajtabar, M., Pascanu, R.,

and Lakshminarayanan, B. (2020). Adapting auxiliary losses using gradient

similarity. arXiv:1806.08730. doi: 10.48550/arXiv.1812.02224

Errington, A. C., and Connelly, W. M. (2011). Dendritic T-type Ca2+ channels:

giving a boost to thalamic reticular neurons. J. Neurosci. 31, 5551–5553.

doi: 10.1523/JNEUROSCI.0067-11.2011

Flesch, T., Nagy, D. G., Saxe, A., and Summerfield, C. (2022). Modelling continual

learning in humans with Hebbian context gating and exponentially decaying

task signals. arXiv [Preprint]. arXiv: 2203.11560. Available online at: https://

arxiv.org/ftp/arxiv/papers/2203/2203.11560.pdf

French, R. M. (1999). Catastrophic forgetting in connectionist

networks. Trends Cogn. Sci. 3, 128–135. doi: 10.1016/S1364-6613(99)

01294-2

Gao, P. P., Graham, J. W., Zhou, W. L., Jang, J., Angulo, S., Dura-Bernal, S.,

et al. (2021). Local glutamate-mediated dendritic plateau potentials change

the state of the cortical pyramidal neuron. J. Neurophysiol. 125, 23–42.

doi: 10.1152/jn.00734.2019

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2014).

“An empirical investigation of catastrophic forgetting in gradient-based neural

networks,” in Proceedings of the 2nd International Conference on Learning

Representations (Banff, AB).

Goyal, A., Sodhani, S., Binas, J., Peng, X. B., Levine, S., and Bengio, Y.

(2020). “Reinforcement learning with competitive ensembles of information-

constrained primitives,” in Proceedings of the 8th International Conference on

Learning Representations, Digital.

Guest, J. M., Bast, A., Narayanan, R. T., and Oberlaender, M. (2021). Thalamus

gates active dendritic computations in cortex during sensory processing.

bioRxiv. doi: 10.1101/2021.10.21.465325

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., and Levine, S. (2018a).

“Composable deep reinforcement learning for robotic manipulation,” in

Proceedings of the IEEE International Conference on Robotics and Automation

(Brisbane, QLD). doi: 10.1109/ICRA.2018.8460756

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). “Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic

actor,” in Proceedings of the 35th International Conference on Machine Learning

(Stockholm).

Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses,

a theory of sequence memory in neocortex. Front. Neural Circuits 10:23.

doi: 10.3389/fncir.2016.00023

Hawkins, J., Ahmad, S., and Cui, Y. (2017). A theory of how columns in the

neocortex enable learning the structure of the world. Front. Neural Circuits

11:81. doi: 10.3389/fncir.2017.00081

Heald, J. B., Lengyel, M., and Wolpert, D. M. (2021). Contextual inference

underlies the learning of sensorimotor repertoires. Nature 600, 489–493.

doi: 10.1038/s41586-021-04129-3

Holmgren, C., Harkany, T., Svennenfors, B., and Zilberter, Y. (2003). Pyramidal cell

communication within local networks in layer 2/3 of rat neocortex. J. Physiol.

551, 139–153. doi: 10.1113/jphysiol.2003.044784

Hotelling, H. (1931). The generalization of Student’s ratio. Ann. Math. Stat. 2,

360–378. doi: 10.1214/aoms/1177732979

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and Levine, S. (2021). How

to train your robot with deep reinforcement learning: lessons we have learned.

Int. J. Robot. Res. 40, 698–721. doi: 10.1177/0278364920987859

Irpan, A. (2018). Deep Reinforcement Learning Doesn’t Work Yet. Available online

at: https://www.alexirpan.com/2018/02/14/rl-hard.html (accessed November

1, 2021).

Jadi, M. P., Behabadi, B. F., Poleg-Polsky, A., Schiller, J., and Mel, B. W.

(2014). An augmented two-layer model captures nonlinear analog spatial

integration effects in pyramidal neuron dendrites. Proc. IEEE 102, 782–798.

doi: 10.1109/JPROC.2014.2312671

Jayakumar, S. M., Czarnecki, W. M., Menick, J., Schwarz, J., Rae, J., Osindero, S., et

al. (2020). “Multiplicative interactions and where to find them,” in Proceedings

of the 8th International Conference on Learning Representations, Digital.

Kandel, E. (2012). Principles of Neural Science, 5th Edn. New York, NY: McGraw-

Hill.

Kendall, A., Gal, Y., and Cipolla, R. (2019). “Multi-task learning using uncertainty

to weigh losses for scene geometry and semantics,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Long Beach, CA).

Kerlin, A., Boaz, M., Flickinger, D., Maclennan, B. J., Dean, M. B., Davis, C., et

al. (2019). Functional clustering of dendritic activity during decision-making.

eLife 8:e46966. doi: 10.7554/eLife.46966

Kingma, D. P., and Ba, J. L. (2015). “Adam: a method for stochastic optimization,”

in Proceedings of the 3rd International Conference on Learning Representations

(San Diego, CA).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,

A. A., et al. (2017). Overcoming catastrophic forgetting in neural networks.

Proc. Natl. Acad. Sci. U.S.A. 114, 3521–3526. doi: 10.1073/pnas.16118

35114

Lafourcade, M., van der Goes, M.-S. H., Vardalaki, D., Brown, N. J., Voigts, J.,

Yun, D. H., et al. (2022). Differential dendritic integration of long-range inputs

in association cortex via subcellular changes in synaptic AMPA-to-NMDA

receptor ratio. Neuron. doi: 10.1016/j.neuron.2022.01.025

Lapique, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs

traitée comme une polarisation. J. Physiol. Pathol. 9, 620–635.

Frontiers in Neurorobotics | www.frontiersin.org 21 April 2022 | Volume 16 | Article 846219

https://doi.org/10.48550/arXiv.1903.11257
https://doi.org/10.1002/jnr.24240
https://doi.org/10.1002/jnr.22444
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1016/j.tins.2012.03.008
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.1016/S0361-9230(01)00430-0
https://doi.org/10.1016/j.conb.2010.07.009
https://doi.org/10.1016/j.neuron.2011.02.006
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.3389/fncom.2017.00111
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.48550/arXiv.1812.02224
https://doi.org/10.1523/JNEUROSCI.0067-11.2011
https://arxiv.org/ftp/arxiv/papers/2203/2203.11560.pdf
https://arxiv.org/ftp/arxiv/papers/2203/2203.11560.pdf
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1152/jn.00734.2019
https://doi.org/10.1101/2021.10.21.465325
https://doi.org/10.1109/ICRA.2018.8460756
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.3389/fncir.2017.00081
https://doi.org/10.1038/s41586-021-04129-3
https://doi.org/10.1113/jphysiol.2003.044784
https://doi.org/10.1214/aoms/1177732979
https://doi.org/10.1177/0278364920987859
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://doi.org/10.1109/JPROC.2014.2312671
https://doi.org/10.7554/eLife.46966
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1016/j.neuron.2022.01.025
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

Larkum, M. (2022). Are dendrites conceptually useful? Neurosci. S0306-

4522(22)00120-8. doi: 10.1016/j.neuroscience.2022.03.008. [Epub ahead of

print].

Larkum, M. E., Zhu, J. J., and Sakmann, B. (1999). A new cellular mechanism

for coupling inputs arriving at different cortical layers. Nature 398, 338–341.

doi: 10.1038/18686

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Liang, F., Li, H., Chou, X.-l., Zhou, M., Zhang, N. K., Xiao, Z., et al. (2019).

Sparse representation in awake auditory cortex: cell-type dependence, synaptic

mechanisms, developmental emergence, and modulation. Cereb. Cortex 29,

3796–3812. doi: 10.1093/cercor/bhy260

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in Proceedings of the

4th International Conference on Learning Representations (San Juan).

Limbacher, T., and Legenstein, R. (2020). Emergence of stable synaptic clusters

on dendrites through synaptic rewiring. Front. Comput. Neurosci. 14:57.

doi: 10.3389/fncom.2020.00057

Liu, S., Johns, E., and Davison, A. J. (2019). “End-to-end multi-task learning

with attention,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Long Beach, CA). doi: 10.1109/CVPR.2019.00197

London, M., and Häusser, M. (2005). Dendritic computation. Annu. Rev. Neurosci.

28, 503–532. doi: 10.1146/annurev.neuro.28.061604.135703

Losonczy, A., Makara, J. K., and Magee, J. C. (2008). Compartmentalized

dendritic plasticity and input feature storage in neurons. Nature 452, 436–441.

doi: 10.1038/nature06725

Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nat. Rev.

Neurosci. 1, 181–190. doi: 10.1038/35044552

Majani, E., Erlanson, R., and Abu-Mostafa, Y. (1989). “On the k-winners-take-all

network,” in Advances in Neural Information Processing Systems (Denver, CO).

Major, G., Larkum, M. E., and Schiller, J. (2013). Active properties of

neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24.

doi: 10.1146/annurev-neuro-062111-150343

Maninis, K.-K., Radosavovic, I., and Kokkinos, I. (2019). “Attentive single-tasking

of multiple tasks,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (Long Beach, CA). doi: 10.1109/CVPR.2019.00195

Masse, N. Y., Grant, G. D., and Freedman, D. J. (2018). Alleviating catastrophic

forgetting using context-dependent gating and synaptic stabilization. Proc.

Natl. Acad. Sci. U.S.A. 115, E10467–E10475. doi: 10.1073/pnas.1803839115

McCann, B., Keskar, N. S., Xiong, C., and Socher, R. (2018). The natural language

decathlon: Multitask learning as question answering. arXiv:1806.08730.

doi: 10.48550/arXiv.1806.08730

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group (1986). Parallel

Distributed Processing, 2nd Edn. Cambridge, MA: MIT Press.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist

networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165.

doi: 10.1016/S0079-7421(08)60536-8

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). “Cross-stitch networks

for multi-task learning,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Las Vegas, NV). doi: 10.1109/CVPR.2016.433

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al.

(2013). “Playing atari with deep reinforcement learning,” in Advances in Neural

Information Processing Systems (Lake Tahoe).

Paiton, D. M., Frye, C. G., Lundquist, S. Y., Bowen, J. D., Zarcone, R., and

Olshausen, B. A. (2020). Selectivity and robustness of sparse coding networks.

J. Vis. 20:10. doi: 10.1167/jov.20.12.10

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual

lifelong learning with neural networks: a review. Neural Netw. 113, 54–71.

doi: 10.1016/j.neunet.2019.01.012

Phillips, W. A. (2015). Cognitive functions of intracellular

mechanisms for contextual amplification. Brain Cogn. 112, 39–53.

doi: 10.1016/j.bandc.2015.09.005

Phillips, W. A., Clark, A., and Silverstein, S. M. (2015). On the functions,

mechanisms, and malfunctions of intracortical contextual modulation.

Neurosci. Biobehav. Rev. 52, 1–20. doi: 10.1016/j.neubiorev.2015.02.010

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal neuron as two-layer

neural network. Neuron 37, 989–999. doi: 10.1016/S0896-6273(03)00149-1

Poirazi, P., and Papoutsi, A. (2020). Illuminating dendritic function

with computational models. Nat. Rev. Neurosci. 21, 303–321.

doi: 10.1038/s41583-020-0301-7

Purushwalkam, S., Nickel, M., Gupta, A., and Ranzato, M. (2019). “Task-driven

modular networks for zero-shot compositional learning,” in Proceedings of

the IEEE International Conference on Computer Vision (Long Beach, CA).

doi: 10.1109/ICCV.2019.00369

Ramaswamy, S., and Markram, H. (2015). Anatomy and physiology of

the thick-tufted layer 5 pyramidal neuron. Front. Cell. Neurosci. 9:233.

doi: 10.3389/fncel.2015.00233

Rosch, E. (1975). Cognitive representations of semantic categories. J. Exp. Psychol.

104, 192–233. doi: 10.1037/0096-3445.104.3.192

Rosenbaum, C., Klinger, T., and Riemer, M. (2018). “Routing networks: adaptive

selection of non-linear functions for multi-task learning,” in Proceedings of the

6th International Conference on Learning Representations (Vancouver, BC).

Rosenblatt, F. (1958). The perceptron: a probabilistic model for

information storage and organization in the brain. Psychol. Rev. 65:386.

doi: 10.1037/h0042519

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Rusu, A. A., Colmenarejo, S. G., Gülçehre, C., Desjardins, G., Kirkpatrick, J.,

Pascanu, R., et al. (2016). “Policy distillation,” in Proceedings of the 4th

International Conference on Learning Representations (San Juan).

Sahni, H., Kumar, S., Tejani, F., and Isbell, C. (2017). “Learning to compose skills,”

in Advances in Neural Information Processing Systems (Long Beach, CA).

Schmidt-Hieber, C., Toleikyte, G., Aitchison, L., Roth, A., Clark, B. A., Branco, T.,

et al. (2017). Active dendritic integration as a mechanism for robust and precise

grid cell firing. Nat. Neurosci. 20, 1114–1121. doi: 10.1038/nn.4582

Schoenfeld, G., Kollmorgen, S., Lewis, C., Bethge, P., Reuss, A. M., Aguzzi, A., et

al. (2022). Dendritic integration of sensory and reward information facilitates

learning. bioRxiv. doi: 10.1101/2021.12.28.474360

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.

(2017). Proximal policy optimization algorithms. arXiv:1707.06347.

doi: 10.48550/arXiv.1707.06347

Sener, O., and Koltun, V. (2018). “Multi-task learning as multi-objective

optimization,” inAdvances in Neural Information Processing Systems (Montréal,

QC).

Sezener, E., Grabska-Barwínska, A., Kostadinov, D., Beau, M., Krishnagopal, S.,

Budden,D., et al. (2021). A rapid and efficient learning rule for biological neural

circuits. bioRxiv. doi: 10.1101/2021.03.10.434756

Siegel, M., Körding, K. P., and König, P. (2000). Integrating top-down and bottom-

up sensory processing by somato-dendritic interactions. J. Comput. Neurosci. 8,

161–173. doi: 10.1023/A:1008973215925

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al.

(2018). A general reinforcement learning algorithm that masters chess, shogi,

and go through self-play. Science 362, 1140–1144. doi: 10.1126/science.aar6404

Snell, J., Swersky, K., and Zemel, R. S. (2017). “Prototypical networks for few-shot

learning,” in Advances in Neural Information Processing Systems (Long Beanch,

CA).

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic

integration. Nat. Rev. Neurosci. 9, 206–221. doi: 10.1038/nrn2286

Stuart, G., Spruston, N., and Häusser, M., editors (2016).

Dendrites, 3rd Edn. Oxford: Oxford University Press.

doi: 10.1093/acprof:oso/9780198745273.001.0001

Stuart, G. J., and Spruston, N. (2015). Dendritic integration: 60 years of progress.

Nat. Neurosci. 18, 1713–1721. doi: 10.1038/nn.4157

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction,

2nd Edn. Cambridge, MA: MIT Press.

Takahashi, N., Ebner, C., Sigl-Glöckner, J., Moberg, S., Nierwetberg, S., and

Larkum, M. E. (2020). Active dendritic currents gate descending cortical

outputs in perception. Nat. Neurosci. 23, 1–9. doi: 10.1038/s41593-020-0677-8

van de Ven, G. M., and Tolias, A. S. (2019). Three scenarios for continual learning.

arXiv:1904.07734. doi: 10.48550/arXiv.1904.07734

Veness, J., Lattimore, T., Budden, D., Bhoopchand, A., Mattern, C., Grabska-

Barwinska, A., et al. (2021). “Gated linear networks,” in Proceedings of the 35th

AAAI Conference on Artificial Intelligence, Digital.

Frontiers in Neurorobotics | www.frontiersin.org 22 April 2022 | Volume 16 | Article 846219

https://doi.org/10.1016/j.neuroscience.2022.03.008
https://doi.org/10.1038/18686
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/cercor/bhy260
https://doi.org/10.3389/fncom.2020.00057
https://doi.org/10.1109/CVPR.2019.00197
https://doi.org/10.1146/annurev.neuro.28.061604.135703
https://doi.org/10.1038/nature06725
https://doi.org/10.1038/35044552
https://doi.org/10.1146/annurev-neuro-062111-150343
https://doi.org/10.1109/CVPR.2019.00195
https://doi.org/10.1073/pnas.1803839115
https://doi.org/10.48550/arXiv.1806.08730
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1167/jov.20.12.10
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.bandc.2015.09.005
https://doi.org/10.1016/j.neubiorev.2015.02.010
https://doi.org/10.1016/S0896-6273(03)00149-1
https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1109/ICCV.2019.00369
https://doi.org/10.3389/fncel.2015.00233
https://doi.org/10.1037/0096-3445.104.3.192
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/nn.4582
https://doi.org/10.1101/2021.12.28.474360
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1101/2021.03.10.434756
https://doi.org/10.1023/A:1008973215925
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nrn2286
https://doi.org/10.1093/acprof:oso/9780198745273.001.0001
https://doi.org/10.1038/nn.4157
https://doi.org/10.1038/s41593-020-0677-8
https://doi.org/10.48550/arXiv.1904.07734
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Iyer et al. Avoiding Catastrophe

Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W., and Behrens, T. E. J.

(2022). How to build a cognitive map: insights frommodels of the hippocampal

formation. arXiv [Preprint]. arXiv: 2202.01682. Available online at: https://

arxiv.org/pdf/2202.01682.pdf

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). “Multi-task reinforcement

learning: a hierarchical Bayesian approach,” in Proceedings of the

24th International Conference on Machine Learning (Corvallis, OR).

doi: 10.1145/1273496.1273624

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J.,

et al. (2020). “Supermasks in superposition,” in Advances in Neural Information

Processing Systems, Digital.

y Cajal, S. R. (1894). Neue darstellung vom histologischen bau des

centralnervensystems. Am. J. Psychol. 6:450. doi: 10.2307/1411662

Yang, G., Lai, C. S. W., Cichon, J., Ma, L., Li, W., and Gan, W.-B. (2014). Sleep

promotes branch-specific formation of dendritic spines after learning. Science

344, 1173–1178. doi: 10.1126/science.1249098

Yang, R., Xu, H., Wu, Y., andWang, X. (2020). “Multi-task reinforcement learning

with soft modularization,” in Advances in Neural Information Processing

Systems.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C. (2020).

“Gradient surgery for multi-task learning,” in Advances in Neural Information

Processing Systems.

Yu, T., Quillen, D., He, Z., Julian, R., Narayan, A., Shively, H., et al.

(2019). “Meta-world: a benchmark and evaluation for multi-task and meta

reinforcement learning,” in Proceedings of the 3rd Conference on Robot

Learning (Osaka).

Zenke, F., Poole, B., and Ganguli, S. (2017). “Continual learning through synaptic

intelligence,” in Proceedings of the 34th International Conference on Machine

Learning (Sydney, NSW).

Zhang, Y., and Yeung, D.-Y. (2014). A regularization approach to learning task

relationships in multitask learning. ACM Trans. Knowl. Discov. Data 8, 1–31.

doi: 10.1145/2538028

Conflict of Interest: SA, AI, KG, and LS are employed by Numenta Inc. Numenta

has some patents relevant to the work. Numenta has stated that use of its

intellectual property, including all the ideas contained in this work, is free

for non-commercial research purposes. In addition, Numenta has released all

pertinent source code as open source under a GPL V3 license (which includes a

patent peace provision).

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Iyer, Grewal, Velu, Souza, Forest and Ahmad. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 23 April 2022 | Volume 16 | Article 846219

https://arxiv.org/pdf/2202.01682.pdf
https://arxiv.org/pdf/2202.01682.pdf
https://doi.org/10.1145/1273496.1273624
https://doi.org/10.2307/1411662
https://doi.org/10.1126/science.1249098
https://doi.org/10.1145/2538028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments
	1. Introduction
	2. Background
	2.1. Multi-Task Learning
	2.1.1. Multi-Task Reinforcement Learning
	2.1.2. Continual Learning

	2.2. Properties of Biological Neurons
	2.2.1. Neurons and Active Dendrites
	2.2.2. Sparse Representations

	3. Active Dendrites Network Model
	3.1. Active Dendrites Neuron
	3.2. Sparse Representations
	3.3. Active Dendrites Network Architecture

	4. Results
	4.1. Results With Multi-Task Reinforcement Learning
	4.1.1. Network Structure for Multi-Task RL
	4.1.2. Dendrites Improve Multi-Task RL Accuracy

	4.2. Results With Continual Learning
	4.2.1. Computing the Context Vector
	4.2.1.1. Training Method 1 (Task Information Provided)
	4.2.1.2. Training Method 2 (Task Information Not Provided)
	4.2.1.3. Selecting Prototypes During Inference

	4.2.2. Network Structure for Continual Learning
	4.2.3. Dendrites Mitigate Catastrophic Forgetting in Continual Learning
	4.2.4. Comparison With Context Dependent Gating

	4.3. Analysis
	4.3.1. Are Dendrites Invoking Subnetworks?
	4.3.2. Impact of Sparsity Level and the Number of Dendrites
	4.3.3. Are Networks With Dendrites Equivalent to Larger Networks?

	5. Discussion
	5.1. Dendrites Enable Dynamic Context Integration and Routing
	5.2. Comparison to Other Multi-Task RL Systems
	5.3. Comparison to Other Continual Learning Systems
	5.4. Future Work

	6. Methods
	6.1. Multi-Task Reinforcement Learning Experiments
	6.1.1. Basics of Reinforcement Learning
	6.1.2. Basics of Multi-Task Reinforcement Learning
	6.1.3. The Multi-Task Soft-Actor Critic Algorithm
	6.1.4. Experiment Settings

	6.2. Continual Learning Experiments
	6.2.1. PermutedMNIST
	6.2.2. Experiment Settings
	6.2.3. Constructing Prototypes During Training Without Task Information

	6.3. Absolute Max Gating

	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

