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Abstract 

Cross-species single-cell RNA-seq data hold immense potential for unraveling cell type evolution and transferring knowledge between well- 
explored and less-studied species. However, challenges arise from interspecific genetic variation, batch effects stemming from experimental 
discrepancies and inherent individual biological differences. Here, w e benchmark ed nine data-integration methods across 20 species, encom- 
passing 4.7 million cells, spanning eight phyla and the entire animal taxonomic hierarchy. Our evaluation reveals notable differences between 
the methods in removing batch effects and preserving biological variance across taxonomic distances. Methods that effectively leverage gene 
sequence information capture underlying biological variances, while generative model-based approaches excel in batch effect removal. SATURN 

demonstrates robust performance across diverse taxonomic levels, from cross-genus to cross-phylum, emphasizing its versatility. SAMap excels 
in integrating species be y ond the cross-f amily le v el, especially f or atlas-le v el cross-species integration, while scGen shines within or below the 
cross-class hierarchy. As a result, our analysis offers recommendations and guidelines for selecting suitable integration methods, enhancing 
cross-species single-cell RNA-seq analyses and advancing algorithm development. 
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Introduction 

Single-cell RNA-sequencing (scRNA-seq) has emerged as a
key technology to understand the conservation and divergence
of cell types across species ( 1–14 ). The increasing availability
of scRNA-seq datasets across diverse species presents a valu-
able opportunity for exploring and describing evolutionary re-
lationships of cell types from different species ( 15 ). Key to our
understanding of cell type diversity and their evolutionary his-
tory is the cross-species integration of scRNA-seq data ( 13 ).
Cross-species scRNA-seq data integration aims to harmonize
high-throughput datasets from various sources into a coher-
ent format for subsequent downstream comparative analysis.
Such an approach would facilitate the exploration of evolu-
tionary trajectories among cell types across the tree of life.
For example, a comparative study based on the integration of
scRNA-seq data from salamanders, lizards, turtles and mice
led to the identification of conserved neurons shared amongst
these species and sauropsids specific neurons ( 16 ). Moreover,
cross-species scRNA-seq data integration stands out as a pow-
erful tool, paving the path for transferring knowledge from
well-studied species to those less explored ones, which of-
ten possess genomes that are either inadequately annotated
or devoid of validated marker genes for distinct cell types.
This provides critical reference points for cell type annotation
and offers a deeper dive into their cellular intricacies ( 4 ,17–
23 ). More than pure basic research, these integration-centric
methodologies illuminate venues for further research topics,
most crucially in the conservation efforts for environmen-
tally significant but understudied species, such as reef building
corals or the honeybee Apis mellifera , among others. 

However, cross-species data integration presents a unique
set of challenges. First, cross-species datasets often include
many samples generated from various conditions and labo-
ratories, which may vary in terms of sequencing platform, se-
quencing depth, quality, and experimental conditions. These
undesirable technical variations, often referred to as batch ef-
fects, have the potential to induce shifts in data distributions
and bias the results ( 14 ,24–27 ). Distinguishing between batch
effects and biological heterogeneity becomes particularly chal-
lenging, especially when these factors overlap. Besides, the
dataset scale becomes a severe problem in cross-species inte-
gration projects. For example, the Human Cell Atlas (HCA)
stores data from 626 single-cell projects encompassing tril-
lions of cells obtained from different tissues and conditions
( 28 ,29 ). Yet, the current cell atlas of the sea anemone Ne-
matostella vectensis , a non-bilaterian animal, only contains
14 000 cells covering two developmental stages ( 30 ). These
huge differences in dataset scale may lead to the masking of
specific cell types in the smaller datasets. Further, the com-
plex evolutionary history of genes poses a significant hur-
dle, particularly when dealing with datasets of varying se-
quencing quality. Paralogs, which arise from gene duplication
events within a genome, can evolve novel functions compared
with their ancestral genes, considerably complicating the
integration process ( 12 ). 

At present, there are at least 50 published integration meth-
ods for scRNA-seq data, of which six emphasize their ef-
fectiveness in cross-species integration. Previous benchmark
studies primarily concentrated on addressing the broader
challenge of batch effect removal problem ( 14 ). Notably, two
distinct benchmark studies attempted to explore the intrica-
cies of the cross-species integration problem, providing valu-
able guidelines on selecting appropriate methods and strate- 
gies ( 13 ,31 ). However, their scope was confined to a limited 

species spectrum coverage. Specifically, one study centered 

around integrating human and mouse immune datasets ( 13 ) 
while the other involved a constrained selection of only five 
vertebrate species ( 31 ). This narrow species spectrum cover- 
age falls short of representing the diverse scenarios encoun- 
tered in cross-species integration tasks, thereby lacking com- 
prehensive guidance for such endeavors. Yet, resolving the 
evolutionary trajectories of cell types across large phyloge- 
netic distances, a prerequisite to building a cell type tree of 
life requires a comprehensive approach using a broad species 
spectrum. So far, a systematic benchmark for integrating 
diverse species across the entire animal taxonomic hierarchy 
is still lacking. 

Here, we present a pioneering benchmark study of cross- 
species single-cell RNA-seq data integration methods across 
various settings, spanning the entire animal tree of life hi- 
erarchy and including genus, family, order, class and phy- 
lum species integrations (Figure 1 ). Specifically, we exam- 
ined the challenges associated with developmental time tra- 
jectory preservation, dataset scale differences, species-specific 
cell type identification, nested batch effects and varying data 
quality. In total, we created 36 cross-species integration tasks,
consisting of over 4.7 million cells and 20 species. We bench- 
marked nine most widely used data integration techniques,
each with its unique underlying algorithmic assumptions, that 
generally performed well in various data integration tasks 
( 13 ): mutual nearest neighbors (fastMNN ( 32 )) and its vari- 
ations (Scanorama ( 33 ) and BBKNN ( 34 )), linear correlation 

(Seurat v4 CCA ( 35 )), the k-means algorithm (Harmony ( 36 )),
deep generative models (scVI ( 19 ) and scGen ( 37 )) and gene 
sequence alignment (SAMap ( 12 ) and SATURN ( 38 )). These 
methods require different input formats—such as one-to-one 
orthologous genes or homologous genes—and produce vary- 
ing outputs. We have summarized their input requirements,
output formats and usability in a table to facilitate comparison 

( Supplementary Table S1 ). Moreover, to evaluate their perfor- 
mance, we used 13 metrics focusing on two key aspects: batch 

effect removal and biological variance conservation. Batch ef- 
fect removal metrics assess an integration method’s ability to 

eliminate technical biases between datasets, i.e. unintended 

differences due to technical variations rather than actual bi- 
ological differences between the samples. High batch effect 
removal scores indicate effective mixing of cells from differ- 
ent species, with minimized batch-specific biases. This is es- 
sential for tasks such as cross-species reference mapping ( 39 ),
where the goal is to align analogous cell types across species.
In contrast, biological variance conservation metrics evaluate 
how well an integration method preserves meaningful biolog- 
ical differences inherent in the data. High biological conser- 
vation scores suggest that important biological signals—such 

as cell types and cellular states clusters—are retained post- 
integration, which is crucial for accurate downstream analysis.
By balancing these two objectives, an ideal integration method 

effectively removes unwanted technical variations while pre- 
serving the true biological information necessary for meaning- 
ful insights. Our comprehensive benchmarking study provides 
a reference for researchers interested in performing scRNA- 
seq cross species data integration studies. Furthermore, we 
presented the first attempt of constructing a cell type tree of 
life using the best performing data integration method. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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Figure 1 . Sc hematic diagram of the benchmarking w orkflo w. Here, nine data integration methods were tested using 36 cross-species integration tasks. 
Integration results were evaluated using 13 metrics that assess batch effect remo v al (species mixing), nested batch effect remo v al and conservation of 
biological variance. The influence of imbalanced dataset and data sequencing depth on the methods were also assessed. 
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30 PCs for further evaluation. 
aterials and methods 

atasets and preprocessing 

e conducted a comprehensive benchmarking of cross-
pecies integration methods using 23 published datasets
 Supplementary Tables S2 and S3 ). To ensure consistency,
ll datasets underwent quality control (minimum 200 genes
er cell, minimum 10 cells per gene) and normalization
scanpy .pp.normalize_in_total, scanpy .pp.log1p) using the
canpy v1.9.1 ( 40 ). 

Certain methods (Seurat v4 CCA, fastMNN, BBKNN, scVI,
cGen, Scanorama and Harmony) require the cross-species
atasets to have the same variable gene names, as they only ac-
ept one-to-one orthologous genes as inputs. To address this,
e used OrthoFinder v2.5.5 ( 41 ) to identify one-to-one or-

hologous genes between species ( Supplementary Table S4 ).
e then extracted subsets of the input datasets containing

hese identified one-to-one orthologous genes and used them
s input for the integration methods. The remaining two meth-
ds, S AMap and S ATURN, require gene sequence similarity
nformation, the related sequences involved are provided in
upplementary Table S4 . These two methods were provided
ith datasets containing original gene names and gene size

fter preprocessing. 
We utilized the cell type annotations provided by the orig-

nal authors of each published dataset, serving as the ground
ruth for our evaluations. To align cell types across species,
e matched cell types based on their annotated names. For

losely related species, when cell types had identical names in
different species, we considered them directly comparable. For
phylogenetically distant species, we did not attempt to match
specific cell types directly. Instead, we used coarse-grained an-
notations, aligning cells based on broader cell lineages. This
approach relied solely on published annotations to ensure
reproducibility and accuracy. 

Integration methods 

Seurat v4 (CCA) 
Seurat is one of the most famous tools used in single cell
transcriptomic data analysis. In this study, we ran Seurat
(version 4.3.0) ( 35 ) which set canonical correction analy-
sis (CCA) as default for dimensionality reduction follow-
ing the official tutorial https:// satijalab.org/ seurat/ articles/
integration _ introduction.html . The algorithm identifies the
‘anchor pairs’ between two datasets which are the MNN on
the shared subspace constructed by CCA. Based on the anchor
pairs, the method can further integrate and project the orig-
inal two datasets to a common hyperplane. As a result, Seu-
rat returns a projected gene expression matrix. In our study,
we first normalized the dataset, selected 2000 highly variable
genes (HVGs) for anchors finding. For those datasets, whose
genes amount are < 2000 after filtering only to the one-to-one
orthologous genes before integration and renaming the gene
names accordingly, we selected all genes for anchors finding.
After integration, we scaled the output and transformed it into
principal component (PC) space. Finally, we extracted the top

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://satijalab.org/seurat/articles/integration_introduction.html
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Harmony 
Harmony ( 36 ) uses iterative clustering algorithm to remove
all the batch effects from datasets. It firstly clusters cells by
maximizing clustering diversity. For each cluster, Harmony
subsequently calculates the cluster specific centroids and cell
specific correction factors, followed by adjusting each cell by
the correction factors. These processes are repeated until con-
vergence. As a result, Harmony returns a corrected embed-
ding. We ran Harmony (version 0.1.1) within R language
by following its tutorial https://portals.broadinstitute.org/
harmony/ articles/ quickstart.html . We first normalized and
scaled datasets and selected top 2000 HVGs. For the datasets
with < 2000 genes after filtering based on the one-to-one or-
thologous genes, we used all the genes. We ran Harmony by
setting the maximal number of clusters as 50 and the maximal
number of iterations as 100 while leaving the other parame-
ters as default settings. The corrected embedding outputs were
used for further evaluation. 

fastMNN 

fastMNN ( 32 ), a method based on MNN, was employed to
mitigate batch effects between datasets by leveraging MNN
pairs identified on the PC space. To execute fastMNN, we
utilized the SeuratWrapper package (version 0.3.1) and fol-
lowed the tutorial available at https:// github.com/ satijalab/
seurat-wrappers/ blob/ master/ docs/ fast _ mnn.md . Prior to ap-
plying fastMNN, we performed data normalization, scal-
ing and selection of top 2000 HVGs for each dataset. For
the datasets with < 2000 genes after the one-to-one ortholo-
gous genes filtering, we selected all genes. We ran fastMNN
with its default settings, and then extracted the resulting
embedding output for subsequent evaluation and analysis. 

Batch-balanced k-nearest neighbors (BBKNN) 
BBKNN ( 34 ), a widely used data integration method, lever-
ages the k-nearest neighbor (kNN) graph approach to cap-
ture cell similarities within and across batches. In our anal-
ysis, we applied BBKNN using the Python library bbknn. To
construct the kNN graph, BBKNN calculates the pairwise dis-
tances between cells within each batch. It then identifies the
k nearest neighbors for each cell based on these distances.
The parameter ‘neighbors_within_batch = 5 

′′ was set to define
the number of neighbors to consider within each batch dur-
ing the graph construction step. This parameter choice deter-
mines the level of local connectivity within individual batches.
After constructing the kNN graph, BBKNN proceeds to inte-
grate the data by merging the graphs from different batches. It
aligns the cells across batches by matching their shared near-
est neighbors, facilitating the integration of cell populations
that exhibit similar gene expression patterns. The parameter
‘trim = 50 

′′ was set to trim the edges in the merged graph, re-
moving low-confidence connections that may arise from batch
effects or noisy data. Following integration, BBKNN employs
an algorithm similar to the Uniform Manifold Approximation
and Projection (UMAP) algorithm to compute the connectiv-
ity scores for each cell based on the neighborhood graph struc-
ture, revealing the underlying cellular relationships. The out-
put weighted neighborhood graph is used for the evaluation. 

scVI 
scVI ( 19 ), a hierarchical Bayesian model based neural net-
work, was employed to model the expression of each cell with
the negative binomial distribution. The model incorporates
non-linear transformations to capture and account for the 
dataset-specific random effects. To utilize scVI, we followed 

the tutorial available at https:// docs.scvi-tools.org/ en/ latest/ 
tutorials/ notebooks/ scrna/ harmonization.html . In this analy- 
sis, we projected the input data into a 30-dimensional la- 
tent space using scVI (version 0.19.0), while leaving other 
parameters at their default values. 

scGen 

scGen ( 37 ), a neural network-based method, leverages vari- 
ational autoencoders and latent space vector arithmetics 
to model and predict the gene expression changes in dif- 
ferent cell types under perturbations. In our analysis, we 
utilized scGen (version 2.1.0) by following the tutorial 
provided at https:// scgen.readthedocs.io/ en/ stable/ tutorials/ 
scgen _ batch _ removal.html . We set the maximum number of 
epochs to 100 and the batch size to 32, while leaving other 
parameters at their default values. The return corrected latent 
was used for downstream evaluation. 

Scanorama 
Scanorama ( 33 ) is a method specifically designed for integrat- 
ing single-cell transcriptomic datasets by leveraging the con- 
cept of mutually nearest neighbors across different datasets.
In our analysis, we utilized Scanorama (version 1.7) by fol- 
lowing the tutorial provided at https:// github.com/ brianhie/ 
scanorama#api- example- usage . We set the batch size param- 
eter to 30, the kNN parameter to 10, and the return_dimred 

parameter to True. Scanorama outputs corrected gene expres- 
sion matrices as integration results, which were further evalu- 
ated to assess the performance in integrating the cross-species 
transcriptomic datasets. 

SATURN 

SATURN ( 38 ) is a deep learning method designed specifi- 
cally for integrating cross-species single-cell transcriptomic 
datasets. It employs a unique approach by leveraging both 

single-cell RNA expression data and protein embeddings de- 
rived from protein language models to map the datasets into a 
low-dimensional space. This is achieved through a pretrained 

conditional autoencoder structure. In our analysis, we fol- 
lowed the tutorial provided by SATURN at https://github. 
com/ snap-stanford/ SATURN/ tree/ main/ Vignettes to run the 
method. We set the num_macrogenes and hv_genes as default.
By utilizing SATURN, we aimed to capture the functional rela- 
tionships between genes rather than relying solely on genomic 
similarity for integration. The return embedding was used for 
further evaluation. 

SAMap 

SAMap ( 12 ) is a comprehensive integration method that 
leverages both protein sequence similarity and gene expres- 
sion correlation to facilitate the integration of cross-species 
single-cell transcriptomic datasets. First, SAMap calculates 
MNN between species by considering the similarity of protein 

sequences and the correlation of gene expression profiles.
This step enables the identification of biologically relevant 
cell-to-cell correspondences across species. Second, SAMap 

utilizes the cross-species MNN to transform the feature space 
from different species into a unified, stitch joint space. To run 

SAMap in our analysis, we followed the tutorial provided at 
https:// github.com/ atarashansky/ SAMap/ blob/ main/ 
SAMap _ vignette.ipynb . The output of SAMap is a cell- 

https://portals.broadinstitute.org/harmony/articles/quickstart.html
https://github.com/satijalab/seurat-wrappers/blob/master/docs/fast_mnn.md
https://docs.scvi-tools.org/en/latest/tutorials/notebooks/scrna/harmonization.html
https://scgen.readthedocs.io/en/stable/tutorials/scgen_batch_removal.html
https://github.com/brianhie/scanorama#api-example-usage
https://github.com/snap-stanford/SATURN/tree/main/Vignettes
https://github.com/atarashansky/SAMap/blob/main/SAMap_vignette.ipynb
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o-cell neighborhood graph, which captures the relationships
nd similarities between cells from different species. The
eighborhood graph is used for further evaluation. 

valuated metrics 

imilar to scIB, we treated the species labels as batch effects.
e considered the evaluation metrics from two aspects: the

atch effect removal and biological variance conservation. For
valuating batch effect removal, we utilized the following met-
ics: Adjusted Rand Index (ARI) for batch labels, Adjusted
ilhouette Width (ASW) for batch labels, integrated Local In-
erse Simpson’s Index (iLISI), Normalized Mutual Informa-
ion (NMI) for batch labels, kBET statistic, Principal Compo-
ent Regression for batch labels and graph connectivity. These
etrics collectively captured the ability of the methods to miti-

ate batch effects and integrate the data from different species.
ll the metrics were computed based on the method outputs.
To assess the conservation of biological variability, we em-

loyed the following metrics: ARI for cell type labels, ASW for
ell type labels, integrated cell type Local Inverse Simpson’s In-
ex (cLISI), NMI for cell type labels, HVG conservation and
rajectory conservation. These metrics allowed us to evaluate
he methods’ capacity to preserve the biological information
nd capture the underlying heterogeneity across cell types. 

RI 
RI ( 42 ) measures the similarity between the assigned la-
els (e.g. cell types or batches) and the true labels, provid-

ng an indication of the accuracy of the integration. Similar
o the pipeline described by Tran et al . ( 14 ), we first ran-
omly subsampled 80% cells from the joint embeddings or
he top 30 PCs outputs to perform k-means clustering using
he stats package in R language environment where k is the
umber of unique cell types / batches. For clustering graph-
ased outputs, we utilized the Leiden algorithm implemented
n the scanpy.tl.leiden function ( 40 ) with resolution param-
ters ranging from 0.2 to 2.0 in increments of 0.1. We se-
ected the clustering result with the highest ARI with respect
o known cell type labels for further analysis. ARI calculations
ere performed using the adjusted_rand_score function from

he scikit-learn package. All the computing was repeated 20
imes to ensure robustness. For the cell type evaluation, we cal-
ulated the average ARI with respect to cell types (denoted as
RIc). A high ARIc score indicates precise matching among
ell types and strong conservation of cell type information,
hile a low score suggests random labeling. 
For the batch effect removal evaluation, we modified the

RI computation to minimize the influence of cell type dif-
erences. Specifically, we calculated the ARI between the
atch labels and cluster labels within each shared cell type
eparately. For each shared cell type, we first selected all
ells belonging to that cell type across different batches.
hen, we performed k-means clustering with k equal to

he number of batches (species), which was followed by
omputing the ARI between the resulting cluster labels and
he true batch labels. Finally, we averaged the ARI scores
cross all cell types to obtain the final batch ARI score (de-
oted as ARIb). To ensure that higher scores indicate bet-
er batch effect removal, we adjusted the ARIb using the
quation: 
Batch ARI = 1 − AR I b  
ASW 

The Average Silhouette Width (ASW) ( 43 ) metric measures the
quality of clustering by assessing the cohesion within clusters
and the separation between clusters for individual cells. For
a cell i, silhouette width method first calculates the minimum
average distance to all other cells that do not belong to the
same cluster with cell i. Next it is subtracted by the average
distance of i from the other cells in the same clusters. Then it
is further divided by the larger of these two values. We cal-
culated the ASW by averaging the value of silhouette width
for all the cells after clustering which is described as previous.
ASW ranges from –1 to 1. The higher value of ASW repre-
sents the higher quality of clustering. It provides insights into
the preservation of cell type information and the effectiveness
of batch mixing. We also proposed a variation of ASW, de-
noted as ASW (species-specific cell type) by only focusing on
the species-specific cell types. The workflow is the same as the
original ones, except that this variation only considers this
metric and performs the averaging solely on species-specific
cell types. 

In line with Tran et al . ( 14 ), we applied a consistent pipeline
to compute ASW scores from both the batch and cell type per-
spectives. To ensure computational efficiency, we randomly
subsampled the datasets to 80% of the original number of
cells. The top 30 PCs or the entire joint embeddings of
the down sampled datasets were used to calculate the dis-
tances between data points, enabling the computation of ASW
scores. This process was repeated 20 times to obtain 20 ASW
scores for both batch mixing and cell type conservation sep-
arately. All ASW scores were subsequently normalized to a
range from 0 to 1, using below equation: 

AS W normalized = 

ASW + 1 

2 

For batch mixing, we scaled the normalized batch ASW
scores using below equation, as a higher score indicates better
mixing among species: 

AS W batch = 1 − AS W normalized _ batch 

Finally, we used the average normalized ASW batch and
ASW celltype for final evaluation. 

LISI 
Local Inverse Simpson’s Index (LISI) ( 36 ) scores provide in-
sights into the randomness of cell pairs within the same group
when the group is observed only once. LISI scores can be com-
puted for both cell types (cLISI) and batches (iLISI) measuring
how well the cell type is preserved and the batch mixing sep-
arately. The range of LISI scores is from 1 to the number of
unique cell types or batches present in the datasets. A higher
cLISI score means the group containing more cell types, rep-
resenting a poor cell type information conservation. A higher
iLISI score means the group containing more batches repre-
senting a good batch mixing. To calculate LISI scores, we
followed the same pipeline as Tran et al . ( 14 ). For methods
that output a pseudo-count matrix, we employed the first 30
PCs to compute the kNNs. Similarly, for methods that gener-
ate embeddings directly, we used the embedding to calculate
the kNN. In the case of SAMap and BBKNN, we utilized its
output, which is a kNN graph, to determine the LISI scores. 

To normalize the LISI scores, we scaled them to a range
of 0 to 1 using the equation below for cLISI and iLISI sepa-
rately. For the LISI scores, higher value suggests better species
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mixing / celltype conservation in the integration. 

iLI S I normalized = 

iLI SI − 1 

unique _ batch _ amount − 1 

cLI S I normalized = 

unique _ celltype _ amount − cLI SI 
unique _ celltype _ amount − 1 

NMI 
NMI is a metric used to quantify the similarity between two
sets of clusters. NMI score ranges from 0 to 1. If NMI equals
to 1, it means the two clustering results are perfect agreement.
If NMI close to 0, it means the clustering results are not more
informative about each other than clustering by chance. In
our evaluation, we employed NMI to compare the cell type
labels as well as the batch (specie) labels with the Louvain
clusters computed on the integrated datasets. By utilizing the
scIB pipeline ( 13 ), we computed NMI scores for both cell types
and batches. 

For NMI cell type, the higher scores indicate a more accu-
rate match between the clustering cells and specific cell types,
implying a better preservation of cell type information across
the integrated datasets. For NMI batch, we reversed it by sub-
tracting it from 1. Thus, a higher NMI batch score indicates a
higher degree of batch mixing by the integration methods. 

kBET 

The kNN batch effect test (kBET) ( 44 ) is a metric used to
quantify the degree of batch mixing in integrated datasets. It
assesses how well the samples from different batches inter-
mingle with each other from repeated subsampling cells ran-
domly. Higher kBET scores indicate a greater degree of batch
mixing, suggesting a successful removal of batch effects and
enhanced integration of the data from different batches. Con-
versely, lower kBET scores indicate a reduced level of batch
mixing, signifying a better preservation of batch-specific sig-
nals and decreased unwanted batch effects in the integrated
datasets. 

Since kBET works on the kNN graphs, for the non-graph
outputs (PCs based on the pseudo-count matrix, the joint em-
bedding output), we utilized the top 30 dimensions of the PCs
or the entire joint embeddings to calculate kNN graphs. We
set the value of k (the number of nearest neighbors) to 50,
which allows us to capture the local neighborhood relation-
ships between cells. Further, since the k-nearest-neighborhood
size could be different from the graph-based method outputs
(for example, BBKNN and SAMap), we adopted the extension
kBET pipeline outlined in the scIB ( 13 ) to compute the kBET
scores. By applying kBET, we obtained a numerical score that
reflects the degree of batch mixing in the integrated datasets. 

Principal component regression 

PC regression ( 44 ) is a metric used to quantify the level of
batch effect removal achieved by integration methods. It lever-
ages the hypothesis that batch variables are correlated with
the PCs obtained from the integrated dataset. This metric only
works for the non-graph-based output methods. To calculate
the score, we followed the pipeline provided by scIB ( 13 ). First,
we performed principal component analysis with default 50
PCs on the pseudo-count outputs and embedding outputs to
obtain a set of PCs that capture the major sources of variation
in the data. Next, we performed linear regression to model the
relationship between the batch variables and each PC. Specifi-
cally, we calculated the contribution of the batch effect to each 

PC by multiplying the variance explained by the i th PC and the 
corresponding regression coefficient obtained from the linear 
regression model between the batch effect and the i th PC. The 
score is then computed by summarizing the variance contri- 
butions of the batch variables across all PCs. By assessing the 
extent to which batch variables are associated with the PCs,
principal component regression score provides insights into 

the effectiveness of integration methods in mitigating batch 

effects. A higher score signifies a greater reduction in batch- 
related variation, indicating improved batch effect removal in 

the integrated dataset. 

Graph connectivity 
Graph connectivity (GC) ( 13 ) is a metric used to assess the 
degree of connectivity between cells of the same label in a 
kNN graph. In our analysis, we employed the pipeline pro- 
vided by scIB ( 13 ) to calculate the graph connectivity score.
First, the kNN graph was constructed based on the pseudo- 
count metric or the embedding outputs, where the number 
of nearest neighbors ( k ) was determined as 50. Then we sub- 
sampled the largest graph component from the kNN graph 

which only contains the nodes of a given cell label. Further,
the number of the nodes in the subsampled graph component 
is divided by the total number of the cell label. For each cell 
label, we repeated this procedure and sum all the values fol- 
lowed by divided by the number of unique cell labels. Thus,
the graph connectivity score ranges from 0 to 1, with higher 
values indicating the nodes with the same cell labels are well 
connected. We also proposed a variation of GC, denoted as 
GC (species-specific cell type) by only focusing on the species- 
specific cell types. The workflow is the same as the original 
ones, except that this variation only considers this metric and 

performs the averaging solely on species-specific cell types. 

Highly variable gene conservation 

HVG conservation is a metric used to evaluate how well the 
biological signal, represented by genes with high variability 
across cells, is preserved after integration of datasets. This 
metric only works on the pseudo-count metric outputs. 

To calculate the HVG conservation score, we utilized the 
pipeline provided by scIB ( 13 ). First, we identified 500 HVGs 
within each individual dataset after the one-to-one ortholo- 
gous gene filtering. For the datasets that contain < 500 genes,
we tried to identify half number of their total genes as HVGs.

Next, we calculated the HVGs from the integrated expres- 
sion profiles. For each dataset, we then computed the num- 
ber of overlapping genes between the HVGs identified before 
and after integration, which is further divided by the minimax 

number of the HVGs before and after integration. Finally, we 
average the values for each dataset as the HVG conservation 

score, which ranging from 0 to 1. 

HV G conservation = 

1 

N 

N ∑ 

i =1 

| X i ∩ Y 

| 
min ( | X i | , | Y 

| ) 

N is the total number of datasets. X i is the number of HVGs 
in the dataset i before integration. Y is the number of the 
HVGs in the integrated dataset. 

A higher HVG conservation score indicates a better preser- 
vation of the biological signal, as a larger proportion of HVGs 
are maintained across the integrated dataset. 
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rajectory conservation 

o evaluate the preservation of trajectory information after
ntegration, we employed the concept of trajectory conser-
ation. This metric quantifies the extent to which the inte-
rated datasets maintain the original trajectory relationships
bserved in the individual species datasets. 
In our analysis, we utilized the pipeline provided by scIB

 13 ) to calculate the trajectory conservation score. We em-
loyed the diffusion pseudotime (DPT) function in Scanpy
sc.tl.dpt) to infer trajectories before and after integration. We
et the most extremal cells in the cell type cluster as the starting
ell of the trajectory after integration. To quantify the conser-
ation of trajectories, the Spearman’s rank correlation coeffi-
ient between the trajectories calculated before and after in-
egration was computed. This coefficient measures the mono-
onic relationship between the two sets of trajectory values,
ndicating the degree of conservation. The resulting trajectory
onservation score was further scaled to a range from 0 to 1,
ith higher values indicating better preservation of trajectory

nformation. 

anking and metric aggregation 

o comprehensively evaluate the performance of the inte-
rated methods, we computed an overall score that consid-
rs both batch effect removal and biological variance con-
ervation. Specifically, the batch effect removal metrics con-
ain ARI batch , ASW batch , graph iLISI, NMI batch , kBET, princi-
al component regression score and graph connectivity. The
iological variance conservation metrics contain ARI celltype ,
SW celltype , graph cLISI, HVG conservation and trajectory
onservation. For each sub-metric in batch effect removal
etrics and bioconservation metrics, it was scaled using the
in-max number for each experiment. Then, all the sub-
etric scores are averaged separately for batch effect re-
oval and bioconservation score. Further, we assigned a
eight of 0.6 to biological variance conservation, indicat-

ng its greater importance compared to batch effect correc-
ion. By assigning this weight, we emphasized the signif-
cance of preserving the biological heterogeneity and cap-
uring the underlying biological signals in the integrated
atasets. A higher overall score indicates a method’s abil-
ty to effectively mitigate batch effects while preserving the
iological variability in the integrated datasets, which is
o prioritize the accurate representation of cell-type-specific
ene expression patterns and functional differences across
pecies. 

S overall , T = 

1 
n 

n ∑ 

i =1 

(
0 . 4 × S batch −correction ,i + 0 . 6 × S bioconservation ,i 

)

S overall,T donates the overall score for a specific cross-
pecies integration task T, which contains n different
xperiments / replicates. S batch-correction,i donates the average
caled score of the valid sub-metric from batch correction for
 specific run i . S bioconservation,i donates the average scaled score
f the valid sub-metric from the bioconservation for a specific
un i . For the final overall score for all the tasks, we averaged
he overall scores. 

ell type tree phylogenetic inference 

e followed the method described by Jasmine et al. ( 45 ) to
onstruct the cell type tree for cat and dog lung tissues and
even species ( Schmidtea mediterranea, Danio rerio, Ciona in-
testinalis, Mus musculus, Homo sapiens, Drosophila melana-
gaster and Caenorhabditid elegans ) separately . Briefly , we fil-
tered out the cell types in each species which has < 100 cells
based on the embeddings derived from SATURN. After that
we performed the principal component analysis to the selected
embeddings. The top 20 PCs were extracted for downstream
analysis. For each cell type in each species, we randomly se-
lected one cell to reduce the computational burden. We used
contml from PHYLIP (version 3.698) to construct the cell type
phylogenetic tree based on the Brownian motion model. Fi-
nally, in order to test the technical repeatability and biological
repeatability of the tree, we calculated the jumble scores and
scjackknife scores respectively for each tip in the tree follow-
ing the previous description ( 45 ). 

Results 

Cross-species scRNA-seq integration benchmarking

We benchmarked nine widely used cross-species integration
methods across 36 distinct tasks (Table 1 ) ( 1–3 , 5 , 30 , 46–57 ),
spanning the entire taxonomic hierarchy. Each task embod-
ied distinct challenges that are commonly faced in cross-
species integration. One of the main challenges of bench-
marking cross-species data integration is identifying the
homolog-based gene space shared between species. We ad-
dressed the challenge through a specifically designed pipeline:
all the datasets were processed with the same preprocess-
ing protocol ( 13 ). We reduced the gene sets from both
species to one-to-one orthologous with OrthoFinder ( 41 )
(see ‘Materials and methods’ section) for the methods re-
quiring the same genes as input. For methods based on
homologous genes between species, we identified homolo-
gous genes from different species based on protein sequence
similarity. 

The performance of each integration method was assessed
using 13 different metrics across two primary categories:
batch effect removal and biological variance conservation
(bioconservation). Batch effect removal for each cell iden-
tity label was quantified via metrics such as batch adjusted
rand index (batch ARI) ( 58 ), k-nearest-neighbor batch effect
test (kBET) ( 44 ) and average silhouette width across batches
(batch ASW) ( 44 ). Beyond species / batch labels, we further
evaluated batch effect removal using integration local inverse
Simpson’s Index (iLISI) ( 36 ), batch normalized mutual in-
formation (batch NMI) ( 59 ), principal component regression
( 44 ) and graph connectivity. For assessing bioconservation,
metrics such as cell type ARI ( 58 ), cell type integration lo-
cal inverse Simpson’s Index (cLISI) ( 36 ), cell type normalized
mutual information (cell type NMI) ( 59 ), average silhouette
width across cell types (cell type ASW) ( 44 ), overlaps of HVGs
per batch before and after integration, and conservation of
trajectories were utilized. 

We calculated an overall score to provide a comparative
analysis of each method’s performance, considering batch ef-
fect removal and biological variance conservation elements.
This score is devised by attributing a 40% weight to the av-
erage batch effect removal scores and a 60% weight to the
average biological variance conservation scores. This weight-
ing strategy mirrors the significance of these two aspects
in appraising the efficacy of integration methods, providing
a balanced and comprehensive overview of each method’s
performance ( 13 ). 
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Table 1. Integration tasks for benchmarking 

Task Species Tec hnolog y 
Number of 

cells Target 

Cross genus Felis catus (Cat) ( 46 ) and Panthera 
tigris altaica (Tiger) ( 46 ) 

10x Genomics 27 200 Different genus, same tissue 

Felis catus (Cat) ( 47 ) and Panthera 
tigris altaica (Tiger) ( 46 ) 

10x Genomics 55 469 Different genus, different tissue 

Cross family Felis catus (Cat) ( 46 ) and Canis lupus 
familiaris (Dog) ( 46 ) 

10x Genomics 18 490 Different family, same tissue 

Felis catus (Cat) ( 47 ) and Canis lupus 
familiaris (Dog) ( 46 ) 

10x Genomics 50 014 Different family, different tissue 

Homo sapiens (Human) ( 48 ) and 
Macaque fascicularis (Monkey) ( 48 ) 

10x Genomics 25 083 Different family, same tissue 

Homo sapiens (Human) ( 48 ) and 
Macaque mulatta (Monkey) ( 48 ) 

10x Genomics 18 159 Different family, same tissue 

Cross order Homo sapiens (Human) ( 49 ) and Mus 
musculus (Mouse) ( 50 ) 

Microwell-seq 84 638 Different order, multiple tissue, 
contain nested batch 

Nematostella vectensis (Sea anemone) 
( 30 ) and Stylophora pistillata (Hard 
coral) ( 51 ) 

MARS-seq 26 661 Different order, atlas level 
integration 

Homo sapiens (Human) ( 48 ) and Mus 
musculus (Mouse) ( 48 ) 

10x Genomics 22 630 Different order, same tissue 

Mus musculus (Mouse) ( 48 ) and 
Macaque fascicularis (Monkey) ( 48 ) 

10x Genomics 10 295 Different order, same tissue 

Mus musculus (Mouse) ( 48 ) and 
Macaque mulatta (Monkey) ( 48 ) 

10x Genomics 4485 Different order, same tissue 

Homo sapiens (Human) ( 48 ) and Sus 
scrofa (Pig) ( 48 ) 

10x Genomics 19 273 Different order, same tissue 

Mus musculus (Mouse) ( 48 ) and Sus 
scrofa (Pig) ( 48 ) 

10x Genomics 5926 Different order, same tissue, 
diverse cell type integration, both 
species have their unique cell 
types 

Macaque fascicularis (Monkey) ( 48 ) 
and Sus scrofa (Pig) ( 48 ) 

10x Genomics 14 035 Different order, same tissue, 
diverse cell type integration, both 
species have their unique cell 
types 

Macaque mulatta (Monkey) ( 48 ) and 
Sus scrofa (Pig) ( 48 ) 

10x Genomics 4430 Different order, same tissue, 
diverse cell type integration, both 
species have their unique cell 
types 

Cross class Xenopus tropicalis (Frog) ( 1 ) and 
Danio rerio (Zebrafish) ( 5 ) 

Indrop RNA-seq 160 306 Different class, embryo 
developmental time series data 
integration 

Danio rerio (Zebrafish) ( 50 ) and 
Homo sapiens (Human) ( 48 ) 

Microwell-seq 10x 
Genomics 

5586 Different class, same cell types 
integration 

Danio rerio (Zebrafish) ( 50 ) and 
Macaque mulatta (Monkey) ( 48 ) 

Microwell seq 10x 
Genomics 

6511 Different class, same cell types 
integration 

Danio rerio (Zebrafish) ( 50 ) and 
Macaque fascicularis (Monkey) ( 48 ) 

Microwell seq 10x 
Genomics 

4894 Different class, same cell types 
integration 

Danio rerio (Zebrafish) ( 50 ) and Sus 
scrofa (Pig) ( 48 ) 

Microwell seq 10x 
Genomics 

5007 Different class, same cell types 
integration 

Danio rerio (Zebrafish) ( 50 ) and Felis 
catus (Cat) ( 46 ) 

Microwell seq 10x 
Genomics 

10 031 Different class, same cell types 
integration 

Cross phyla Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

71 225 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

125 359 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

133 131 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

276 935 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

493 471 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

710 007 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 
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Table 1. Continued 

Task Species Tec hnolog y 
Number of 

cells Target 

Strongylocentrotus purpuratus 
(Sea urchin) ( 52 ) and Danio rerio 
(Zebrafish) ( 50 ) 

10x Genomics 
Microwell-seq 

926 543 Across phyla, different 
sequencing technology, 
imbalanced dataset integration 

Mus musculus (Mouse) ( 53 ) and 
Monomorium pharaonis (Ant) ( 54 ) 

Microwell-seq 
snRNA-seq 

11 301 Across phyla, different 
technology, common cell type, 
data quality influence 

Mus musculus (Mouse) ( 49 ) and 
Monomorium pharaonis (Ant) ( 54 ) 

Microwell-seq 
snRNA-seq 

9487 Across phyla, different 
technology, common cell type, 
data quality influence 

Drosophila melanogaster (Fly) ( 50 ) 
and Danio rerio (Zebrafish) ( 50 ) 

Microwell-seq 229 256 Across phyla, time series data 

Caenorhabditis elegans (Roundworm) 
( 55 ) and Homo sapiens (Human) ( 49 ) 

sci-RNA-seq 
Microwell-seq 

374 515 Across phyla, atlas level 
integration 

Octopus vulgaris (Octopus) ( 56 ) and 
Homo sapiens (Human) ( 49 ) 

10x Genomics 
Microwell-seq 

30 706 Across phyla, different 
technology, same tissue (brain) 
integration 

Schmidtea mediterranea (Flatworm) 
( 3 ) and Homo sapiens (Human) ( 49 ) 

Drop-seq 
Microwell-seq 

394 562 Across phyla, atlas level 
integration 

Ciona intestinalis (Sea vase) ( 2 ) and 
Nematostella vectensis (Sea anemone) 
( 30 ) 

10x Genomics 
MARS-seq 

16 430 Across phyla, similar stage, atlas 
level integration 

Trichoplax adhaerens ( 57 ) and Homo 
sapiens (Human) ( 49 ) 

MARS-seq 
Microwell-seq 

348 608 Across phyla, atlas level 
integration 
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ntegrating data across genera 

o assess the efficacy of various methods in integrating data
cross genera, we started our study with a straightforward
etting: benchmarking data integration from the same tis-
ue but different genera within the same family . Specifically ,
e used lung samples from cat and tiger, each encompassing
ata from 12 distinct cell types generated using the same se-
uencing protocol. In this task, SATURN emerged as the top
erformer (Figure 2 B and C; Supplementary Figure S1 ). 
The congruency of the overall cross genus species integra-

ion metric results (Figure 2 A) and the integrated data plots
Figure 2 B and C; Supplementary Figure S1 ) highlights the
ffectiveness of certain methods: high-performing methods
deptly integrated the different species while maintaining the
iological variance at the cell type level. 
Remarkably, the top five methods excelled in either batch

orrection or bioconservation but struggled to perform well in
oth simultaneously. This phenomenon may be attributed to
he difficulty of differentiating species-specific variance from
atch effects. Most methods available to date aim to con-
truct a unified embedding across species by reducing vari-
nces, which comprise both species-specific biological vari-
nces and batch effects. Striking a balance between removing
atch effects and preserving biological information, thus, be-
omes crucial. Methods like SATURN excelled in bioconser-
ation but not in batch correction, while other methods like
cVI and scGen showed the opposite pattern. Notably, batch
ffect removal metrics, like batch ARI and graph connectivity,
layed a crucial role in distinguishing the overall top five per-
ormers. SATURN, scVI, scGen and Seurat v4 CCA achieved
igher scores on these metrics. Conversely, BBKNN exhibited
esidual species-specific clustering in all cell types, such as fi-
roblasts (Figure 2 C and Supplementary Figure S2 ), suggest-
ng its relatively lower effectiveness in fully mitigating batch
ffects. 

Furthermore, in the context of conserving biological vari-
nce in cross-genus integration, SATURN outperformed other
methods. It attained the highest scores in cell type ARI, cell
type ASW, cLISI and cell type NMI, indicating a successful
capture of underlying cell type heterogeneity across datasets. 

In a more comprehensive task, we extended our analysis
to integrate data from cat and tiger across three distinct cell
types sourced from different tissues. Scanorama emerged as
one of the top performers, followed by scGen ( Supplementary 
Figures S1 and S2 ). Notably, as the integration task became
more challenging, two methods from the previous top five per-
formers (SAMap and Seurat v4 CCA) fell behind in the overall
score even though they still performed well in bioconservation
and batch correction separately. 

As both datasets were based on the same 10x sequencing
technology, this initial analysis underscored the complexity of
integrating single-cell data across genera, revealing both the
strengths and limitations of current methods in tackling such
a task. 

Integrating species beyond the genus 

In the context of integrating species data beyond the genus,
we designed intricate tasks to assess the performance of meth-
ods at various taxonomic levels, including cross-family, cross-
order, cross-class and cross-phylum integration (Table 1 ). Sim-
ilar to the cross-genus integration task, cross-family (e.g. cat
and dog within the same order) and cross-order (e.g. sea
anemone and hard coral within the same class) tasks encoun-
tered fewer technical batch effects, as those datasets origi-
nated from the same sequencing protocol. However, with the
increased phylogenetic distance, the sequencing technologies
varies due to natural differences across species, especially in
cross-class (e.g. frog and zebrafish within the same phylum)
and cross-phylum integration tasks (e.g. zebrafish and sea
urchin). 

In cross-family species integration scenarios, SATURN
emerged as the best performer in most cases (Figure 3 A and
Supplementary Figures S3 –S7 ). Notably, SATURN, scGen,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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Figure 2. Benchmarking results for the cross-genus integration task. ( A ) Overview of the methods ranked by average overall scores, with detailed 
a v erage batch correction and a v erage bioconserv ation scores f or tw o cross-genus integration tasks. Ov erall scores are computed based on batch 
correction scores and bioconservation scores (‘Materials and methods’ section). ( B and C ) UMAP layouts visualizing unintegrated and integrated Felis 
catus (cat) and Panthera tigris altaica (tiger) lung datasets colored by species labels (B) and cell type labels (C). 
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Figure 3. Benchmarking results for the integration tasks across family, order and class species pairs. ( A ) Performance of all methods in cross-family 
integration, rank ed b y a v erage o v erall scores with detailed a v erage scores f or batch correction and bioconserv ation. ( B ) Scatter plot of the a v erage o v erall 
batch correction score against the a v erage o v erall bioconserv ation score f or all cross-order species integration tasks. T he error bars represent the 
standard errors across the tasks. The vertical dashed line represents the average batch correction score for all the methods in cross-order species 
integration tasks. The horizontal dashed line represents the average bioconservation score for all methods in cross-order species integration tasks. ( C ) 
B o x plot of batch correction score and bioconservation score in cross-class species integration tasks. The purple dashed line represents average batch 
correction scores for all methods in cross-class species integration tasks. The pink dashed line represents average bioconservation scores for all 
methods in cross-class species integration tasks. 
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eurat v4 CCA and scVI consistently secured top four po-
itions, mirroring their performance in the cross-genus in-
egration task (Figure 2 A and Supplementary Figure S3 E).
rom cross-family to cross-order integration tasks, fastMNN,
armony and SAMap stood out with superior performance

nd elevated their rankings. fastMNN and scGen consis-
ently outperformed with higher scores in both bioconser-
ation and batch correction, surpassing the average scores
cross all methods (Figure 3 B). SATURN distinguished itself
y excelling in bioconservation but showed relatively lower
erformance in batch correction. This observation suggests
hat SATURN prioritizes the preservation of meaningful bi-
logical signals over stringent batch correction. On the other
and, Scanorama, while achieving consistently high scores in
atch correction, ranked lower. This is attributed to its subpar
performance in bioconservation, indicating a potential trade-
off where Scanorama excels in mitigating batch effects but
struggles to effectively preserve crucial biological information,
influencing its overall ranking ( Supplementary Figures S3 E
and S8 –S17 ). 

As we transitioned from cross-order to cross-class integra-
tion tasks, the disparity between batch correction and biocon-
servation increased. No method achieved the average scores
in both aspects simultaneously. All methods, except BBKNN,
S AMap and S ATURN, exhibiting a higher score in biocon-
servation, performed better in batch correction than in bio-
conservation. This observation suggests that methods have
their distinct preferences in batch correction and bioconserva-
tion as the taxonomic distances between two species increase
(Figure 3 C; Supplementary Figures S18 –S24 ). Interestingly,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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S ATURN and S AMap outperformed other methods when in-
tegrating the cell atlas of Xenopus tropicalis (frog) and Danio
rerio (zebrafish) ( Supplementary Figures S18 and S19 ). How-
ever, SAMap encountered challenges in achieving robust per-
formance when integrating non-atlas level data, which consist
of a limited number of cell types ( Supplementary Figures S18
and S20 –S24 ). This highlights SAMap’s effectiveness in han-
dling well-defined atlases data but underscores limitations
in scenarios where data are less comprehensive or lacks a
predefined reference. 

The average bioconservation scores across all methods de-
clined as the integration moving from cross-class to cross-
phylum. Notably, no method surpassed the average batch-
correction and average bioconservation scores at the same
time. S ATURN, S AMap and BBKNN excelled in biocon-
servation while the other methods performed well in batch
correction (Figure 4 A; Supplementary Figures S25 –S41 ). 

Influence of phylogenetic distance on integration 

performance 

We further investigated how increasing phylogenetic distance
affects method performance by integrating Homo sapiens
data with species at varied phylogenetic distances: Macaca
fascicularis , Mus musculus , Sus scrofa , Danio rerio , Octo-
pus vulgaris and Schmidtea mediterranea (Figure 4 B–D and
Supplementary Figure S25 B). 

As the phylogenetic distance between species increases, all
methods show a decline in performance for both biological
conservation and batch correction, indicating that integrating
phylogenetically distant species is more challenging than inte-
grating closely related ones. This trend is particularly evident
in the biological conservation scores. For methods that utilize
one-to-one orthologous genes as input, this decline can be ex-
plained by the decreasing number of one-to-one orthologous
genes identified at greater phylogenetic distances (Figure 4 C
and D; Supplementary Figure S25 B). Furthermore, we found
that the decreasing trend also holds true for SAMap and SAT-
URN. However, they generally exhibited greater robustness
and outperformed the other methods. This result is supported
by their superior performance in cross-phylum species integra-
tion tasks ( Supplementary Figure S26 ). We hypothesize that
their ability to handle homologous genes as input makes them
more effective in integration tasks of phylogenetically distant
species. 

To test our hypothesis and to further assess the impact of
input gene sets on the performance of SATURN and SAMap,
we selected five integration tasks across five cross-species cat-
egories (see Supplementary Table S5 for task details) and used
either one-to-one orthologs or homologous genes as input for
these two methods. By comparing the model performance us-
ing the two different inputs, we aimed to determine whether
their superior performance arises from the use of homologous
genes or from their inherent algorithmic design. 

Our analysis revealed that switching from homologous
genes to one-to-one orthologs resulted in a performance de-
crease for both methods across all phylogenetic levels. Specif-
ically, S ATURN and S AMap exhibited average performance
drops of 11.04% and 12.05%, respectively. For SATURN,
there was a clear trend: the greater the phylogenetic dis-
tance between species, the more substantial the performance
decline when using one-to-one orthologs ( Supplementary 
Figure S42 A). This suggests that homologous genes offer more
comprehensive information for cross-species integration tasks 
than one-to-one orthologs as they capture a broader range of 
evolutionary relationships. 

Additionally, we compared SATURN and SAMap using 
one-to-one orthologs as input (denoted as SATURN(one2one) 
and SAMap(one2one) separately) against other methods 
( Supplementary Figures S42 B and Supplementary Figure S43 –
S47 ). Despite the reduced input gene set, SATURN(one2one) 
still ranked as one of the best performers among all meth- 
ods benchmarked. This result underscores the robustness of 
SA TURN’ s algorithmic design, particularly its use of pre- 
trained protein language models, in capturing biologically 
meaningful signals even with a limited gene set. 

Time trajectory conservation, species-specific cell 
types, nested batch and imbalanced datasets 

influence 

To investigate in detail into other factors that may influence 
cross-species integration, we first focused on one application 

of general interest: time trajectory preservation. Across de- 
velopment, time occurs as an important perturbational fac- 
tor and thus causes subtle, nested variations among the pop- 
ulation. A competitive integration method should be care- 
fully designed to remove undesirable technical variation while 
preserving the time-related information inherent to different 
samples. Besides, cross-species integration tasks often involve 
datasets with nested batches within species, including vari- 
ation arising from both biological and experimental differ- 
ences. Moreover, datasets usually contain species-specific cell 
types, and these unique cell types should not be integrated but 
preserved for meaningful biological interpretations. Addition- 
ally, the integrated datasets may not have the same dataset size 
and sequencing depth. In this section, we evaluated the perfor- 
mance of the nine methods in handling the real time trajectory 
information from embryonic developmental datasets. 

For the time series scRNA-seq data, cells from each time 
point bear both temporal information and batch effects. The 
main challenge of integrating such kind of data is to seam- 
lessly integrate cells of identical types while retaining es- 
sential developmental time details. For the real-time trajec- 
tory conservation of frog and zebrafish embryonic develop- 
mental datasets (cross-class task) integration, scGen and Seu- 
rat v4 CCA performed better than SAMap and SATURN 

(Figure 5 A and Supplementary Figure S48 ). This observation 

suggests that SAMap and SATURN may fail to learn effective 
representations that reflect the meaningful temporal progres- 
sion when integrating the datasets, while scGen and Seurat 
v4 CCA achieve better trajectory conservation at the cost of 
reduced integration performance. 

The presence of species-specific cell types poses a significant 
challenge in cross-species integration, as mixing those cells 
with the other species will lead to misinterpretations in down- 
stream biological analyses. To evaluate how different integra- 
tion methods handle species-specific cell types, we selected 

one representative integration task from each phylogenetic 
category ( Supplementary Table S6 ). 

scGen showed superior performance in isolating species- 
specific cell types in the cross-genus, cross-family and cross- 
order tasks, as indicated by higher ASW and GC scores for 
species-specific cell types ( Supplementary Figure S49 ). This 
suggests that scGen’s variational autoencoder framework ef- 
fectively captures data structure and preserves unique cell 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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Figure 4. Benchmarking results for integration cross-phylum tasks. ( A ) Lollipop plot showing average performance in batch correction and 
bioconservation after scaling. Vertical dashed lines represent the a v erage batch correction scores and bioconservation scores across all methods. ( B ) Bar 
plot of the o v erall batch correction scores and bioconservation scores across seven cross-phylum tasks. ( C and D ) Line plot of the overall scores (C) and 
bioconservation scores (D) for the integration of Homo sapiens and Macaque fascicularis , Homo sapiens and Mus musculus , Homo sapiens and Sus 
scrofa , Homo sapiens and Danio rerio , Homo sapiens and Octopus vulgaris , Homo sapiens and Schmidtea mediterranea from left to right, respectively. 
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ypes when sufficient orthologous genes are present. In con-
rast, SATURN outperformed other methods in the cross-
lass and cross-phylum tasks where phylogenetic distance was
reater and the number of orthologous genes limited. Its use of
ontrastive learning and pretrained protein language models
llows it to capture evolutionary distant gene relationships,
nabling better isolation of species-specific cell types under
hese challenging conditions. 

In some instances, the GC (species-specific cell type) and
SW (species-specific cell type) metrics provided contradic-

ory results for the same method. For example, in certain tasks,
ATURN exhibited a high GC (species-specific cell type) score
ut a low ASW (species-specific cell type) score. This discrep-
ncy may result from the GC metric’s dependence on the pre-
efined parameter k in the kNN graph, which might not op-
imally capture the desired structure for all datasets. Addi-
ionally, the GC metric can be affected by the global graph
opology, making it less reliable for assessing the isolation of
pecies-specific cell types in some cases. Therefore, we rec-
mmend prioritizing the ASW metric when evaluating the
eparation of species-specific cell types. 

To assess the performance of nested batch correction, we
sed a dataset consisting of human and mouse samples from
ve common tissues. However, the mouse dataset included
brain tissue, which was absent in the human dataset. A good
integration method should successfully integrate the cells
from corresponding tissues between mouse and human while
isolating the cells from mouse brain tissue. 

In this analysis, SATURN, scGen, and BBKNN emerged as
the top three performers overall, showcasing exceptional pro-
ficiency in species matching (Figure 5 B and Supplementary 
Figure S48 ). Notably, these three methods demonstrated im-
pressive capabilities in preserving the distinct characteris-
tics of mouse brain cells. However, BBKNN achieved suc-
cessful integration only for a subset of cells from the two
species. scGen encountered challenges in separately integrat-
ing bladder and kidney data. Additionally, SATURN inte-
grated cell types successfully but failed to integrate muscle tis-
sues between mouse and human ( Supplementary Figure S48 ).
This observation suggests that no method can effectively pre-
serve spatial variance among cell types and manage com-
plex integration scenarios encompassing variations in tissue
composition and species-specific attributes. 

In addition, we evaluated various methods on imbalanced
datasets, utilizing zebrafish and sea urchin datasets (Figure 5 C;
Supplementary Figures S26 , S48 C and D, S34 –S39 ). The ze-
brafish dataset, comprising 1 082 680 cells, contrasted starkly
with the sea urchin dataset, which contained only 60 399
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Figure 5. Benchmarking results for integration tasks involving time series, nested batches and imbalanced datasets. ( A ) UMAP plot of the time 
trajectory of the embryo development data of zebrafish and frog (cross-class integration task). ( B ) Bar plot of the overall batch correction scores and the 
o v erall bioconserv ation score in Homo sapiens and Mus musculus integration with nested batches task. ( C ) Line plot f or the o v erall bioconserv ation 
score in integrating 60 399 cells from sea urchin ( Strongylocentrotus purpuratus ) and different subsample percentage of the zebrafish ( Danio rerio, total 
1 082 680 cells) dataset. Subsample 6% from the zebrafish dataset is the balanced data size with the sea urchin dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

cells. In this task, we investigated whether the disparities in
dataset size would impact the performance in bioconserva-
tion and batch correction. We achieved this by subsampling
all cell types in the zebrafish dataset at intervals of 1%, 6%,
20%, 40%, 60% and 80%. 

Further, we ran the integration pipeline for each method
at these different scales three times to record the run-
ning time ( Supplementary Figure S50 ) and computational
resources ( Supplementary Table S7 ) utilized and evaluated
the algorithms’ robustness ( Supplementary Table S8 and
Supplementary Figures S51 –S53 ). We found that methods
like Harmony, scVI and Scanorama are highly efficient,
scaling up to millions of cells with a running time of < 1 h. In 

terms of robustness, graph-based methods like BBKNN and 

SAMap demonstrated consistently reliable performance, even 

when applied to datasets with millions of cells. In contrast,
deep-learning algorithms, which involve mini-batch sampling 
and stochastic gradient optimization, exhibited more variabil- 
ity across runs, resulting in reduced robustness compared to 

graph-based methods. 
From the bioconservation perspective, SATURN and 

BBKNN consistently preserved biological information well,
particularly under extreme conditions while other meth- 
ods did not generalize well. On the other hand, from the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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atch correction perspective, Scanorama displayed minimal
hanges, maintaining stability across all subsampling levels.
onversely, SAMap exhibited consistently improved perfor-
ance in batch correction as subsampling increased. This nu-

nced exploration of method performance under varying sub-
ampling conditions provides valuable insights into their ro-
ustness and adaptability in the face of imbalanced dataset
izes. 

Further, we investigated the influence of data quality on the
ntegration performance of the methods by integrating two
istinct mouse datasets with an ant dataset of two kinds of
euronal cell types. The first mouse dataset (mouse1) had
 median UMI / cell of 488, while the second mouse dataset
mouse2) was three times deeper sequenced than mouse1 with
 median UMI / cell of 1499. Among the evaluated methods,
ATURN and BBKNN exhibited a notable increase in overall
core in both batch correction and bioconservation when tran-
itioning from lower quality data (mouse1) to higher quality
ata (mouse2) ( Supplementary Figures S48 E–G, S40 and S41 ).
otably, SATURN excelled in bioconservation even with low

equencing depth, suggesting inherent robustness to data qual-
ty variations. In contrast, SAMap and Seurat v4 CCA ex-
ibited increased batch correction scores and decreased bio-
onservation scores. scVI performed best with low sequencing
epth data for batch correction. These findings imply that spe-
ific methods have varying sensitivity to data quality, with in-
onsistent effects. Some methods are affected in batch correc-
ion, while others are impacted in bioconservation or both, po-
entially due to distinct assumptions and models used by these
ethods. Researchers should consider the quality of their
ata when deciding on an appropriate integration method to
nsure reliable and accurate integration of datasets. 

Overall, this analysis underscored the pivotal role played by
ata characteristics, encompassing factors such as time trajec-
ory variations, species-specific cell types, nested batch effects,
mbalanced dataset size and data quality in shaping the per-
ormance of integration methods. It emphasized the necessity
or meticulous evaluation of these factors when selecting an
ntegration approach for cross species integration. 

he cell type tree of life 

nderstanding the evolutionary relationships between cell
ypes across different species is a fundamental question in bi-
logy. Cells are the basic units of life, and tracing homologous
ell types across organisms can provide deep insights into how
ell types have evolved, diversified or been conserved through-
ut evolution. Leveraging cross-species integration of single-
ell RNA-seq data allow us to reconstruct phylogenetic rela-
ionships at the cellular level, offering a unique perspective
n cell type evolution beyond traditional morphological or
unctional classifications. 

We inferred two unrooted phylogenetic cell type trees.
he first tree is a ‘fine-grained’ cell type tree of cat ( Felis
atus ) and dog ( Canis lupus familiaris ) lung tissue datasets
Figure 6 A). The second tree is a more ‘coarse-grained’ cell
ype tree from seven species spanning a larger phylogenetic
istance ( Schmidtea mediterran ea, Danio rerio , Ciona intesti-
alis , Mus musculus , Homo sapiens , Drosophila melanogaster
nd Caenorhabditis elegans; Figure 6 B). Based on our bench-
arking results we used the integrated embeddings derived

rom SATURN for the generation of both cell type trees. 
The lung cell type tree from cat and dog encompasses seven
cell type groups and was inferred from the top 20 PCs cal-
culated from SATURN embeddings as phylogenetic charac-
ters (see ‘Materials and methods’ section). Robustness of the
cell type tree was assessed by calculating ‘jumble scores’ and
‘scjackknife scores’ for technical and biological repeatability,
respectively. The jumble score measures the robustness of a
given tree topology when constructing the tree with the same
set of cells but different algorithm initializations, while the sc-
jackknife score describes the robustness of a given tree topol-
ogy with different set of cells ( 45 ). Higher scores in both
settings indicate more reliable tree topologies. 

As anticipated, the ‘fine-grained’ cell type tree reveals that
similar cell types cluster together, irrespective of branch length.
This observation underscores the significance of cell type sig-
nals, as illustrated in Figure 6 A. Moreover, the clustering of
cell types is intricately linked to tissue-specific functions. No-
tably, T cells, endothelial cells, fibroblasts and ATII, all con-
tributing to the internal defenses of the respiratory system,
form a cohesive cluster. Similarly, secretory and ciliated cells,
instrumental in external respiratory defenses, share a cluster,
while ATI, focused on the gas exchange process, occupies a
distinct cluster. This clustering strongly suggests that our tree
construction method as well as SATURN integration adeptly
captures the underlying functional characteristics of various
cell types across species. 

In contrast, the ‘coarse-grained’ multi species cell type tree
exhibits conserved clustering only for certain cell types, as
exemplified by neurons (Figure 6 B). This clustering implies
a common evolutionary origin and fundamental conserva-
tion among species. Additionally, the tree unveils species-
specific cell type clustering, exemplified by the cell types from
Schmidtea mediterranea . This intricate pattern hints at a com-
plex interplay between conserved and species-specific cellular
identities, likely reflecting adaptations to the distinct biologi-
cal demands of specific species. Furthermore, the observation
that certain cell types exhibited both conserved and species-
specific clustering adds another layer of complexity. For ex-
ample, two distinct muscle cell clades were identified. No-
tably, human endothelial cells and muscle cells from Ciona in-
testinalis and Caenorhabditis elegans expressed some shared
marker genes, including A TP6V0D1, ERH, MGA T2, NUS1,
PSMC3, PSMD8, RER1, RSL24D1, TCP1 and WDR43 .
These genes are relevant to proteasome function, various types
of N-glycan biosynthesis, terpenoid backbone biosynthesis,
and collecting duct acid secretion, indicating potential func-
tional connections among these cell types. The dual nature of
the cell types grouped in the muscle cells cluster suggests a
modular functionality, where some aspects of cellular identity
are evolutionarily stable, while others dynamically adapt to
the specific needs of individual species. These findings high-
light the nuanced and dynamic nature of cell type evolution,
showcasing a balance between conservation and adaptation
in the intricate tapestry of multicellular organisms. 

Similar to the species taxonomy, the cell type phylogenetic
tree enables a phylogenetic exploration of cell type relation-
ships across different species, which will enable us to better
understand the evolution at the cell type resolution. However,
it is important to note that the current ‘coarse-grained’ cell
type tree represents an initial attempt at construction. With a
fine-grained view and evolutionary related species, we can get
a better and accurate tree ( 60 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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Figure 6. Unrooted cell type trees for cat and dog lung tissue and seven phylogenetically distant species separately. ( A ) Seven cell types from cat and 
dog cluster in the cell ph ylogen y based on the integrated embedding derived from SATURN. ( B ) Forty-five cell types from seven model species 
( Schmidtea mediterranea, Danio rerio, Ciona intestinalis, Mus musculus, Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans ) cluster in 
the cell ph ylogen y based on the integrated embedding derived from SATURN. Species and cell types are labeled at the tips. Node support values are 
printed as ‘jumble score / scjackknife score’. MYA: million years ago. 
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iscussion 

ntegrating single-cell RNA-seq data across species poses a
ormidable challenge, necessitating careful consideration of
actors such as phylogenetic distance, batch effects, and preser-
ation of biological signals. In this study, we systematically
ssessed and compared the performance of nine integration
ethods across a myriad of cross-species integration tasks,

hedding light on their respective strengths and limitations. 
Upon analyzing the results from 36 cross-species integra-

ion tasks, a discernible influence of phylogenetic distance
n the ranking of integration methods emerged (Figure 7 A
nd B; Supplementary Figure S54 ). Overall, methods leverag-
ng biological sequence information exhibited superior per-
ormance in bioconservation, with notable examples being
 ATURN and S AMap. S ATURN, a deep learning-based ap-
roach, employs a pre-trained language model to transform
he homologous genes into universal embeddings, i.e. a low-
imensional representation of the data. Through weighing the
onnection between genes based on universal embeddings,
ATURN can generate powerful cell embeddings crucial for
eaningful cross-species comparisons. However, SA TURN’ s

uboptimal performance in batch effect removal may be at-
ributed to its reliance on contrastive learning which focuses
n aligning similar cells by maximizing similarity between cer-
ain cell pairs. This approach may not effectively model and
orrect complex technical batch effects. In contrast, genera-
ive models like scGen and scVI explicitly separate biological
ignals from technical noise, leading to better batch correction
erformance. 
Similarly, SAMap uses BLAST to extract protein sequence

imilarities between species to construct a gene homology
raph. Further, through the gene homology graph, SAMap
rojects the cross-species scRNA-seq datasets to a joint
pace, which is connected by the mutual cross-species near-
st neighborhoods. While robust in certain integration tasks,
AMap encounters challenges in simpler cross-genus, cross-
amily species integration and non-atlas level integration, at-
ributed to the insensitivity of BLAST-derived features to
axonomic close species. Even when using one-to-one or-
holog gene sets as input, SAMap and SATURN outper-
ormed the other methods in most tasks, suggesting that
he use of BLAST similarity scores and protein language
odels helps these methods to better capture biological sig-
als. Conversely, Harmony and BBKNN demonstrate sub-
ptimal performance across most tasks, likely due to their
inear assumptions regarding batch effects, proving too sim-
listic for cross-species integration tasks. As the phyloge-
etic distance between two species increases, these linear as-
umptions fail to capture the heterogeneity across species
ffectively. 

Our study underscores the importance of meticulous con-
ideration of data characteristics, including sequencing depth,
pecies-specific cell types, nested batch effects, imbalanced
atasets and time-trajectory variations, for method selection.
ATURN showcased robustness and flexibility in handling
uch challenges, whereas other methods displayed sensitivity.
e also observed that different methods exhibited varied pref-

rences in batch correction and bioconservation. SATURN,
BKNN and SAMap consistently outperformed others in bio-
onservation, prioritizing biological information preservation.
n contrast, scGen, scVI, Seurat v4 CCA and Scanorama
xceled in batch correction, emphasizing the removal of
atch effects. A trade-off between batch effects removal and
biological conservation, especially in overlapping scenarios,
becomes apparent ( 13 ). 

In order to provide a reference for researchers to select
appropriate methods for cross-species integration across
various scenarios, we introduced a decision tree based on
our benchmark results considering both batch correction
scores and bioconservation scores since these two aspects
measure how well the two species’ cell is mix and how
well the biological information is preserved after integration
(Figure 7 C). We first provided recommendations based on
the phylogenetic distance of the given species pairs. For
example, when integrating species from different families
but the same order (cross-family), we recommend using
SATURN, scGen, scVI or Seurat v4 CCA. When integrat-
ing cross-phylum species, we recommend using SATURN,
SAMap or BBKNN. Additionally, we provide guidelines for
common scenarios encountered in cross-species integration
studies. For example, given two datasets with imbalanced
scales, where one has millions of cells and another con-
tains only several thousand cells, we recommend employing
S ATURN, S AMap or fastMNN for the integration task.
Researchers could further use a combination of top per-
forming methods to reduce potential biases associated with
any specific method. We further provide a guideline only
considering the methods’ performance in bioconservation
for researchers who are more interested in the biological
information conservation metrics ( Supplementary 
Figure S55 ). 

Integrating multiple species presents challenges due to the
decreasing number of one-to-one orthologous genes as more
species are included, potentially compromising integration
quality . Alternatively , methods that utilize homologous genes
beyond one-to-one orthologs, such as SATURN and SAMap,
are more robust when integrating multiple batches and han-
dling large phylogenetic distances. These approaches help mit-
igate the loss of informative genes and maintain integration
quality across multiple datasets. 

Cross-species integration in scRNA-seq data analysis is a
powerful tool for unraveling biological complexities. Particu-
larly, using cross-species data allows for tracing the evolution
of cell types across species and time. By comparing gene ex-
pression patterns across species, insights into the evolutionary
conservation of cellular processes emerge, facilitating the iden-
tification of conserved pathways and shared regulatory net-
works. This approach transcends the limitations of studying
individual species, offering a broader perspective on cellular
diversity and function. Moreover, it enables knowledge trans-
fer from well-studied to less-explored species, deepening our
understanding of their biology and uncovering species-specific
innovations and adaptations. 

We would like to note that our benchmark study has fo-
cused only on cross-species integration of scRNA-seq data.
Future work should extend the assessment to other data types
like scA T AC-seq. Additionally, addressing challenges related
to the identification of one-to-one orthologous gene relation-
ships is crucial, as the current integration methods may over-
look valuable information in one-to-many and many-to-many
homologous relationships. Based on the fact that no method
performs well in both bioconservation and batch correction,
a natural extension could be constructing a self-supervised
learning-based method, for example, generative pretraining
( 61 ) as well as contrastive learning-based models ( 62 ,63 ), and
further refining these algorithms for integrated embeddings.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1316#supplementary-data
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Figure 7. Overall performance of all methods and a guideline in cross-species scRNA-seq data integration tasks. ( A ) Scatter plot of the a v erage o v erall 
batch correction score against a v erage o v erall bioconserv ation score f or the selected methods based on 36 integration tasks. Dashed lines indicate the 
a v erage scores across all the methods. ( B ) The average overall scores and ranking of all methods in different cross-species integration tasks. ( C ) 
Scenario-specific decision-tree-style guidelines for cross-species scRNA-seq data integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the cell type tree we crafted does not capture
the full spectrum, given its exclusive reliance on scRNA-seq
data in the current methodology. Future iterations could en-
hance comprehensiveness by incorporating additional data,
such as cell ontology information, for a more holistic tree con-
struction. Moreover, the intrinsic heterogeneity in single-cell
transcriptomics poses challenges to the reproducibility of tree
construction. Similar to genetic variation, cell types may un-
dergo drift, split or loss over evolutionary time, resulting in
a paraphyletic relationship among labeled cells of the same
type. This dynamic nature can lead to the absence of one-
to-one corresponding cell types across species ( 60 ). This in-
herent variability might contribute to the presence of some
counter-factual branches observed in our ‘coarse-grained’
tree. 

In conclusion, our comprehensive evaluation of integra-
tion methods in cross-species integration tasks provides valu-
able insights into their performance across different phylo- 
genetic distances and data qualities. This study thus con- 
tributes to the understanding of the strengths and limitations 
of various integration methods, aiding researchers in selecting 
the most appropriate approach for their specific cross-species 
integration studies. 

Data availability 

Datasets are collected from published studies, as described in 

Supplementary Table S2 and Supplementary Table S3 . The 
preprocessed datasets for each task are available at https: 
// figshare.com/ s/ 6187811b6c3fae02a4d3 . The output data 
from all runs are available in Supplementary Table S9 - 
Supplementary Table S11 . The source code and the corre- 
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ponding step by step manual is available at https://figshare.
om/ s/ 2f65bfa7032ffbd199c9 . 
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