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Abstract: MicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a
variety of biological processes. They have been identified and characterized in several plant species,
but only limited data are available for Arundo donax L., one of the most promising bioenergy crops.
Here we identified, for the first time, A. donax conserved and novel miRNAs together with their
targets, through a combined analysis of high-throughput sequencing of small RNAs, transcriptome
and degradome data. A total of 134 conserved miRNAs, belonging to 45 families, and 27 novel miRNA
candidates were identified, along with the corresponding primary and precursor miRNA sequences.
A total of 96 targets, 69 for known miRNAs and 27 for novel miRNA candidates, were also identified
by degradome analysis and selected slice sites were validated by 5′-RACE. The identified set of
conserved and novel candidate miRNAs, together with their targets, extends our knowledge about
miRNAs in monocots and pave the way to further investigations on miRNAs-mediated regulatory
processes in A. donax, Poaceae and other bioenergy crops.

Keywords: giant reed; miRNAs; small RNAs; degradome

1. Introduction

Improving clean energy production and ensuring universal access to affordable and
sustainable energy resources are the main objectives of goal 7 of the seventeen Sustain-
able Development Goals (SDGs) promoted by the United Nations to end poverty, protect
the planet, and ensure peace and prosperity to all people by 2030 (https://www.un.org/
sustainabledevelopment/ (accessed on 1 March 2022)). The 2019 Global report from
The Food and Land Use Coalition (FOLU) (https://www.foodandlandusecoalition.org/
global-report/ (accessed on 1 March 2022)) claims the need to “focus on bioenergy that
do not (or only minimally) increase the pressure on land use”, cultivating energy crops
that do not compete with food production, forest, or degraded land restoration. In this
context, second-generation biofuels, defined as fuels that can be manufactured from vari-
ous types of non-food biomass, including plant materials and animal waste, represent a
promising alternative.
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Arundo donax L., commonly called giant reed, is a perennial rhizomatous invasive grass
belonging to the Poaceae family, often cultivated as an energy crop for second generation
biofuels production [1,2]. One of the advantages of A. donax cultivation resides in its
potential to grow in very low nutrient availability conditions [3] and to be employed for
restoration of marginal lands [4] and phytoremediation [5,6]. Indeed, the ability of this
plant to cope with different biotic and abiotic stresses and survive in degraded and marginal
areas has been widely demonstrated [7–11].

MicroRNAs (miRNAs) are a class of small RNA (sRNA) molecules of 21–24 bp in-
volved in the post-transcriptional regulation of a variety of fundamental biological aspects
in eukaryotic organisms, including plants [12]. MiRNAs are transcribed by RNA poly-
merase II from MIR genes. These sequences, called primary miRNAs (pri-miRNAs),
contain a self-complementary region that is processed by Dicer complex; the first cleavage
removes the non-complementary part, originating the miRNAs precursor (pre-miRNA),
while the second cleavage originates a small double-stranded RNA molecule, known
as miRNA/miRNA* duplex, with 2-nt 3′ overhang. AGO1/HSP90 complex binds the
duplex and frees the miRNA guide strand, originating a mature RISC complex, that is
transported into the cytoplasm, where it can perform its function: cleaving the target
transcript or inhibiting its translation [13,14]. Several studies have shown that miRNAs are
also strongly involved in the response to abiotic and biotic stress [15] and that plants can
activate their physiological responses by expressing some miRNAs that act on stress-related
target genes [16].

Despite the economic importance of A. donax, its genome has not been sequenced so far,
probably due to its complexity [17], and only transcriptomic studies have been performed
to investigate its gene content and its molecular responses to the environment [9,10,18–22].
Based on the available transcriptomic data from different tissues (root, bud, culm, and leaf),
an in silico prediction of A. donax miRNAs was conducted, resulting in the prediction of
141 conserved miRNAs distributed into 14 miRNA families and 462 in silico predicted
target transcripts [23]. However, as far as we know, no direct investigation of miRNAs and
miRNA targets has been performed so far in Arundo.

In the present study, we carried out for the first time a high-throughput sequencing
approach to identify known miRNAs and putative candidate novel miRNAs of the bioen-
ergy crop A. donax, and investigated, by the parallel analysis of RNA ends (degradome
analysis) [24], the targets of both known and candidate novel miRNAs in order to explore
the miRNA putative functions (Figure 1). Overall, this study advances our knowledge of A.
donax miRNAs and provides an inventory of miRNAs and related targets useful for further
studies, aiming to clarify the typical characteristics of resilience of A. donax to biotic and
abiotic stress.
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ronmental conditions for two months before the beginning of the experiment. Four differ-
ent nutrient solutions were supplied: (1) Hoagland solution (Control, C); (2) Hoagland 
solution complemented with 8.0 mM KH2PO4 (excess of phosphorus, +P); (3) Hoagland 
solution complemented with 200 mM NaCl (excess of salt, +Na); and (4) Hoagland solu-
tion complemented with both 200 mM NaCl and 8.0 mM KH2PO4 (excess of phosphorus 

Figure 1. Schematic representation of experimental design and workflow of the performed analyses.

2. Materials and Methods
2.1. Plant Material

A. donax plants were propagated from rhizomes collected in Sesto Fiorentino, (43◦81′75′′ N,
11◦18′88′′ E) (Italy) and grown in a climatic chamber under controlled environmental
conditions for two months before the beginning of the experiment. Four different nutri-
ent solutions were supplied: (1) Hoagland solution (Control, C); (2) Hoagland solution
complemented with 8.0 mM KH2PO4 (excess of phosphorus, +P); (3) Hoagland solution
complemented with 200 mM NaCl (excess of salt, +Na); and (4) Hoagland solution com-
plemented with both 200 mM NaCl and 8.0 mM KH2PO4 (excess of phosphorus and salt,
+NaP). These solutions were supplied twice a week for the entire duration of the experiment
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(43 days). For each plant, the third fully expanded leaf was collected at the end of the
experiment and stored at −80 ◦C until RNA extraction was performed. Three biological
replicates for each treatment were collected. However, considering the complexity and
imperfect knowledge of the Arundo genome, in the present study we focused on miRNAs
that are common to all stress conditions. Therefore, for sRNAs sequencing, for each treat-
ment, three samples were pooled together, while, for degradome sequencing, a pool from
samples of all the treatments was prepared. More experimental details on plant growth
conditions, stress treatments and sample collection are reported in the cognate paper [9].

2.2. sRNAs and Degradome Sequencing

Total RNA extraction was performed with TRIzol® Reagent (Thermo Fisher Scientific®,
Wilmington, NC, USA), according to the manufacturer’s instructions. DNA contamination
was removed using TURBO DNA-freeTM kit (Thermo Fisher Scientific®). RNA concentra-
tion was determined by Nanodrop spectrophotometer (Thermo Fisher Scientific®). Samples
were sent to LCSciences (Houston, TX, USA) for library preparation and sequencing with
Illumina technology (single end reads, 50 bp). Raw data have been deposited in the Se-
quence Read Archive (https://www.ncbi.nlm.nih.gov/sra (accessed on 1 March 2022) with
SRA accession PRJNA774159.

2.3. Data Analysis

Quality reads assessment of sequencing data was carried out with FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 March 2022) v. 0.11.5).
In order to identify known miRNAs, after adapter removal with Trimmomatic (v 0.39; http:
//www.usadellab.org/cms/?page=trimmomatic (accessed on 1 March 2022)) [25], clean
reads were aligned to mature monocotyledons miRNAs (downloaded from miRBase v 22.1;
https://www.mirbase.org/ (accessed on 1 March 2022)) with PASS software (v. 2.30; http:
//pass.cribi.unipd.it (accessed on 1 March 2022)) [26] using the following parameters: read
trimming with a quality threshold of 15 in a window of 6 nt, local alignment with ungapped
seed structure, 89.9% as identity percentage (i.e., 2 mismatches) and 18 nt as minimal align-
ment size. Identical mapped reads were collapsed with the tool fastx_collapser belonging
to the FASTX toolkit (v. 0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/ (accessed on
1 March 2022)) and, if present in at least three libraries (i.e., three different treatments) with
a minimum of 5 reads, were renamed according to the corresponding miRNAs. Primary
miRNA sequences (pri-miRNA) were searched in the A. donax transcriptome [9] using the
Perl script SumirFind.pl (v. 1.1; https://github.com/MiqueiasFernandes/bioinformatics/
blob/master/SUmirFind_sRNA.pl (accessed on 1 March 2022)) [27,28] allowing two mis-
matches. MIReNA tool (v. 2.0; http://www.lcqb.upmc.fr/mirena/index.html (accessed on
1 March 2022)) [29] was then used for precursors (pre-miRNAs) sequences identification
and validation and for calculation of Minimum Folding Energy (MFE) and Minimal Folding
Energy Index (MFEI). MFE values estimated the stability of the stem-loop structure of the
miRNA precursor whereas MFEI values were used to distinguish pre-miRNA sequences
from other coding or non-coding RNAs. Secondary structure design was carried out with
RNAfold [30]. miRNAs* sequences were defined as the strand with the lower frequency
between the two complementary strands.

For novel miRNA prediction, unaligned reads were scanned with Infernal (v. 1.1.2)
in order to remove rRNA, tRNA and snoRNA, and then blasted against the complete
chloroplast genomes of three Arundo species, i.e., A. formosana (NC_054211.1), A. donax
(NC_037077.1), and A. plinii (NC_034652.1) available in the NCBI RefSeq database, to
remove chloroplastic sequences. Reads were then size selected (less than 24 nt long),
collapsed with fastx_collapser (FASTX toolkit, v. 0.0.13), and clustered using CD-HIT
software (v. 4.6.6), using a word size of 5 and 85% identity in order to reduce redun-
dancy. After checking the presence in at least three different libraries (i.e., three differ-
ent treatments), reads were selected for further analyses as hypothetical novel miRNAs.
Pri-miRNA, pre-miRNA, and miRNA* sequences were identified as described above for
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known miRNAs. Secondary structures of pre-miRNAs were obtained using the RNAfold
web server (http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi (accessed on
1 March 2022)).

In the case of degradome-sequencing data, adapters and low-quality reads trimming
was performed with BBMap (v. 38.67; https://jgi.doe.gov/data-and-tools/software-tools/
bbtools/). Clean reads were then used to identify miRNA sliced target sites using the
CleaveLand 4 pipeline (v. 4.4; [31]). According to the relative abundance of the mapping
reads, sliced target sites were distributed into five categories, defined as follows. Category 0:
more than one read mapping at the cleavage position, equal to the maximum on the
transcript, when there is just one position at the maximum value; category 1: more than one
read mapping at the cleavage position, equal to the maximum on the transcript, when there
is more than one position at maximum value; category 2: more than one read mapping at
the cleavage position, above the average depth, but not the maximum on the transcript;
category 3: more than one read mapping at the cleavage position, but below or equal to
the average depth of coverage on the transcript; category 4: just one read mapping at the
cleavage position. GO annotation of target genes was carried out with Blast2GO tool [32].

2.4. 5′ RACE for Cleavage Site Identification of miRNA Targets

Poly(A) RNA fraction from total RNA was collected using the MicroPoly(A) Purist™
kit (Thermo Fisher Scientific®). Generation of cDNAs of poly-adenylated 5′ remnants
ligated to 5′ adapter was carried out according to the protocol reported in [24]. PCR was
performed using 5′ adapter primer and 3′specific primer (denoted by the target id in
Table S1). PCR conditions were initial denaturation at 98 ◦C for 30′′ followed by 34 cycles
of denaturation at 98 ◦C for 20′′, annealing at 60 ◦C for 30′′ and elongation at 72 ◦C for
15′′; final elongation was performed at 72 ◦C for 3′. PCR products were resolved in 1X
TRIS-Borate buffer, 8% acrylamide gel, eluted in sterilized water at 4 ◦C, overnight and
precipitated adding 2.5 v/v of absolute ethanol and 1/10 of 2 M NaCl. Purified PCR
products were subjected to a second round of amplification with the same pairs of primers,
purified using the MinElute® PCR Purification kit (Qiagen, Hilden, Germany), and cloned
into the pGEM®-T Easy Vector System I (Promega, Madison, WI, USA). Clones were sent
to BMR Genomics (Padova, Italy) for Sanger sequencing.

3. Results
3.1. sRNA Profiles of A. donax

To identify miRNAs from A. donax, sRNA libraries were generated from total RNA
extracted for each of the following treatments: (1) control plants (C); (2) excess of phos-
phorus (+P); (3) excess of sodium (+Na); (4) excess of sodium and phosphorus (+NaP).
Libraries were then sequenced with the high-throughput Illumina technology. Since the
aim of the work was to obtain a catalogue of known and novel miRNAs and related targets
in A. donax, a species with a complex and imperfectly known genome, we considered
sRNAs libraries as biological replicates and focused on miRNAs common to at least three
libraries. After trimming of adapters, removing of low-quality sequences, rRNA, tRNA and
snoRNA, and selection of reads shorter than 29 nt, a total of clean reads ranging between
2,545,750 (+Na) and 4,096,100 (+P) were retained for further analyses (Table S2).

In all the libraries, the majority of sRNA reads ranged between 20- and 24-nt in length
(C, 69.1%; +P, 71.9%; +Na, 64.1%; +NaP, 59.6%); for all treatments, the most abundant
sRNAs were 24-nt in length, followed by the 21-nt sRNAs (Figure 2). As expected, being
miRNAs mostly 21-nt long, in all treatments 21-nt sRNAs showed a doubled level of
redundancy compared to 24 nt-sRNAs (estimated by the average complexity index of 0.30
and 0.65, respectively).

http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
https://jgi.doe.gov/data-and-tools/software-tools/bbtools/
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libraries; rpm: reads per million.

3.2. Identification of Known miRNAs in A. donax

To limit the number of false positives and improve the accuracy of the annotation, we
annotated as known miRNAs only those present in at least three libraries with a minimum
of 5 reads per library. According to these criteria, a total of 134 known miRNAs, belonging
to 45 miRNA families, were identified. Among them, the family of miR395 was the most
represented with 19 members, followed by the family of miR167 and miR169, both with
9 members, and the one of miR164 represented by 8 members. By contrast, several miRNA
families were represented by 2 or 1 member (Figure 3 and Table S3). According to the last
release of the miRbase database (v22.1), among the 45 miRNA families, 29 were conserved
in both monocot and dicot clades, 15 were identified so far only in the Poaceae grass family
and 1 in both Poaceae and Bromeliaceae (both belonging to the order of Poales).
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Figure 3. Number of miRNA members for each conserved miRNA family identified in A. donax L.

As expected, the majority of conserved miRNAs were of 21-nt, followed by those of
22-nt, i.e., 67% and 20%, respectively. The overall nucleotide composition of the mature
miRNA sequences was 25.89% of uracil, 23.21% of adenine, 28.17% of guanine, and 22.72%
of cytosine with a GC content of 50.89% (Table S4). These values are in line with the base
composition reported previously for the subset of Arundo conserved miRNAs identified
by an in silico analysis of transcriptomic data and for that of the mature miRNAs in Oryza
sativa [23] (Figure 4A). Position specific nucleotide sequence analysis of the identified
conserved miRNAs revealed that uracil was the most represented nucleotide at the 5′ end,
with a percentage of 52.99% (Figure S1A). This value is in line with the percentage observed
in rice (62.71%) and is lower than the value of 85.11% observed in the miRNA subset
previously identified by [23] (Figure 4B). Focusing on position 10 and 11, considered as the
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two principal common cleavage sites, we found that, in agreement with what was observed
for rice miRNAs [23], adenine was the most represented nucleotide at position 10 (34.33%),
while uracil and guanine were the two most represented nucleotides at position 11, with a
percentage of 37.31% and 30.60%, respectively (Figure 4C,D and Table S4). The differences
observed in respect to the nucleotide distribution found in mature miRNAs by [23] could
reside in the fact that, due to the in silico transcriptomic-based approach used, only a subset
of highly conserved miRNA families was detected.
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MIReNA analysis allowed us to predict the pre-miRNA sequences of 29 known
miRNAs, with a length ranging from 60- and 217-nt and an average length of 121-nt. The
reliability of the pre-miRNA’s prediction was supported by the highly negative MFE values,
ranging from−122.3 kcal/mol to−26.0 kcal/mol. Moreover, the pre-miRNAs MFEI values,
ranging between −1.48 kcal/mol and −0.85 kcal/mol, clearly indicated that they do not
belong to other classes of non-coding RNAs such as tRNAs (MFEI = −0.64 kcal/mol),
rRNAs (MFEI = −0.59 kcal/mol), and mRNAs (MFEI = 0.62–0.66 kcal/mol) [33,34].

Comparing the number of identified miRNA loci with that reported in miRBase (v22.1)
for Oryza sativa and by [23] in the Arundo in silico annotation, we confirmed that the
family of miR169 has the highest number of loci both in O. sativa and A. donax (Table 1). In
line with our results, miR169 has been identified so far in more than 40 species [35], and
it is often the miRNA family with the largest number of loci [36]. The miR395 family, for
which we identified 8 loci, was the second most represented miRNA family in A. donax.

In plants, the miR395 family is one of those with more members and, in rice and
wheat, it has been found to be organized in compact clusters originated by reiterated
duplication events and transcribed as one single polycistronic transcript [37,38]. The
compact polycistronic structure of this miRNA family is conserved in A. donax, where
several miR395 family members originate from the same 2 transcripts (Figure 5A,B), thus
suggesting a similar strategy of expression.

The abundance of known miRNA reads was estimated as transcript per million (TPM).
The obtained TPM values widely varied among the miRNA families identified. Members of
the conserved miRNA families miR167, miR168, miR169, and miR396 as well as members
of monocots-specific miRNA families miR2275, miR5072, and miR5168 were the most
highly expressed miRNAs (TPM > 10,000). Among those with a TPM ranging between
10,000 and 1000, we found several miRNAs families conserved in both monocots and
dicots (miR156, miR159, miR160, miR162, miR164, miR168, miR169, miR171, miR172,
miR393, miR394, miR827) and few members of monocots-specific miRNA families (miR444,
miR9773, miR9774) (Table S3).
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Table 1. Comparison between the number of miRNA loci found in A. donax in this work with those
found in O. sativa and previously in silico predicted in A. donax by [23].

miRNA Family A. donax O. sativa A. donax [23]

miR156 3 12 8
miR159 2 6 -
miR160 1 6 4
miR162 1 2 -
miR164 2 6 -
miR167 3 10 5
miR169 10 18 16
miR172 1 4 3
miR319 2 2 2
miR393 3 2 4
miR395 8 24 -
miR396 1 8 2
miR398 1 4 -
miR444 5 6 12
miR528 2 1 -
miR6222 1 - -
miR9774 1 - -
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3.3. Identification of Novel Candidate miRNAs in A. donax

Based on the recently revised criteria for the annotation of plant miRNAs [39],
27 candidate novel miRNAs (miRCs) were identified along with their star sequences
(Table S5). As for known miRNAs, miRCs were considered only if sequences were present
in at least three libraries with a minimum of 5 reads per library.

As expected, A. donax miRCs were mostly of 21 nt (Table S5). The overall nucleotide
composition of the miRC sequences was 25.69% of uracil, 25.87% of adenine, 23.96% of
guanine, and 24.48% of cytosine with a GC content of 48.44% (Table S4). Position specific
nucleotide sequence analysis highlighted that adenine was the most represented nucleotide
at the 5′ end, with a percentage of 40.74%; moreover, guanine and uracil were the most
represented nucleotides at position 10 and 11, with a percentage of 40.74% and 29.63%,
respectively (Figure S1B and Table S4).

Pre-miRNA sequences predicted by MIReNA analysis ranged from 60 to 252 nt in
length, with an average length of 114 nt. Similarly to the pre-miRNAs of known miRNAs,
the negative MFE (ranging from −124.5 kcal/mol to −19.9 kcal/mol) and MFEI values
(ranging from −1.90 to −0.94) supported the reliability of predictions. The existence of a
cluster originating from the same transcript and containing the pre-miRNA sequences of
two different novel miRCs, i.e., miRC2135661-1 and MIRC19508-19, spaced 94-bp apart
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(Figure 6A,B) prompted us to hypothesize the coordinated expression of these miRCs and
their involvement in the regulation of the same biological process. Indeed, even if no
targets were identified by the degradome analysis, the in silico target prediction performed
by psRNAtarget [40] identified two methyltransferase coding transcripts (TR5979 and
TR20503, respectively) among the most reliable targets of these miRCs (Table S6).
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and miRC*, respectively. Secondary structure was obtained by RNAfold webserver.

As already reported in previous studies [41–43], the reads abundance of newly iden-
tified miRCs, estimated as transcript per million (TPM), were generally lower in respect
to the conserved miRNAs, a characteristic possibly explained by the recent evolutionary
origin of species-specific novel miRNAs [44]. With a TPM higher than 1000, miRC10722-29
and miRC12006-27 were the most represented in all the considered libraries; seven miRCs
(miRC45695-9, miRC22398-17, miRC76001-6, miRC1648-141, miRC71512-6, miRC19508-19,
miRC2508-96) had a TPM value higher than 100 in at least two libraries.

3.4. miRNAs and miRCs Targets Identification and Functional Characterization

A. donax miRNAs and miRCs targets were identified by high-throughput degradome
sequencing [24]. A total of 5,897,713 raw reads, corresponding to 796,012 unique sequences,
were obtained. After adapters and low-quality reads trimming, a total of 1,557,573 clean
reads, representing 464,300 unique reads, were retained. To identify miRNA targets, these
reads were analyzed by CleaveLand 4 pipeline (v. 4.4), using the A. donax transcriptome
previously assembled from the same samples for mapping [9]. It was found that 67%
of degradome reads mapped to the A. donax transcriptome. We identified 69 targets
for 49 conserved miRNAs belonging to 26 miRNA families, including 8 Poaceae-specific
families. In the case of miRCs, 27 targets for 9 miRCs were identified. According to the
relative abundance of the mapping reads, sliced target sites were categorized into five
categories, from 0 to 4 (Figure S2; see Material and Method for category description). The
most relevant targets (category from 0 to 3) are reported in Table 2 while the complete list
of targets is reported in Tables S3 and S5.
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Table 2. List of miRNAs and miRCs targets with the corresponding CleaveLand category and p-
value (only targets with CleaveLand category below or equal to 3 are reported); targets selected for
confirmation by 5′ RACE are in bold; n/a, not annotated.

Name Target Id Target Annotation Category p-Value

K
no

w
n

m
iR

N
A

s

miR1128 TR24300 Senescence-associated protein (partial) 2 0.082

miR156d-3p TR4471 32 kDa dirigent-like protein 2 0.037

miR156j-5p.2 TR14474 Hypothetical protein 0 0.007

miR159a-3p TR5918 n/a 3 0.055

miR159b TR24324 n/a 3 0.058

miR159b TR30640 n/a 0 0.059

miR159e TR11309 BEL1-like homeodomain 4 containing protein 2 0.025

miR159e TR4218 Uncharacterized protein 3 0.046

miR159e TR6528 Ankyrin repeat domain-containing 13B 0 0.066

miR167c-5p TR29148 ATP synthase delta chloroplastic protein 2 0.005

miR169c-3p TR24300 Senescence-associated protein (partial) 2 0.051

miR172b TR25857 Hypothetical protein 3 0.086

miR172d-5p TR29998 Pentatricopeptide repeat-containing protein 3 0.036

miR319a TR1733 Calcineurin B 1 3 0.034

miR319b-3p TR24557 n/a 0 0.026

miR396b TR20898 Chlorophyll a-b binding chloroplastic-like protein 2 0.062

miR528-3p TR1686 n/a 3 0.266

miR528-3p TR8922 Peptidyl-prolyl cis-trans isomerase-like 3 protein 0 0.313

miR529a TR20898 n/a 3 0.163

miR6253 TR13145 Serine carboxypeptidase II-3 3 0.066

miR9774 TR9615 F-box SKIP22 3 0.022

C
an

di
da

te
m

iR
N

A
s miRC174433-3 TR10651 Oxygen-evolving enhancer chloroplastic protein 3 0.553

miRC174433-3 TR27080 Gamma-glutamyl peptidase 5-like 2 0.063

miRC174433-3 TR8896 Hypothetical protein 0 0.141

miRC366946-2 TR28663 Cytochrome P450 2 0.005

miRC71512-6 TR24307 B-box zinc finger 24 2 0.064

miRC808846-2 TR19738 n/a 3 0.083

The GO functional analysis of targets of both miRNAs and miRCs highlighted their
involvement in different biological processes mainly related to regulation, response to
stimuli, primary metabolism, and cellular processes (Figure S3). The presence of several
targets related to regulation and response to stimuli is in line with the regulatory nature of
miRNAs and with the used experimental design.

3.5. Validation of miRNAs and miRCs Cleavage Sites

To verify the cleavage sites identified by the degradome analysis and to confirm their
nucleotide position, 5′ RACE experiments were conducted on selected targets, i.e., an
oxygen-evolving enhancer chloroplastic protein coding transcript (TR10651) targeted by
miRC174433-3 and a 32 kDa dirigent-like coding transcript (TR4471) targeted by miR156
d-3p (Table 2).

By 5′ RACE of the transcript TR10651, we could amplify a specific fragment of
ca. 120 bp in all treatments except the control (Figure 7A). The Sanger sequencing of
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13 independent clones confirmed 5′ remnants found in the degradome analysis in the
range of positions from 1520 to 1580 of TR10651 (Figure 7B, blue dots), including two cases
(out of 13) of cleavage sites located two nucleotides downstream the CleaveLand predicted
cleavage site (Figure 7B, blue dot downstream red dot). Possible explanations include the
presence of other endonucleases cleavage sites or accumulation of particularly stable decay
intermediates [24]. The cleavages 2-nt downstream of the red dot (Figure 7B) could be
explained by the presence of miRC174433-3 isoforms (denotes as isomiRs, i.e., miRNAs
deriving from the same precursor), that have sequence offset at their 5′ ends (Figure 7C,D)
or other not yet identified pre-miRNA variants. A similar situation has been found in the
case of osa-miR171 [45].
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Figure 7. 5′ RACE on transcript TR10651 coding for an oxygen-evolving enhancer chloroplastic
protein targeted by miRC174433-3. (A) Fragment of 120 bp amplified by 5′ RACE in all treatments,
except the control treatment, (*) indicates the eluted band; (B) CleaveLand plot for TR10651 in the
range of 1500–1600 nt, red dot indicates the slicing site found by CleaveLand, blue dots indicate sites
derived from Sanger sequencing of clones obtained by 5′ RACE; (C) Schematic representation of
miRC174433-3 cleavage site. Red arrow indicates the cleavage site confirmed by CleaveLand; blue
arrow indicates the cleavage sites found by 5′ RACE analysis. Possible isomiRs are reported in blue;
(D) pre-miRNA hairpin, the red bracket represents the position of miRC174433-3 and the blue bracket
represents the position of miRC174433-3 variants.

According to the degradome analysis, the miR156d-3p was identified to guide the
cleavage of the transcript TR4471, coding for a 32kDa dirigent-like protein, at position
1749. The results obtained with 5′ RACE showed a double fragment in the +NaP sample.
Examining the CleaveLand pipeline steps, we found the presence in the degradome library
of 5′ remnants confirming the existence of a double cleavage site for miR156d-3p, located
at position 1749 and 1830 and compatible with 5′ RACE results; however, due to stringent
set up, only the first one was reported in the final CleaveLand output (Figure S4).

4. Discussion

With the development of high-throughput sequencing, miRNAs have been identified
from various plant species. The identification and characterization of miRNAs may be
particularly relevant for A. donax, having a surprising resilient character to adverse envi-
ronmental conditions either biotic or abiotic, resulting in high yields and low agronomic
input requirements [46,47]. However, probably due to the complexity of its not yet fully
sequenced genome, only an in silico miRNA prediction, based on transcriptomic data, has
been performed so far [48].

In the present study, small RNAs from A. donax plants were sequenced and known
as well as candidate novel miRNAs were identified. The obtained sRNA profiles were
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consistent with the typical ones reported for rice, wheat, and other monocots [43,49–51],
where the 24-nt sRNAs are the most abundant and heterogeneous class of small non-coding
RNAs in the sRNAs libraries, while the 21-nt sRNAs, being mostly miRNA sequences, show
a low level of redundancy. Consistently with the general characteristic of miRNAs [39]
and with previous reports on A. donax [48] and other plants [43,52], we observed a miRNA
length distribution with a prevalence of 21-nt sequences followed by those of 20-nt in
length. Furthermore, the observed 5′ enrichment of uracil as well as the overall nucleotide
composition of the mature miRNA sequences (Table S4) are comparable with the values
reported previously for in silico predicted A. donax mature miRNAs and for O. sativa [48]
and are in line with the known preference of the AGO1 protein for harboring miRNAs with
a 5’ terminal uracil [53]. Finally, the reliability of predictions is supported by the length of
precursors beneath 300-nt [53] as well as by the negative MFE and MFEI values obtained
for both miRNAs and miRCs [33,34]. Comparing the number of miRNA loci with those
found in the rice genome, we observed that major and most conserved miRNA families are
widely represented also in A. donax. Among these families, it is worth mentioning miR395
whose clustered nature is strongly conserved. The presence of clusters of miRNA genes
transcribed in large polycistronic primary transcripts is frequent in animals but only few
conserved cases have been described so far in plants, suggesting that the clustering may be
critical for the coordinate regulation of these specific miRNAs [54].

To identify the A. donax miRNA targets, a degradome high-throughput sequencing
approach was performed and 5′ RACE experiments were conducted to confirm the 5′

cleavage remnants for specific cases. This approach allowed us to confirm the functionality
of conserved miRNAs and to extend our knowledge as well. For instance, we could identify
the miRC174433-3 and its isomiRs, possibly originated from the pre-miRC174433-3 or from
other not yet identified pre-miRNA genes. The length of miRC174433-3 and its variants
ranged from 23- to 24-nt. Previous studies have shown that precursors representing most
conserved miRNA families are also independently processed by DCL3 (in addition or
in alternative to the canonical DCL1 cleavage) to generate miRNAs that are 23–25-nt in
length, called long miRNAs [55]. This evidence has been confirmed in several plants [56,57].
Moreover, the accumulation of miRNAs longer than 21-nt in A. thaliana was shown to be
inversely correlated with the level of miRNA conservation [55]. Such evidence prompted
us to hypothesize the existence of additional isomiR genes, besides the novel candidate
miRNA gene pre-miRC174433-3 (Figure 7C,D) and highlights the importance of specific
analyses of the transcriptome assembly in order to unravel more isomiRs. Interestingly,
pre-miRC174433-3 shows a structure with a “minimal” loop (Figure 7D). Similarly, osa-
miR531, sbi-miR5383, and bdi-miR1135, deriving from precursors with minimal loops, are
23- to 24-nt long [58–60]. The function of 23–24-nt miRNAs has not been determined yet;
however, they look to be dependent on the organ-specific expression of DCL3 and the
hierarchical action of other DCLs, upon biotic or abiotic stresses [56].

Consistent with the nature of samples used for the analysis, among the conserved
miRNAs families we identified, several are known to be responsive to stress, i.e., miR156,
miR160, miR164, miR167, miR169, miR396, miR399, miR528, and miR827 [16]. The family
of miR169, the most abundant in terms of loci also in A. donax, has been reported to
be involved in stress tolerance and responses to high salinity, and to abiotic stresses in
general [14,16]. By the degradome analysis, we identified two targets, respectively of
miR169a and miR169c-5p, coding for an mRNA cleavage and polyadenylation factor
(CLP1) homolog and a Vascular Plant One-Zinc-Finger (VOZ) 1-like transcription factor.
The first one is involved in the 3′-end cleavage and polyadenylation of eukaryotic mRNAs, a
critical step of gene expression, that has also been recently related to the regulation of stress
responses [61]. Vascular Plant One-Zinc-Finger (VOZ) Transcription Factors are involved
in regulating numerous biological processes such as floral induction and development,
defense against pathogens, and responses to multiple types of abiotic stress [62,63]. In
particular, VOZ transcription factors positively affect salt stress tolerance through the
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regulation of many stress-responsive genes [64,65] and may be considered a promising
target for the generation of salt-tolerant crops.

Among the conserved miRNAs, we identified miR528-5p, a miRNA previously es-
tablished as a multistress regulator, that has been shown to positively regulate rice salt
tolerance by down-regulating a gene encoding L-ascorbate oxidase (AO), thereby bolstering
up the AO-mediated abscisic acid synthesis and ROS scavenging [66]. According to our
data, miR528-5p targets an L-ascorbate oxidase coding transcript also in A. donax, thus
suggesting that this regulatory mechanism is conserved among species.

Among the miRCs, it is worth mentioning miRC35861-11 and miRC37052-11. The
first one was found to target a geranylgeranyl pyrophosphate synthase coding transcript,
an enzyme that in sweet potato is involved in the biosynthesis of carotenoids and is
likely associated with tolerance to osmotic stress [67]. Since in A. donax, the excess of
salt does enhance the biosynthesis of carotenoids [9], further analyses would be useful to
investigate the possible involvement of miRC35861-11 in the A. donax response to osmotic
stress through the regulation of the carotenoid biosynthesis pathway. The miRC37052-11
targets a PAD4 lipase-like coding transcript. In Arabidopsis this enzyme is important for
the activation of defense responses dependent from salicylic acid, a phytohormone largely
recognized as a key player in plant abiotic stress-tolerance [68]. Therefore, miRC37052-11 is
a good candidate to be evaluated for its possible involvement in a salicylic acid-mediated
response of A. donax to stress conditions.

5. Conclusions

To conclude, despite the complexity of the A. donax genome and the lack of its complete
genomic sequence, we identified several known miRNAs and associated pre-miRNAs,
expanding the list of species hosting conserved miRNAs in their genome. As mining of
species-specific miRNAs has still not been carried out in A. donax, we proceeded with
a high-throughput sequencing-based annotation of novel candidate miRNAs and their
targets and identified new species-specific miRNAs and associated targets. Far from
being exhaustive, our results constitute a first step towards a more extensive catalogue
of A. donax microRNAs, mandatory for attaining a more complete understanding of the
microRNA regulatory role in this species, and point out the need to improve the genome
and transcriptome data resolution of this economically important crop.
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