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Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the
hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and
identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the
ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case
Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility
complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp
(2log10(p).22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges
from 32,933,485 bp to 33,585,118 bp (2log10(p).8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two
regions are physically close but are located in different blocks of linkage disequilibrium, and ,40% of the RA patients’
genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single
nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for
RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset
from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully
validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide
homozygosity association study provides an alternative to allelic association mapping for the identification of recessive
variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability
associated with RA and other autoimmune diseases.
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Introduction

Rheumatoid arthritis (RA, OMIM #180300), characterized by

damage to the synovial joints, is a chronic inflammatory disorder

with a multifactorial etiology and a polygenic mode of inheritance

[1,2,3,4,5]. RA patients have a shorter life expectancy (by ,3–10

years) and a higher mortality rate (,1.5–1.6 fold) compared with

the general population [6,7]. The worldwide prevalence rates and

sibling-relative risks of RA are ,0.3%–1.2% and 5–10-fold

greater, respectively [8,9]. Despite differences in the genetic

backgrounds of RA patients, the significance of the HLA-DRB1-

shared epitope (6p21.3) [10,11,12,13] and PTPN22 (1p13.3-p13.1)

[14,15,16,17,18,19,20] in the genomes of RA patients has been

well replicated in different genetic studies.

With the availability of high-throughput genotyping techniques,

genome-wide single nucleotide polymorphism (SNP) arrays (e.g.,

Affymetrix GeneChip and Illumina BeadChip technologies) have

been well developed and broadly applied to identify SNPs/genes

associated with complex diseases [21]. Large-scale genome-wide

association studies of RA have been carried out [17,18,20]. These

studies, which have been replicated, identified several new RA-

associated genes, including TRAF1/C5 (9q33-q34) [17,19,22],

TNFAIP3 (6q23) [18,19,23], and CTLA4 (2q33) [18,19,20].

Additional RA-associated genes have been found, which are

pending confirmation, including STAT4 (2q32.2–32.3) [24], CD40

(20q13) [19], REL (2p13-p12) [25], PRKCQ (10p15) [26], and

PADI4 (1p36.13) [16]. Although previous studies have established

allelic associations between RA and certain genomic regions, all of

the genes that contribute to RA have not been found [27], i.e.,
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.68% of the genetic variation responsible for RA remains to be

identified [20]. Genome-wide homozygosity association mapping

provides an alternative to allelic association mapping for

identification of recessive-acting susceptibility genes, uncovering

missing heritability, and understanding the complex etiological

mechanism(s) of RA.

A run of homozygosity (ROH) denotes a contiguous set of

homozygous genotypes in an intact genomic region. A practically

used definition of ROH allows a rich homozygote region

interrupted by a small number heterozygous genotypes arising

from genotyping errors, missing genotypes, or mutations. An

ROH that includes a sizable tract of homozygosity and deviates

from a random distribution in the genome is denoted as

‘‘homozygosity disequilibrium’’ in this study. This type of ROH

may result from various mechanisms including: 1) chromosomal

aberrations, (e.g., uniparental disomy, hemizygous deletion, and/

or loss of heterozygosity [28,29,30,31,32]); 2) autozygosity as a

consequence of inbreeding, consanguineous marriage, or a recent

common ancestor [33,34,35,36,37]; and 3) natural selection, e.g.,

positive selection or selective sweep [38,39,40]. Homozygosity

disequilibrium has frequently been observed in the general

outbred population [34,41,42], but it is also not entirely benign

as it increases the susceptibility to diseases such as neurodevelop-

ment-related disorders [40,43] and other autoimmune diseases

[44].

Homozygosity mapping aims to identify ROH(s) associated with

disease states and was originally developed to map genes

responsible for recessive diseases by using genetic marker data

from inbred pedigrees [45,46,47,48,49]. Recent studies have also

showed that homozygosity association mapping is a statistically

powerful method when identifying susceptibility genes associated

with complex diseases [40,43], cancers [50,51,52,53], and

phenotypic traits [54,55,56]. Various statistical methods of

homozygosity association mapping have been developed in order

to analyze genotype data [35,53,57,58,59] or fluorescence

intensity data [60,61,62,63] from SNP microarrays. To the best

of our knowledge, however, studies have not been performed for

genome-wide homozygosity association mapping for RA. Addi-

tionally, ROHs have not been used as genetic markers for the

prediction of RA status. Instead of focusing on allelic association as

have previous genome-wide association studies for RA [17,18,20],

this study examined the hypothesis that ROHs act as recessive-

acting determinants in the underlying genetic mechanisms of RA

and identified RA-associated ROHs using genome-wide homozy-

gosity association mapping.

Results

Power calculations
Based on the simulation procedures described in Appendix S1,

values for the powers of simulated genome-wide homozygosity

association mappings were calculated using 2,000 patients and

3,000 controls in a simulation study of 1,000 replications (Figure 1).

We always used a genome-wide significance level of 2log10(p).8.

First, we considered the scenario for which a disease-associated

ROH consisted of L consecutive SNPs (L = 200). When 30%, 20%,

and 10% of the RA patients carried this ROH (effect size, d,

= 0.3, 0.2, 0.1), the power needed to detect the ROH was

calculated as 1.000, 1.000, and 0.814, respectively, for a genome

scan using a window size (W) of 100 SNPs (W = 100), or calculated

as 1.000, 1.000, and 0.790, respectively, for W = 150, or as 1.000,

1.000, and 0.795, respectively, for W = 200. We also incorporated

a heterozygous interference value (e), as a fraction that denoted

incomplete homozygosity in the disease-associated ROH that may

be caused by genotyping errors or unknown mutation mecha-

nisms. The power required for no heterozygous interference was

very similar to the power required for 10% heterozygous

interference. When e = 0.2 and d = 0.3 or 0.2, the power was

1.000. However, the power was reduced to 0.141 for a genome

scan with W = 100, reduced to 0.263 for W = 150, and to 0.463 for

W = 200 (when e = 0.2 and d = 0.1). We also considered a disease-

associated ROH for L = 150 or 100 and found the powers to be

very similar to that found for L = 200.

Genome-wide homozygosity association scans
We conducted genome-wide homozygosity association scans

with W = 100, 150, and 200 for the Wellcome Trust Case Control

Consortium (WTCCC) SNP data (WTCCC_100, WTCCC_150,

and WTCCC_200, respectively). Each genomic scan identified

ROHs that satisfied the genome-wide significance criterion of

2log10(p).8 (Figure 2). The identified regions and the respective

maximum values of 2log10(p) within the identified regions are as

follows. The WTCCC_100 scan identified three regions on

chromosome 6p [2log10(p) = 8.0769, 2log10(p) = 37.5332, and

2log10(p) = 9.8852] and one region on 9q [2log10(p) = 9.7484].

The WTCCC_150 scan identified two regions on chromosome 6p

[2log10(p) = 34.2091 and 2log10(p) = 9.0952] and one region on

17p [2log10(p) = 8.5038]. The WTCCC_200 scan identified two

neighboring regions on 6p [2log10(p) = 22.6591 and

2log10(p) = 8.3644]. All three scans identified two overlapping

ROHs located on chromosome 6p.

The first of these overlapping ROHs ranged from

32,451,664 bp to 32,846,093 bp and is located within the human

major histocompatibility complex (MHC) region at 6p21.3, and

the second ranged from 32,933,485 bp to 33,585,118 bp and

overlaps the MHC region (Figure 3). The two regions are located

in different blocks of linkage disequilibrium (LD). The names of

the genes within these two regions are shown in red in Figure 3.

The first region contains 10 genes (from BTNL2 to HLA-DQB2),

and the number of SNPs and the average intermarker distance are

125 and 3.1554 kb, respectively. The maximum 2log10(p) values

for the scans are 37.5332 for WTCCC_100, 34.2091 for

WTCCC_150, and 22.6591 for WTCCC_200. The second

region contains 33 genes (from PSMB9 to ZBTB9), and the

number of SNPs and the average intermarker distance are 134

and 4.8629 kb, respectively.

The proportion that RA patients carried a specific ROH

(pROH) is higher than in normal controls in the two regions of

homozygosity disequilibrium. For sliding windows anchored by

SNPs within the first region, the maximum number of pROHs, as

a fraction, for the patient data is 0.2206 for WTCCC_100, 0.2331

for WTCCC_150, and 0.2071 for WTCCC_200. These values

are greater than those of the controls: 0.0996 for WTCCC_100,

0.1003 for WTCCC_150, and 0.1003 for WTCCC_200. In the

second region, the maximum 2log10(p) values are 9.8852 for

WTCCC_100, 9.0952 for WTCCC_150, and 8.3644 for

WTCCC_200. The maximum number of pROHs is 0.1381 for

WTCCC_100, 0.1331 for WTCCC_150, 0.1341 for

WTCCC_200, and these figures are greater than the maximum

number of pROHs for the normal control data (0.1003 for

WTCCC_100, 0.1003 for WTCCC_150, and 0.1003 for

WTCCC_200).

We investigated the correlation between the presence of these

ROHs and RA disease status for anchoring SNPs within the two

regions that satisfy 2log10(p).8 (Figure 3). The first region

(ROH1) contains 26 anchor SNPs (rs9268831 to rs9273363) and

five genes (HLA-DRB9, HLA-DRB5, HLA-DRB6, HLA-DRB1, and

HLA-DQA1) (Figure S1). The second region (ROH2) contains 34

ROHs Related to Rheumatoid Arthritis in the MHC
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anchor SNPs (rs10807118 to rs7764491) and four genes (HLA-

DPA1, HLA-DPB1, RPL32P1, and LOC442203) (Figure S1). A

statistical discriminant analysis of 60 anchor SNPs (rs9268831 to

rs7764491) showed that the highest average accuracy for

predicting RA status is 0.6201 and is associated with SNP16

(rs2027852), which is flanked by HLA-DRB6 and HLA-DRB1. The

ROH anchored at rs2027852 was then used to predict RA status

for the data from 868 RA patients and 1,194 controls of the North

American Rheumatoid Arthritis Consortium (NARAC). The

prediction accuracy is 0.5790.

The genetic heterogeneity of RA patients was investigated next.

The distribution of pROH in RA patients at windows anchored by

the 60 SNPs is shown in Figure S1. The pROH pattern suggests

that there are three SNP groups (rs9268831 to rs7749092,

rs2027852, and rs9270986 to rs9273363) in ROH1, and that

there are two SNP groups (rs10807118 to rs3077 and rs9348904 to

rs7764491) in ROH2. Within each SNP group, the pROH pattern

is very similar. Therefore, only one ‘‘tag’’ anchor SNP was

investigated further. These anchor SNPs are rs9268831 in HLA-

DRB9, rs2027852 flanked by HLA-DRB6 and HLA-DRB1,

Figure 1. Calculated powers for simulated genome-wide homozygosity association scans. The simulated genome-wide homozygosity
association scans included 2,000 patients and 3,000 controls and used 2log10(p).8 for the threshold of statistical significance. Parameters for the
calculations included: The proportion of patients carrying the ROH (d = 0.1, 0.2, or 0.3) controlled the effective size of a scan. The number of evenly
spaced SNPs (L = 100, 150, or 200 SNPs) determined the length of the true disease-associated ROH. The heterozygous interference was defined as the
fraction of heterozygous-call SNPs in the true disease-associated ROH (e = 0, 0.1, or 0.2). W = 100, red solid line, circles; W = 150, blue dashed line,
triangles; W = 200, green dotted line, crosses.
doi:10.1371/journal.pone.0034840.g001

ROHs Related to Rheumatoid Arthritis in the MHC
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Figure 2. Genome-wide homozygosity association scans. The values of 2log10(p) at the anchor SNPs for the three genome-wide
homozygosity association scans, WTCCC_100, WTCCC_150, and WTCCC_200, are displayed. The purple, horizontal reference lines indicate
2log10(p) = 8, the cut-off used to test for significance. Two peaks with 2log10(p).8 in the MHC region on chromosome 6p21.3 were found for all
three scans. The bottom panel shows an expanded plot containing the region of the two peaks. WTCCC_100, blue line, circles; WTCCC_150, green
line, crosses; WTCCC_200, orange line, triangles.
doi:10.1371/journal.pone.0034840.g002

ROHs Related to Rheumatoid Arthritis in the MHC
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rs9272723 in HLA-DQA1, rs3077 in HLA-DPA1, and rs9277542 in

HLA-DPB1. Thirty-two ROH-carrying categories for the patients

were identified using the presence or absence of ROHs anchored

by the five SNPs. Vectors made of five indicator variables describe

the categories. When the value of the ith indicator was 1, the

genomic segment anchored by the ith anchor SNP carried an

ROH; otherwise, the value of the indicator was 0. Seven of the

categories have a pROH .2% in RA patients; the pROHs are

P(0,0,0,0,0) = 60.13%, P(1,0,0,0,0) = 7.5%, P(1,1,1,0,0) = 6.85%,

P(0,0,0,1,1) = 6%, P(0,1,0,0,0) = 3.65%, P(0,0,0,0,1) = 3.05%, and

P(1,1,0,0,0) = 2.65%. Except for the non-carrying category

(0,0,0,0,0), the pROH values in the RA patient group are greater

than those for the control group (i.e., risk category). The finding

that RA patients carry different ROHs partially reflects the genetic

heterogeneity of RA.

Copy number determination
We detected genomic deletions (copy number ,2) and

amplifications (copy number .2) in the MHC regions of the

2,000 RA patients and 3,000 controls from the WTCCC study

(Figure 4). Regarding the genomic deletions, no region in the RA

patients was found to have a significantly greater proportion (a

proportion difference .2%) of deletions than regions of the

controls. Conversely, one region from the controls, rs1431403

(33,155,009 bp) to rs7764491 (33,168,818 bp), had a greater

proportion of deletions than the regions from RA patients. The

Figure 3. Genes and LD structures in the MHC region identified by the homozygosity association scans. The genes and intermarker LDs
in the regions containing ROHs are displayed. The two dotted, red vertical lines demarcate the MHC region from 29,732,804 bp to 33,268,223 bp on
chromosome 6p. The regions identified by the WTCCC_100, WTCCC_150, and WTCCC_200 scans are identified by the sky blue, light green, and
orange horizontal bars, respectively. The outermost vertical bars denote the first SNP (gray tick) in the first window and the last SNP (gray tick) in the
last window. Additionally, the first anchor SNP and the last anchor SNP for regions with 2log10(p).8 are marked using bold ticks. If two regions
identified by the same genome scan overlap, the segment containing the overlapping regions is shown in dark blue, green, and orange for
WTCCC_100, WTCCC_150, and WTCCC_200, respectively. The names of genes within the annotated regions are given above the bars. The names of
genes in the regions identified by the three scans are shown in red, and the names of the genes identified by one or two scans are shown in blue. The
location and width of the bars that prefix the gene names reflect the physical position and the size of the genes. LD structures are provided in the
lower panels in which the higher intermarker LDs are in red.
doi:10.1371/journal.pone.0034840.g003

ROHs Related to Rheumatoid Arthritis in the MHC

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34840



average proportion difference is 0.0509. Regarding genomic

amplifications, three regions from the RA patients had a greater

proportion of amplifications (a proportion difference .2%) than

those of the controls. The three regions are rs2516670

(30,542,978 bp) to rs9295931 (30,977,693 bp), rs9295961

(31,275,477 bp) to rs9295967 (31,291,999 bp), and rs2736177

(31,694,073) to rs2299851 (31,826,581 bp), and the average

proportion differences for the RA patient data minus the control

data are 0.0282, 0.0201, and 0.0214, respectively.

Discussion

Our study represents the first genome-wide homozygosity

association scans for RA; we pinpointed important RA-associated

ROHs in the MHC region and confirmed this region to be

associated with RA [64,65]. For the two ROHs, the window with

the best prediction accuracy 62% is anchored by the SNP

rs2027852. We validated the results derived from the WTCCC

data by using the independently acquired NARAC data (Figure

S2). Homozygosity disequilibrium was consistently found in the

MHC region, for which the respective maximum values of

2log10(p) for NARAC_100 (W = 100) and NARAC_200

(W = 200) are 2log10(p) = 7.6973 and 2log10(p) = 7.1334, respec-

tively, which are highly significant values.

The SNP rs2027852 is flanked by HLA-DRB6 and HLA-DRB1.

The HLA-DRB1-shared epitope is an important determinant of

RA susceptibility [10]. Associations between HLA-DRB1 and RA

susceptibility [10,11,12,13,66,67] and between HLA-DRB1 and

the severity of RA [68,69] have been made. In addition to HLA-

DRB1, a second relevant ROH includes HLA-DPA1 and HLA-

DPB1. Previous studies produced inconclusive results concerning

the relationship between RA and HLA-DPA1 and HLA-DPB1

[70,71,72]. Despite the evidence of statistical significance support-

ed by this study, more functional studies are necessary to re-

confirm the genetic associations with RA.

We found that the observed homozygosity disequilibrium in the

MHC region is not explained by mechanisms associated with

hemizygous deletion because our copy number analysis found only

a very small proportion of the samples had acquired DNA

deletions in the MHC region (Figure 4). The RA-related ROHs

probably were not generated from copy-neutral chromosomal

aberrations, e.g., uniparental disomy and loss of heterozygosity,

because such chromosomal abnormalities often result in severe

inherited disorders and cancers, which the patients of the study did

not have. Inbreeding, as the cause of the homozygosity

disequilibrium, also seems unlikely as the patients were not an

inbred population(s).

Selective sweep, a type of natural selection, seems to be a

plausible mechanism for the appearance of homozygosity

disequilibrium in general population [40]. Homozygosity disequi-

librium in the MHC region, which has been shown to contain the

important functional genes related to RA and other autoimmune

diseases [64,65,73,74], results in a loss of genetic diversities and

thereby influences quantitative and/or qualitative alternations of

expression profiles. Some studies have found that autoimmunity

susceptibility genes are positively selected in RA [75,76,77,78].

Selected alleles accumulate in the gene pool over time and

Figure 4. Gene amplifications and deletions in the MHC region. The fraction and numbers of RA patients and controls who carried
amplifications and deletions in the MHC region are showed. The top and bottom panels show the results for the amplifications and deletions,
respectively. In both panels, the results for the RA patients and controls are indicated as red dots and blue crosses, respectively. The fraction of RA
patients and controls is shown on the left y axis, and the number of RA patients and controls is shown on the right y axis.
doi:10.1371/journal.pone.0034840.g004

ROHs Related to Rheumatoid Arthritis in the MHC
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consequently increase the probability of generating an ROH.

Genomic regions with a small recombination fraction and a large

LD tend to contain even more ROHs than do regions with large

recombination fractions or a small LD; for example, the time

necessary for a region to be affected by selective pressure is so short

that a limited number of recombinations prevents a rapid decay of

LD and thereby promotes the occurrence of ROHs [39]. For type-

1 diabetes, a relevant study has also pointed out significant SNP

identity and conserved extended haplotypes in the MHC region

[44]. That and our study reinforce the idea that natural selection

may be critical to maintaining functionally important genes [79]

and susceptibility to complex diseases [80].

Our study attempted to tackle several difficulties associated with

homozygosity association mapping, which is defined as the

identification of ROHs associated with a given disease. However,

the observed, extended homozygosity may contain a run of

homozygotes, hemizygotes, or a combination of both, and the

different types of runs may reflect different genetic mechanisms

associated with a disease. For genotype-based homozygosity

association mapping, it is difficult to distinguish the differences

between true homozygosity (a homozygous run) and spurious

homozygosity (a hemizygous run) [81,82]. Therefore, we em-

ployed genotype-based homozygosity association scans and

intensity-based copy-number characterization to discriminate

between copy-neutral homozygosity and deletion-induced hemi-

zygosity for the RA-associated ROHs. Additionally, missing

genotypes or heterozygous calls that arise from genotyping errors

or recent mutations may interrupt a homozygous run (imperfect

ROH). The genome-wide homozygosity association mapping used

in this study overcame these obstacles by imputing missing

genotypes and correcting for the modest heterozygous interference

with the use of a local polynomial fit [53].

The required minimum power value and sample size for

genome-wide homozygosity association mapping for complex

diseases have not been explicitly determined in previous studies

[81]. Our simulations provided an objective assessment of how the

values for the power and the number of samples affect the results,

and the results for the simulations suggest that we used sufficient

sample numbers to attain reasonable statistical power to detect

RA-associated ROHs in this study. In contrast to a single-SNP

recessive model, the homozygosity association tests provided by

LOHAS and ROH programs are multilocus analysis methods.

The two multilocus methods make use of genetic information from

extent of homozygosity, which is a function of LD, recombination

fraction, and population history [40]. Recessive-acting disease

alleles in an ROH predisposing to a disease are accumulated and

made use to elevate the low power of a single-SNP analysis due to

rare disease alleles at single SNPs.

Population substructure/admixture is an important confound-

ing factor in genome-wide case-control association studies.

Ignoring the difference of genetic substructure/admixture in case

and control groups may lead to false-positive findings. We thus

also performed genome-wide homozygosity association test with

an adjustment for population substructure/admixture using

principal components. We regressed the homozygosity intensity

estimates from LOHAS software [53] on case/control disease

status and the first 10 principal components from EIGENSTRAT

software [83] to validate genetic association we identified in the

MHC region. We found that genetic association between the

identified ROHs in the MHC region and RA disease status

remained very significant after taking population substructure/

admixture into account (Figure S3). The maximum 2log10(p)

values for the scans were 28.4155 for WTCCC_100, 23.1904 for

WTCCC_150, and 14.6061 for WTCCC_200 in the first peak

region and 8.6160 for WTCCC_100, 7.5250 for WTCCC_150,

and 7.4240 for WTCCC_200 in the second peak region. The

results explain that our findings in the MHC region are valid and

robust to population substructure/admixture.

RA-associated ROHs identified by LOHAS software was also

evaluated by a second homozygosity association method. ROH

program [40], which has been integrated into HelixTree software

(HelixTree, Inc.), was run to examine homozygosity association in

the MHC region. Several parameter combinations for defining an

ROH were considered in the analysis using ROH program. At the

Bonferroni significance level, two significant RA-associated ROHs

identified by LOHAS software were validated by ROH program

(Figure S4).

In conclusion, our genome-wide homozygosity association study

used high-density SNP array data to provide an alternative

method to an allelic association study for mapping RA-

susceptibility genes. Excess ROHs were found in the MHC

regions of RA patients compared with those of controls, which

uncovered a recessive component and missing heritability for RA

and possibly other autoimmune diseases.

Materials and Methods

Study materials
We used SNP data from the WTCCC [18] that was obtained

from 1,999 RA patients and 3,002 controls. Of the control

samples, 1,502 were from the 1958 British Birth Cohort study and

1,500 were from the UK Blood Service. All samples were

genotyped using the Affymetrix 500K SNP GeneChip system

(Affymetrix Inc., Santa Clara, CA, USA). Genotypes were called

using the genotype-calling algorithm, CHIAMO [18]. Samples

from 868 RA patients and 1,194 normal controls participating in

the NARAC [17] were used to independently validate the results

of the WTCCC data. All samples were genotyped using the

Infinium HumanHap550 SNP BeadChip system (Illumina Inc.,

San Diego, CA, USA). Genotypes were called with the genotyping

module of BeadStudio. All samples passed a quality control

examination. The SNP and gene annotation information includ-

ing the physical positions and the associated genes were taken from

the NCBI dbSNP Build 123.

Statistical methods
A genome-wide non-parametric association test was applied to

map regions of homozygosity disequilibrium in the genomes of the

RA patients. Given a target SNP (anchor) on a chromosome, a

window containing the target SNP and W-1 nearest neighbor

SNPs was constructed. Windows were slid along the chromo-

somes. For the genomes of each individual studied and for each

window, a homozygote intensity (fraction) of SNPs was estimated

by non-parametric local polynomial fitting [84] with a tricubic

weight function. Dependent variable in the local regression is the

homozygous/heterozygous states of SNPs and independent

variable is physical position of the SNPs [53]. Then, in each

window, the estimated homozygote intensities for each individual

were compared with the median homozygote intensities for all

patient and control samples to calculate the Kullback-Leibler

distance [85]. The larger the distance was, the greater the fraction

of homozygous SNPs. A Wilcoxon rank sum test [86] was applied

to compare the Kullback-Leibler distances for the patient and

control groups, and then to identify windows/regions of greater

median homozygote intensity for the patient genomes. The

aforementioned procedures were executed by using LOHAS

software (http://www.stat.sinica.edu.tw/hsinchou/genetics/loh/

LOHAS.htm) [53]. Homozygote intensities in the regions of
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ROHs are used to predict RA status using statistical discriminant

analysis [87] and a 10-fold cross-validation procedure. The

average prediction accuracy of the fitted classifiers for the RA

patients and the controls was calculated using the R package.

Copy number analysis was performed using the Partek Genomics

Suite (Partek, Inc.). Copy numbers were determined from the

allele intensities with an adjustment for local GC content. Copy

number alternations, including gene amplifications and deletions,

were inferred by genomic segmentation for which the default

parameters recommended by Partek were used.

Supporting Information

Figure S1 Distribution of the fraction of RA patients
carrying ROHs in the two regions of homozygosity
disequilibrium. There are 60 anchor SNPs in the two regions

that satisfy 2log10(p).8. The first region (ROH1) contains 26

anchor SNPs and 5 genes, and the second region (ROH2) contains

34 anchor SNPs and 4 genes. A red point is plotted if a patient

carried an ROH at an anchor SNP; otherwise the space is blank.

The relative positions of 9 genes in these 2 regions are shown, and

the 5 anchor SNPs used to tag rs9268831, rs2027852, rs9272723,

rs3077, and rs9277542 are also marked.

(PPT)

Figure S2 Genome-wide homozygosity association
scans for the NARAC and WTCCC data. The values of

2log10(p) at anchor SNPs for the two genome-wide homozygosity

association scans, NARAC_100 (W = 100) and NARAC_200

(W = 200), are displayed. A genome-wide significance level of

2log10(p) = 8 is marked by the purple, horizontal line. The results

for the WTCCC_100 and WTCCC_200 scans are provided for

comparison. Peaks with 2log10(p) values above the significance

line and signals that were consistently identified by the four scans

were found in the MHC region on chromosome 6p21.3.

(TIF)

Figure S3 Homozygosity association scans with an
adjustment for population substructure/admixture in
the MHC region for the WTCCC data using principal
components. The values of 2log10(p) at the anchor SNPs for the

three homozygosity association scans, WTCCC_100,

WTCCC_150, and WTCCC_200, are displayed. WTCCC_100,

blue line, circles; WTCCC_150, green line, crosses;

WTCCC_200, orange line, triangles.

(TIFF)

Figure S4 Homozygosity association scans in the MHC
region for the WTCCC data using ROH program. Two

parameters for defining an ROH are required in ROH program:

the minimum run length (Rmin) and the minimum number of

samples (Smin). ROHs are disregarded if the number of

homozygous SNPs is less than Rmin. SNPs are removed if the

number of samples for which that SNP is a member of an ROH is

less than Smin (the details can refer to the user guide of ROH

program in HelixTree software). This analysis considered

Rmin = {50, 100, 150, 200} and Smin = {100, 150, 200, 250,

300}. Moreover, 10,000 permutations were performed to evaluate

genetic association between affection status of RA and ROHs in

the MHC region. In each subfigure, the horizontal axis denotes

physical position (unit: Mb) on chromosome 6 and the vertical axis

denotes p-value (2log10 scale) from the homozygosity association

test used in ROH program. A green solid line indicates a raw

empirical p-value of homozygosity association tests from 10,000

permutations. Value of the raw empirical p-value is shown above

the green line. Physical positions of starting and ending SNPs of an

ROH are listed below the green line. A red dashed line indicates

the Bonferroni significance level, i.e., 0.05/30 in this analysis. If no

ROH was found under a certain parameter combination of Rmin

and Smin, an empty subfigure is shown.

(TIFF)

Appendix S1 Simulation studies for evaluating power of
the homozygosity association test used in this paper.

(DOC)
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