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Bayesian dynamic profiling 
and optimization of important 
ranked energy from gray level 
co‑occurrence (GLCM) features 
for empirical analysis of brain MRI
Lal Hussain1,2, Areej A. Malibari3, Jaber S. Alzahrani4, Mohamed Alamgeer5, Marwa Obayya6, 
Fahd N. Al‑Wesabi7, Heba Mohsen8 & Manar Ahmed Hamza9*

Accurate classification of brain tumor subtypes is important for prognosis and treatment. Researchers 
are developing tools based on static and dynamic feature extraction and applying machine learning 
and deep learning. However, static feature requires further analysis to compute the relevance, 
strength, and types of association. Recently Bayesian inference approach gains attraction for deeper 
analysis of static (hand‑crafted) features to unfold hidden dynamics and relationships among features. 
We computed the gray level co‑occurrence (GLCM) features from brain tumor meningioma and 
pituitary MRIs and then ranked based on entropy methods. The highly ranked Energy feature was 
chosen as our target variable for further empirical analysis of dynamic profiling and optimization to 
unfold the nonlinear intrinsic dynamics of GLCM features extracted from brain MRIs. The proposed 
method further unfolds the dynamics and to detailed analysis of computed features based on GLCM 
features for better understanding of the hidden dynamics for proper diagnosis and prognosis of tumor 
types leading to brain stroke.

For proper treatment, prognosis, planning and monitoring of brain tumor, an accurate intelligent algorithm is 
 required1. The brain tumor types is still a challenges, as MRIs cannot make definitive diagnosis of brain tumor 
 subtypes2. Various computer assisted and machine learning algorithms have been developed to assist the doctors 
for proper diagnosis of brain tumor subtypes. Feature extraction is one of the most crucial parts, which require 
most relevant methods to generate the features from raw images. Selecting the most relevant features is tedious 
task which require the knowledge domain. Researchers in the recent past computed the different categories of 
features including texture, morphological, scale invariant Fourier transform (SIFT), elliptic Fourier descriptors 
(EFDs) for prediction of pathologies in medical imaging  problems3–8. These features are utilized as input to dif-
ferent machine learning  algorithms9. Researchers developed different machine learning classification algorithms 
for brain tumor type  classification10–24.

Accurate classification of brain tumor subtypes is important for treatment, planning, prognosis, and monitor-
ing etc.1.  MRI25 provides valuable diagnostic information to characterize brain  tumors2, but challenges lie in the 
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ability to classify different tumor types. In contrast to pathology, MRIs cannot make definitive diagnoses of brain 
tumor subtypes. The machine learning algorithms such as support vector machines (SVM)10–19,  Adaboost21, ran-
dom  forest20 and instance-based K-Nearest using  log19,22 relied on hand-crafted features including discrete wavelet 
transform (DWT)10,11,16,20,23,24, gray-level co-occurrence matrix (GLCM)10,11,14,17 and genetic  algorithm26 etc.

The previous studies include the multiclass classification based on machine learning and deep learning using 
diver feature extraction approaches. However, a more comprehensive analysis to determine the associations and 
other Bayesian measures can further strengthen our analysis to unfold the hidden dynamics for further improving 
the diagnostic capabilities. The parametric information from the data in the recent studies have been investigated 
using a probabilistic propagation algorithm (Bayes Rule) by applying Bayesian networks (BNs). The associations 
and degree of uncertainty of the variables varies from different sources such as numerical data, empirical data, 
expert opinion etc. to capture the conditional dependencies of a variable upon  others27. BNs have successfully 
been utilized in many studies by different researchers such as Kocian et al.28, Amaral et al.29, Laurila-Pant et al.30, 
Zhang et al.31. The causal relationships can be studied between variables which compute the probabilities of a 
variable when other variables in the model are known. Moreover, the Monte Carlo analysis (MCA) can be used at 
random sampling of probability distribution functions (PDF) to denote the inputs of Bayesian model to produce 
hundreds or thousands of possible  outcomes32. Recently, BNs have successfully been utilized in many applica-
tions ranging from predicting energy crop  yield33, prediction of coffee rust disease using Bayesian  networks34, 
sustainable planning and management  decision35, etc. The Bayesian networks computed the interrelation among 
variables that impacts climate changes scenarios in  agriculture36. Moreover, recently, Lu et al.37 utilized BNs to 
investigate the complex causal interactions between environments and plant diseases. Hussain et al.38 computed 
the morphological features and determine the association from prostate cancer MRIs.

In the past, researchers utilized machine learning and deep learning algorithms to classify the brain tumor 
types and other cancerous  pathologies5,39–42. The machine learning algorithms requires hand-crafted features for 
training the models and predicting for new examples. The classification performance merely based on type and 
relevancy of extracted feature. The researchers utilized the different features extracting approaches including 
texture, morphological, geometric, scale invariant feature transform (SIFT), elliptic Fourier descriptors (EFDs) 
etc. as extracting the most relevant feature is challenging which can be very helpful to improve the classification 
performance. The classification tasks based on computed features can only provide the classification performance, 
however association among features, in-depth parent–child relationships, strength of relationship, degree and 
features incoming and outgoing force, computed segments profile analysis, impact of posterior probabilities 
can further unfold the hidden and nonlinear dynamics of extracted features, which can be very much helpful 
for the concerned radiologists and health practitioners for making the wise decisions for further prognosis and 
diagnosis of brain tumor. The aim of this study was to apply the Bayesian inference approach for comprehensive 
analysis in order to unfold the nonlinear and hidden dynamics present in brain tumor MRI types (meningioma 
and pituitary) by extracting the gray-level co-occurrence (GLCM) features and to compute the associations, and 
strength of relationships among features. The Bayesian approach recently gain its popularity and utilized in many 
biomedical signal and image processing problems. The Bayesian inference estimates the posterior which can be 
produced from a weighted combination of local estimates also known as likelihood and estimates in surround-
ing spatial units. Researchers are developing intelligent methods based on Machine learning which requires the 
extraction of most relevant features. Our research objective was multifold, as the Bayesian analysis is based on 
target node for which we first requires the top ranked features among the extracted features. We first we computed 
the GLCM based texture features from brain tumor meningioma and pituitary images. We then ranked the fea-
tures based on entropy value using MATLAB diagnosticFeatureDesigner tool. The higher the entropy value indi-
cate the more important feature. Secondly, the high ranked feature was selected as our target node and then we 
further computed the detailed Bayesian analysis with other features to compute the underlying hidden dynamics 
among the nodes. We computed the relationship analysis among the extracted nodes using mutual information 
(MI), Kullback–Leibler (KL) divergence and Pearson’s correlation. The strength of relationship was computed 
using arc analysis with 3D mapping. We then computed the parent–child relationship and nodes force between 
the nodes. The association graph for segment profile analysis was computed for further analysis. Moreover, the 
network performance and significance of prominance was computed using tarnando diagram. The radar chart 
also reflects the importance of significance of target node with other nodes at different selected states. In most 
of the states, we obtained significant results using the statistical tests. Which indicates the stronger binding of 
target Energy node with other computed GLCM features. The target’s posterior probabilities at selected states also 
shows the great influence on target variable. The network performance also shows the highest significant results 
with respect to reliability, occurrence, precision, and Gini index. This study can be very helpful to understand the 
deeper insights to further investigate the hidden dynamics in the MRI signals from Brain tumor types and can 
play a vital role for providing improved diagnostic system. The concerned radiologists can utilize this analysis 
as a biomarker for improved diagnosis and prognosis, treatment planning, recurrence.

Materials and methods
Dataset. A publicly dataset was taken available at (https:// github. com/ cheng jun583/ brain Tumor Retri eval) 
which is described  in43,44. It comprised of 3064 T1-weighted contrast enhanced images from 233 patients. The 
dataset contains three types of brain tumor such as and meningiomas (708 slices), pituitary tumor (930 slices) 
and gliomas (1426 slices). In this study, we applied the Bayesian inference approach for comprehensive analysis 
between the two selected classes of pituitary and meningioma.

Feature extraction. In machine learning, the first and foremost step is to compute the most relevant fea-
tures which are quantitative values computed on images. Researchers proposed a set hybrid and single features 

https://github.com/chengjun583/brainTumorRetrieval
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for classifying  images5. Likewise, different image segmentation and classification algorithms are then utilized to 
classify malignant or benign  cases45.

Feature plays a vital role in image processing. After applying image processing techniques to the captured 
image, different feature extracting techniques are applied to obtain the features used in classification. The behav-
ior of an image can be defined by its features. Feature extraction is a type of dimensionality reduction in image 
processing. Extracting most relevant and required information from the data is one of the main objectives of 
feature  extraction46.

In previous studies, numerous researchers have extracted many features for detecting various imaging pathol-
ogies by considering texture, shape-based morphologies, and image scaling and rotation changes and complex 
dynamics using SIFT, morphological, textural, EFDs and some other most relevant features regarding the nature 
of the problem of  interest4,5,7,47,48. The feature extracted developed and employed in our previous studies are 
detailed  in7,49–53. In this study, we first computed the Gray-level co-occurrence matrix-based texture features.

Gray‑level co‑occurrence matrix (GLCM). The GLCM based texture features extracted from input 
images by performing transition on two pixels with gray level. GLCM features are originally proposed in  197354 
which characterizes the texture properties by utilizing diverse quantities yielded from 2nd order statistics. Two 
steps are used to compute GLCM features. Firstly, the pair-wise spatial co-occurrences of image pixels are sepa-
rated by a distance d in a particular direction angle θ. A spatial relationship is created between two pixels i.e. the 
neighboring and reference pixels. Secondly, scaler quantities are computed to characterize several aspects of an 
image by forming gray level co-occurrence matrix which contain several gray level pixel combinations of differ-
ent values of an  image54. The GLCM is a square matrix of order M × M, where M denote the gray level number of 
image. The distance d = 1, 2, 3, 4 and angle 0°, 45°, 90° and 135° direction are used to obtain GLCM features. The 
GLCM contain an element P(i, j, d, θ) , which shows two pixels probability separated by a distance d and angle 
θ having gray levels of i and  j55–57. The detailed mathematical formulations are described and utilized  in5,58–60. We 
extracted the GLCM texture features from Brain tumor types developed in MATLAB and utilized in many recent 
renowned studies for texture  analysis61–64 available at https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 
22187- glcm- textu re- featu res.

Feature importance. After computing the features from images, all features are not contributing equally, 
as few features contribute less and few other more. Their importance can be computed using the feature rank-
ing algorithms. The feature ranking algorithm is used to rank the importance of  features65. We used the feature 
importance ranking (FIR) algorithms developed in  MATLAB66 available at https:// www. mathw orks. com/ help/ 
predm aint/ ref/ diagn ostic featu redes igner- app. html.

The importance of the extracted features was computed based on the entropy values. Entropy is used in many 
applications of medical systems to compute their nonlinear dynamical measures present in these systems. Yu 
et al.66 developed MATLAB tool with a total of 30 FIR methods integrated that utilized the feature selection and 
intelligent diagnosis in real world application. All the ranking methods are detailed in our recent  study67. For 
the current study, we utilized the method (17) fir_mat_entropy, which computes the features based on relative 
entropy also called as Kullback–Leibler  distance68. The entropy is a measure of randomness which computes 
the nonlinear dynamics as detailed  in49,69,70. The higher the entropy values indicate the more complex systems 
with interacting components and accordingly is the more important feature. So, among the extracted GLCM 
features, the Energy feature with higher entropy (3.0693) was yielded as our high ranked feature. We then chosen 
Energy as our target node, and Bayesian analysis was applied with the top ranked feature to further explore the 
associations, and relationships with other features. Multiple interacting modules of biological systems produce 
biological signals. which show different arrangements in a complex rhythm. Due to structural part malfunctions 
and decreased interactions in coupling functions, these rhythms and patterns are disrupted. After ranking the 
features, the top ranked feature was Energy with higher entropy value. We then kept this feature as our target 
variable and applied the Bayesian inference approach for further comprehensive analysis with other features so 
we can develop multiple interacting relationships with the top ranked feature, which could be used as a biomarker 
for further enhanced diagnosis and prognosis of brain tumor.

Bayesian network analysis. The causal effect and their relationship was computed using Bayesian infer-
ence approach using directed acyclic graph (DAG)71. The Bayesian networks compute the conditional joint prob-
abilities to determine the dependencies between the attributes. This is a probabilistic graphical network and is 
represented by a directed acyclic graph of nodes denoting the variables and arcs denote dependence relation-
ships among the variables. Bayesian networks denote the joint probability distribution (JPD) over all variables 
represented by nodes in the graph. If xi denote some value of variable Xi and Pai represent some set of values for 
parents of Xi , then P(Xi|Pai) represent conditional probability  distribution33. The joint probability distribution 
P of a Bayesian network B = (G, P) can mathematically expressed as:

Here Pa(Xi) denotes the set of random variables associated with the parents of the nodes corresponding to 
variable Xi.

The posterior probability is thus computed by utilizing this algorithm through inference of variable of interest. 
We used BayesiaLab V10 for further  analysis72 utilizing the supervised learning algorithms to search optimal 
model.

(1)P(X1, X2, . . . , Xn) =

n∏

i=1

P(Xi|Pa(Xi))

https://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://www.mathworks.com/help/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/predmaint/ref/diagnosticfeaturedesigner-app.html
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Mutual information (MI). To compute MI, first Shannon  entropy73 was computed:

The difference between the marginal entropy of target variable and conditional entropy of predicted variable 
was computed using  MI73, mathematically:

Which is equivalent to:

Moreover, conditional Mutual Information (CMI) is defined as:

The joint probability distribution (JPD) of variable X and Y is denoted by p (X, Y). Whereas p(X) and p(Y) 
represent marginal distribution of X and Y respectively. The relevant Gaussian distribution of co-variance matrix 
variables  X1,  X2,  X3, ….  Xn

74 computed as:

The MI and CMI2 can be computed using following mathematical transformation function:

To correct under estimation of  CM175, the CMI2 is used to integrate the interventional probability.

Statistical analysis. We computed the GLCM features from pituitary and meningioma MRIs using MAT-
LAB. We then provided the feature matrix to BayesiaLab for further detailed analysis. We conducted the analysis 
using BayesiaLab 7.0. We used the BayesiaLab with minimum description length of candidate network in its 
score-based algorithm to compare the Bayesian network  structure76. The statistical independence test (GKL-
test; p-values > 0.05) was used to validate the connections among the descriptors which were identified by the 
learning algorithm. The p-values or independence probabilities were utilized to check the significance of each 
individual relationship between the nodes or between the nodes and the target  node77,78.

Exploratory analysis of the unsupervised network. The exploratory analysis can be utilized to deter-
mine the potential relationship between variables of  interest79. We can further explore the global analysis of 
problem of interest by computing influence between nodes and influence of nodes under investigation. We build 
our model by learning unsupervised learning algorithm utilizing maximum spanning tree algorithm approach 
developed in BayesiaLab  V1080. This method reduces the search space efficiently to a partially directed acyclic 
graph (PD AG) smaller than space of Bayesian networks (DAGs) represent equivalent classes evaluated during 
each search by computing directly their scores. We also computed maximum spanning tree (MWST). A lowest 
minimum description length (MDL) value shows the best trade-off between complexity and data representation.

Sensitivity analysis. A detailed sensitivity analysis was performed to check the relationship among the 
nodes in the selected network. To understand the relationship between the nodes, we computed the highest and 
lowest values of Pearson’s correlation, mutual information, Kullback–Leibler divergence and node force between 
the nodes was examined globally on the network. The mutual information examined the probabilistic depend-
encies between the nodes in the network. The Pearson’s correlation computes linear strength of the relationship 
between the nodes, whereas the Kullback–Leibler divergence was utilized to measure information gain from 
assuming a joint relationship between two variables in the network compared to an assumption of independ-
ence. The node force was also computed, the highest node force indicates that there is more direct relationship 
and greater dependence with other nodes. The sensitivity of each node was determined in tornado plots that 
display the influence of knowledge of each node value on the probability of each descriptor and provides infor-
mation on the maximum strength of the individual relationships between each node and descriptor. The lowest 
and highest probability values are displayed from the tornado plots to achieve the tornado plots for each node 
from hard evidence placed on the corresponding descriptor state.

In a Bayesian network (BN), the sensitivity analysis is conducted to determine the most critical factors for a 
specific result of a specific scenario. This analysis provides the strengths or magnitude of the two-way associa-
tion between the child and parent node. Using sensitivity analysis, we analyse the impact on other parameters 
or nodes. Two types are variations are considered, simple either variations are made in only one parameter, or 
complex in which multiple parameters are considered. The joint probability distribution and network param-
eters are used for reliable, authentic, and  holistic81,82. The BNs are considered to exhibit a practical and robust 
interaction between the considered variables through the induced variations in the selected parameters. In this 

(2)H(X) = −
∑

x∈X

p(X)log2p(X)

(3)MI(X,Y) = H(X)−H(X|Y)

(4)MI(X,Y) =
∑

x∈X

∑

y∈X

p(X,Y)log2
p(X,Y)

p(X)p(Y)

(5)CMI(X,Y |Z) =
∑

x∈X

∑

y∈X

∑

y|z∈X

p(X,Y |Z)log2
p(X,Y |Z)

p(X|Z)p(Y |Z)

H(X) = log (2πe)
n
2 |C|

−1
2

MI(X,Y) =
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2
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|C(X)|×|C(X)|
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study, the sensitivity analysis was performed by conducting BayesiaLab package called “Tornado Charts”. This 
chart displays the minimum and maximum contribution of all the variables in a model towards a specific node 
and state which is specified as the target node and state. The confidence and consistency level of the sensitivity 
analysis using the BN model are verified by validating the  model83–85 to verify different conditions.

Segment profile analysis of energy. The analysis was also done using segment profile analysis using 
Radar chart for normalized mean values conditionally to energy for all other GLCM features. The significance 
was tested using Bayesian test (Best) and NHST t test (a frequentist test). Using NHST t test, the two tailed t 
test is utilized for null hypothesis significance testing. The Bayesian (Best test) is detailed by  Kruschke86 which 
follow the student’s t distribution. Moreover, 95% confidence interval (CI) is utilized. When the mean values are 
estimated significant, a square is added next to the Label.

The Fig. 1a shows the flow of our algorithm. We first taken brain MRI images as input and extracted the 
GLCM based texture feature. We then ranked the features based on entropy method. We then applied different 
methods of Bayesian inference by computing optimization tree, posterior probabilities, likelihood, prior and 
posterior means, tornado graphs, radar graphs, association of target variable with other nodes etc. The perfor-
mance was evaluated, and results reveal the highly significant results. The Fig. 1b reflects the few examples of 
extracted GLCM features with set of quantitative values computed for each subject.

Ethical approval. All the procedures were performed in accordance with the relevant guidelines and regu-
lations.

Results
In this study, we first computed the GLCM features and then ranked the features using entropy. The high ranked 
Energy feature was chosen as our target variable with which the further detailed analysis was done.

The Fig. 2 shows the ranking of multimodal features-based entropy values. The higher the entropy value 
indicates the more complex and important feature. We extracted the GLCM features from Brain tumor types. 
The features are ranked without utilizing any unsupervised or supervised machine learning algorithm. A specific 
method which ranks the features is based on the assigned score  values65. Finally, based on these scores the features 
are ranked and the features with redundant information are further eliminated for classification. In this study, 
we ranked the GLCM features based on entropy values developed in MATLAB diagnostic tool.

Figure 3 depicts the relationship analysis using Bayesian inference methods including the MI, KL and PC. 
The bold lines represent the stronger relationship, the lighter lines indicate the smaller relationship. The blue 
color indicates the positive relationship, whereas the red color indicates the negative relationship. Moreover, the 
arrows indicate the (parent → child) relationship. We kept our target node as Energy, using mutual information, 
there probability of occurrence for the state ≤ 0.273 (38.09%), state ≤ 0.368 (37.53%), state ≤ 0.471 (18.94%) and 
state > 0.471 (5.45%) with joint probability for all states is 100%. The probability distribution with other extracted 
nodes at selected states is depicted in Fig. 3a–c.

Figure 4 represents the 3D mapping arc analysis to show the relationship among the GLCM extracted 
features. The nodes represent the features and lines represents the relationship between the nodes. The 
strength of relationship is denoted by the width of line. The blue color represents the positive relationship 
whereas the red color denotes the negative relationship. Using the mutual information (MI), the high-
est strength of relationship was obtained between the nodes Correlation → Correlation1, 1.4640 followed 
by Dissimilarity → Homogenity1, 1.2708 , Entropy → energy, 1.0408 and so on as reflected in Fig. 4a. The 
Fig. 4b shows the association between the nodes using KL. The highest strength of relationship was yielded 
between nodes Correlation → Correlation1, 1.4640 followed by Dissimilarity → Homogenity1, 1.2708 , 
Entropy → energy, 1.0340 and so on. The Fig. 4c denote the relationship between nodes using Pearson’s cor-
relation. The highest strength of relationship was yielded between the nodes Correlation → Correlation1, 1.000 
followed by Dissimilarity → homogenity1, −0.9664 , Dissimilarity → contrast, 0.9277 and so on. The negative 
relationship was obtained between the nodes (Correlation → dissimilarity), (Dissimilarity → homogenity1)
,(homogenity1 → entropy), (entropy → energy). All other nodes exhibit the positive relation, where a week 
relationship was yielded between the nodes cluster prominence and autocorrelation. The strength of relationship 
using these methods is also reflected in Table 1.

The Table 1 reflect the (Parent → child) relationship between the extracted GLCM features to distinguish 
the brain tumor types. The highest degree of relation was found between the nodes (Correlation → correlation2) 
yielding strength of relationship using KL and MI (1.4640), Pearson’s correlation (1.0000), with relative 
width 1.0000 and overall contribution of 16.67%. The contribution between other nodes was yielded such as 
(Dissimilarity → homogenity1, 14.47%) , (Entropy → energy, 11.78%) , (Dissimilarity → contrast, 11.66%) and 
so on. The highly significant results (p-value < 0.00000 was yielded for all (Parent → child) relationships.

The Table 2 reflects the incoming, outgoing and total force of different extracted GLCM features from brain 
tumor meningioma and pituitary. The dissimilarity node has outgoing force (2.29450), incoming force (0.4306) 
and total force (2.7251); the entropy node has outgoing force (1.7997), incoming (0.8624) and total force (2.6620) 
and so on. The highest outgoing and total force was yielded by the node dissimilarity such as 2.2945 and 2.7251 
respectively. The highest incoming force was yielded by the node energy (1.2576).

We randomly chosen the subjects i.e. Pituitary (495 images) and Meningioma (495 images) with a total of 
990 images. We ranked the features before applying the Bayesian inference approach. The Energy was highly 
ranked features measured using EROC and random classifier slope, which was selected as our target for further 
Bayesian analysis. We computed the association of top ranked Energy feature with other features to further 
unfold the association among the features. There were four states represented by ≤ 0.273 (394 images), ≤ 0.368 
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(374 images), ≤ 0.471 (191 images) and > 0.471 (31 images) as represented in the Mosaic association graph in 
Fig. 5 and Table 3. After prediction, 354 were predicted for first class, 321 for second class, 145 for third class 
and 30 for fourth class. The reliability and precision for class 1 to 4 was yielded according as 89.84%, 85.82%, 
75.92%, 96.77% and 94.65%, 85.37%, 81.00%, 49.18% respectively.

The Table 4 reflects the overall analysis of target node energy with other nodes. All nodes exhibits the highly 
significant results.

Figure 1.  Schematic diagram based on Bayesian inference analysis on target node based on extracted GLCM 
based features.
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The Fig. 6 depicts the analysis of association graph for segment profile analysis of top ranked target node with 
other extracted GLCM features using the Radar chart which reflect the distributions based on 1 to 12 clock hours. 
The Fig. 6a reflect the overall probability and we used the NHST t test and Bayesian test to find the significance 
to distinguish with other different states such as (b) ≤ 0.273, (c) ≤ 0.368, (d) ≤ 0.471, (e) > 0.471 as reflected in 
Fig. 6b–e. The clusters ≤ 0.273, ≤ 0.471 and > 0.471 using both the test yielded the highly significant results with 
all the extracted GLCM features. The state ≤ 0.368 yielded high significant results using both test with homogen-
ity1, dissimilarity, correlation, correlation2 and autocorrelation, whereas significant results using NHST t test 
with contrast and energy, while no significant results were yielded with cluster shade and cluster Prominance.

The network performance of selected target node Energy with other selected nodes yielded R of 0.9497, R2 
of 0.9019, RMSE of 0.0290 and NRMSE of 0.0490. The selected state ≤ 0.273 yielded the highest predictions with 
89.84% of reliability, 96.65% if precision and 98.49% of ROC index as depicted in Fig. 7a–c.

Using the tornado graph as reflected in Fig. 8, we visualize the maximum deltas in the posterior probabilities 
of the target states and hard evidence is set on the selected variables. The strong deltas are shown at the top of 
the graph. The highest association was yielded with entropy, homogeneity, dissimilarity, contrast, correlation, 
correlation2 cluster state ≤ 0.273 followed by cluster state ≤ 0.368, ≤ 0.471 and > 0.471 reflected in Fig. 8. This 
indicates that high top ranked Energy feature prevails high associations with entropy, homogeneity, dissimilarity, 
contrast, correlation, correlation2 which can be used as better predictor for improved diagnosis and prognosis 
of brain tumor types. The association of highest ranked Energy node with other nodes in the state ≤ 0.368 was 
obtained with entropy, homogeneity, dissimilarity.

The Fig. 9 denote the target’s posterior probabilities for the selected target variable Energy at state ≤ 0.273. 
The prior value is denoted by red line. The bar exceeding the red line indicates that variables values influencing 
the target variable.

Our optimization target state is ≤ 0.273. The Fig. 10 indicates that we have multiple pathways to get into the 
Energy with a 94% or higher probability. The Table 6 reflect the target node Energy at cluster state ≤ 0.273. With 
the Entropy node at 1.885, a highest posterior probability was obtained P (s|H) of 97.45%, Likelihood P(H|s) of 
81.81%, Bayes factor of 2.57% and generalized Bayes factor of 9.68%. The prior values and posterior values of 
other nodes are reflected in this Table 6.

The Table 5 summarize the dynamic profile of all the clusters. The dynamic profile uses the greedy search 
algorithm to simulate set of evidence for maximizing the probability of selected clusters.

The Table 6 reflect the target node Energy at cluster state ≤ 0.368. With the Entropy node at 1.885, a posterior 
probability was obtained P (s|H) of 78.86%, marginal likelihood (32.02%), Likelihood P(H|s) of 66.48%, Bayes 

Figure 2.  Feature ranking based on entropy values.
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factor of 2.07% and generalized Bayes factor of 4.21%. as also reflected in Fig. 6. The prior values and posterior 
values of other nodes are reflected in this Table 7.

The Table 7 reflect the target node Energy at cluster state ≤ 0.471 With the Entropy node at ≤ 1.445, a posterior 
probability was obtained P (s|H) of 53.03%, marginal likelihood (13.33%), Likelihood P(H|s) of 39.10%, Bayes 

Figure 3.  Relationship analysis using different Bayesian inference approaches such as (a) mutual information 
(MI), (b) Kullback–Leibler (KL) divergence, (c) Pearson’s correlation by applying the unsupervised learning 
using maximum spanning tree and selecting energy as our target node.
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factor of 2.93% and generalized Bayes factor of 4.17%. as also reflected in Fig. 6. The prior values and posterior 
values of other nodes are reflected in this Table 8.

The Table 8 reflect the target node Energy at cluster state > 0.471 with the Entropy node at ≤ 1.445, a posterior 
probability was obtained P (s|H) of 46.21%, marginal likelihood (13.33%), Likelihood P(H|s) of 100%, Bayes 
factor of 7.50%. The prior values and posterior values of other nodes are reflected in this Table 4.

Figure 4.  Arc analysis 3D mapping to determine the relationship among the nodes (a) mutual information, (b) 
Kullback–Leibler (KL) divergence, (c) Pearson’s correlation.
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Discussion
The Bayesian networks (BNs) are combination of probability theory and graph, which are capable to capture 
efficiently the most significant causation factor in the pathological subjects and can capture the relationship 
between different causal  relationship82. BNs effectively assess the cause-consequence analysis from extracted 
GLCM features of Brain  MRIs87. The detailed Bayesian analysis utilizing relationship analysis, segment profile 
analysis using radar chart, tornado diagrams of posterior probabilities, and network performance analysis can 
successfully be utilized for treatment planning and improved diagnosis of target node with other extracted nodes. 
These networks provide an efficient tool for detailed analysis to determine the interconnectivity and association 
between the variable of  interest88. The BNs comprised of qualitative and quantitative analysis. The qualitative 
analysis depicts the structure of the graph by expressing the graphical representation in terms of cause relation-
ship of variable of  interest89. The quantitative portion of the graph quantify the associations with conditional 
probabilities among the variables and target state according to cause order or connectivity. BNs, apart from not 
only determine the causal relationship, but also compute the nature of relationship between the factors  involved90. 
Moreover, these networks are also more robust and capable to determine the genuine graphical and visual rela-
tionship between variables involved. BNs are capable to process the data and ambiguity of all states of a variable 
using inference in a probabilistic system. These networks are also suitable for decision-making processes by 
providing consistent, scrupulous, and systemized assessment. For our extracted GLCM features, we first ranked 
the features based on entropy value. The top ranked energy feature was set as our target node, and we further 
conducted the sensitivity analysis, segment profile analysis, and network analysis with our target node. The 
BayesiaLab through tornado chart identify those variables which are most critical from the perspective of their 
effect on the target variable and provide the contributions of their probabilities of respective variables. The vari-
able with maximum and prominent sensitivity are presented in tornado graph. The cluster state ≤ 0.273 yielded 
the highest association for variables homogeneity, entropy, dissimilarity, correlation, contrast and correlation2.

The BN is a pictorial illustration by computing the joint probability distribution. The Bayesian network 
structure comprised on nodes which denotes the random variables, and arcs reflect the dependence structure 
reflecting causality between the variables. When there is absence of arc between the nodes, it denotes that 

Table 1.  Parent child relationship on extracted GLCM features to distinguish the brain tumor types (pituitary 
and meningioma) using mutual information (MI), Kullback–Leibler (KL) divergence and Pearson’s correlation.

Parent Child KL divergence Relative weight

Overall 
contribution 
(%)

Mutual 
information

Pearson’s 
correlation p-value

Correlation Correlation2 1.4640 1.0000 16.67 1.4640 1.0000 0.0000

Dissimilarity Homogenity1 1.2708 0.8680 14.47 1.2708 − 0.9664 0.0000

Entropy Energy 1.0340 0.7063 11.78 1.0408 − 0.8825 0.0000

Dissimilarity Contrast 1.0238 0.6993 11.66 1.0238 0.9277 0.0000

Cluster shade Cluster Promi-
nance 0.9254 0.6321 10.54 0.9254 0.8888 0.0000

Homogenity1 Entropy 0.8624 0.5890 9.82 0.8624 − 0.78350 0.0000

Entropy AutoCorrelation 0.7657 0.5230 8.72 0.4494 0.6651 0.0000

Correlation Cluster Shade 0.4325 0.2954 4.92 0.4325 0.5575 0.0000

Correlation Dissimilarity 0.4306 0.2941 4.90 0.4306 − 0.7149 0.0000

Cluster promi-
nance AutoCorrelation 0.3465 0.2366 3.94 0.0302 0.1798 0.0000

Cluster shade Energy 0.2236 0.1527 2.54 0.2304 0.5184 0.0000

Table 2.  Node force of extracted GLCM features from brain tumor.

Node Outgoing force Incoming force Total force

Dissimilarity 2.2945 0.4306 2.7251

Entropy 1.7997 0.8624 2.6620

Correlation 2.3272 0.0000 2.3272

Homogenity1 0.8624 1.2708 2.1331

Cluster shade 1.1491 0.4325 1.5816

Correlation2 0.0000 0.4640 1.4640

Cluster prominance 0.3465 0.9254 1.2719

Energy 0.0000 1.2576 1.2576

AutoCorrelation 0.0000 1.1121 1.1121

Contrast 0.0000 1.0238 1.0238
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Figure 5.  Analysis of target node energy with other extracted nodes using mosaic graph based on 
selected target node energy and predictions of occurrence made against each state out of total (i.e. ≤ 0.273, 
354/394; ≤ 0.368, 321/374; ≤ 0.471, 143/192; > 0.471, 27/28).

Table 3.  Analysis of target node energy with other extracted nodes.

State Purity (%) Neighborhood

> 0.471 (4/4) 96.77 ≤ 0.471 (3/4)

≤ 0.273 (1/4) 89.84
≤ 0.471 (3/4)

≤ 0.273 (1/4)

≤ 0.368 (2/4) 85.82
≤ 0.471 (3/4)

≤ 0.273 (1/4)

≤ 0.471 (3/4) 75.92
> 0.471 (4/4)

≤ 0.368 (2/4)

Table 4.  Overall analysis of target node energy with other extracted GLCM features.

Node Mutual information (MI) Normalized MI (%) Relative significance Prior mean p-value

Entropy 1.0408 52.10 1.0000 1.7381 0.00000

Homogenity1 0.6500 32.50 0.6245 0.9252 0.00000

Dissimilarity 0.5835 29.17 0.5606 0.1625 0.00000

Contrast 0.4336 21.68 0.4166 0.2066 0.00000

Correlation 0.2955 14.78 0.2840 0.9287 0.00000

Correlaltion2 0.2955 14.78 0.2840 0.9287 0.00000

AutoCorrelation 0.2410 12.04 0.2315 5.5282 0.00000

Cluster shade 0.2304 11.52 0.2214 17.70 0.00000

Cluster prominance 0.1675 8.37 0.1609 156.68 0.00000
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variable are conditionally independent. Bayesian network structure is either supervised or unsupervised, however, 
joint probability distribution is unsupervised. Bayesian network have been utilized to analyse the uncertainties 
and covariations among the multiple  variables91. We used the learning based on unsupervised learning using 
maximum spanning tree by setting mining description length as learning setting and taboo list size of 45. The 
inference was made based on the adaptive questionnaire by setting Energy highly ranked feature as our target 
node and computed its association among other variables. Presently, the researchers are devolving tools using 
machine learning methods. For machine learning, the most important step is to compute the most relevant 
features. However, extracting the most relevant features is still a challenging task as all the extracted features are 
not equally important. We, therefore, first ranked the extract GLCM based texture features. The highest ranked 

Figure 6.  Association graph of segment profile analysis of energy node with other extracted GLCM features 
using radar chart graph at different selected states (a) overall and overall with selected states (b) ≤ 0.273, 
(c) ≤ 0.368, (d) ≤ 0.471, (e) > 0.471, overall with (f) all selected states.
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Figure 7.  Network performance target evaluation energy node with other selected nodes (a) occurrence, 
reliability and precision report; (b) gain report of state ≤ 0.273, (c) ROC index of state ≤ 0.273.

Figure 8.  Tornado diagram of posterior probabilities to compute the significance of Energy node with all nodes 
at selected cluster states (≤ 0.273, ≤ 0.368, ≤ 0.471, and > 0.471).
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feature was energy (3.0693) followed by homogenity1 (2.7317), homogenity2 (2.6927), max. probability (2.6818) 
and so on. The least significant feature was sum variance (0.0293). This indicates that the energy feature contribute 
more than other extracted GLCM features to distinguish the pituitary from meningioma. We first applied the 
unsupervised maximum spanning tree algorithm and kept energy as our target variable to determine the further 
associations with other features to unfold hidden dynamics with the top ranked feature. The correlation, strength 

Figure 9.  Target’s posterior probabilities for outcome variable Energy = ≤ 0.273.

Figure 10.  Tree optimization of GLCM energy as target node.
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Table 5.  Search method: hard evidence dynamic profile energy: probability maximization (likelihood) 
energy ≤ 0.273 (1/4).

Node Hypothesis
Posterior probability 
P (s|H) (%)

Marginal likelihood 
P(H) (%)

Likelihood 
P(H|s) (%)

Bayes factor BF 
(s, H) (%)

Generalized 
BF GBF (s, H)

A priori 37.77 100

Entropy > 1.885 (4/4) 97.45 31.71 81.81 2.57 9.68

Node
Prior value/
mean

Posterior value/
mean

Homogeneity 0.9252 0.9075

Dissimilarity 0.1625 0.1992

Correlation 0.9287 0.9137

Correlation2 0.9287 0.9137

Cluster shade 17.70 14.72

Cluster prominence 156.67 134.09

Contrast 0.2066 0.25296

Autocorrelation 5.52 6.4093

Table 6.  Search method: hard evidence dynamic profile energy: probability maximization (likelihood) 
energy ≤ 0.368 (2/4).

Node Hypothesis
Posterior probability 
P (s|H) (%)

Marginal likelihood 
P(H) (%)

Likelihood 
P(H|s) (%)

Bayes factor BF 
(s, H) (%)

Generalized 
BF GBF (s, 
H) (%)

A priori 37.97 100

Entropy > 1.885 (3/4) 78.86 32.02 66.48 2.07 4.21

Node
Prior value/
mean

Posterior value/
mean

Homogeneity1 0.9252 0.9075

Dissimilarity 0.1625 0.1672

Correlation 0.9287 0.9282

Correlation2 0.9287 0.9282

Cluster shade 17.70 17.11

Cluster Prominence 156.67 151.90

Contrast 0.2066 0.2131

Autocorrelation 5.52 5.52

Table 7.  Search method: hard evidence dynamic profile energy: probability maximization (likelihood) 
Energy ≤ 0.471 (3/4).

Node Hypothesis
Posterior Probability 
P (s|H) (%)

Marginal Likelihood 
P(H) (%)

Likelihood 
P(H|s) (%)

Bayes Factor 
BF (s, H) (%)

Generalized 
BF GBF (s, 
H) (%)

A Priori 18.08 100

Entropy ≤ 1.445 (1/4) 53.03 13.33 39.10 2.93 4.17

Node
Prior value/
mean

Posterior value/
mean

Homogeneity1 0.9252 0.9075

Dissimilarity 0.1625 0.1090

Correlation 0.9287 0.9477

Correlation2 0.9287 0.9477

Cluster shade 17.70 22.44

Cluster Prominence 156.67 193.05

Contrast 0.2066 0.1367

Autocorrelation 5.52 4.59
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of relationship and degree of relationship among the (Parent → child) node was computed using the mutual 
information, Kullback–Leibler (KL) divergence and Pearson’s correlation. We then computed the incoming, 
outgoing and total force between the nodes to further determine the comprehensive relationship between the 
nodes. The analysis was also done using tornado diagram, network performance, and segment profile analysis 
using the radar chart. The tornado graph indicates that the selected high ranked target variable Energy has highly 
significant results with most of the nodes at the selected cluster states i.e. ≤ 0.273, ≤ 0.368, ≤ 0.471 and > 0.471. 
Moreover, high occurrences, and reliable results were yielded at the selected states to distinguish the pituitary 
from meningioma. The tornado diagram also indicates that higher associations of Energy variable at selected 
cluster state ≤ 0.273 were yielded with variable entropy, homogeneity, dissimilarity, contrast, correlation, cor-
relation2. The target’s posterior probabilities also indicates that the selected target Energy node shows the high 
influence with other nodes. A high ROC index and Gini index were yielded to distinguish these states.

The researchers in the past utilized different imaging analysis methods for diagnosing the MRI  images92–94. 
Hussain et al.38 applied Bayesian inference approach to compute the association among the morphological 
features extracted from Prostate cancer. Most of these studies were relied on classification tasks. The author 
obtained the classification performance with accuracy 91.28%44, 84.19%95, 86.56%96, 90.89%97, 84.19%98, and 
99%18. Previous studies relies on classification methods. However, this novel technique is proposed to further 
investigate the dynamics, associations, posterior probabilities, prior probabilities, marginal likelihood, prior 
means and posterior means to further unfold the relevance and relationships among the extracted features. The 
proposed approach will be very helpful for improved diagnosis and prognosis of brain tumor types.

Conclusions
In this study, we first computed the GLCM features from brain tumor subtypes i.e., pituitary and meningioma 
MRIs. We then ranked the features based on the entropy ranking method. The high ranked energy feature was 
used as our target variable. We then applied the Bayesian approach to further compute the association, arc 
analysis, tree optimization, dynamic profiling. The proposed methods further unfold the dynamics which can 
be helpful to understand the association, dynamic profiling of computed features for better diagnostic system of 
brain tumor types. The Bayesian inference approach can be used as a new biomarker to comprehend a detailed 
analysis of extracted variables to further unfold the underlying dynamics present the computed future for further 
improved prognosis, diagnosis and treatment planning to achieve better clinical outcomes. In future, we will 
further extend more Bayesian inference methods and other tumor types with clinical details and larger dataset.

Data availability
The use of all data mentioned in this article is publicly  available43,44 (https:// github. com/ cheng jun583/ brain 
Tumor Retri eval).
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