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ABSTRACT Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of
cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes re-
mains elusive. Here, we examined the role of GlRac, Giardia’s sole Rho family GTPase, in the regulation of endomembrane orga-
nization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic
reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of
the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs.
Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-RacCA) revealed fewer but
larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-RacCA-expressing cells,
constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked
CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used co-
operatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia
encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our
findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating
membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a
novel target for drug development to treat giardiasis.

IMPORTANCE The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encysta-
tion for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of
cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we
asked whether the signaling activities of G. lamblia’s single Rho family GTPase, GlRac, might have a regulatory role in the encys-
tation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall
protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted
CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encysta-
tion proceeds more efficiently at high cell densities.
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The diplomonad flagellate Giardia lamblia (syn., G. intestinalis,
G. duodenalis) is the causative agent of giardiasis, a neglected

human diarrheal disease (1). Annually, 280 million cases of this
waterborne and foodborne disease are reported worldwide (2, 3).
The Giardia life cycle consists of two stages: the parasitic tropho-
zoite form, which colonizes the host’s upper intestine, and the
water-resistant nonmotile infectious cyst form, which is shed in
the host’s feces. Once G. lamblia leaves the host’s upper intestine,
an increase in pH triggers encystation, leading to the stage differ-
entiation of trophozoites to cysts (4, 5). This dormant form of the
parasite features a protective wall which enables it to survive in the
environment (6). Regulation of the encystation process is essential
for the timely production of viable cysts and, ultimately, for the

success of the parasite-host colonization strategy. In addition to
Giardia, other protozoan parasites utilize an encystation strategy
to maintain their life cycles (7). Giardia is currently the best-
developed model for studying this process (8).

Giardia encystation involves pulsed production, processing,
and secretion of large amounts of cyst wall material (CWM) (9,
10) which is composed of a fibrillar matrix containing three
paralogous cyst wall proteins (CWP1 to 3) and a Giardia-specific
�-1,3-GalNAc homopolymer (11–14). The encystation process
takes roughly 24 h to complete and involves neogenesis of Golgi
complex-like encystation-specific vesicles (ESVs), which have no
equivalent in nonencysting trophozoites (15, 16). Trafficking of
CWP begins with its accumulation in nascent ESVs at endoplas-
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mic reticulum (ER) exit sites (ERES) (10), a process dependent on
COPII and the small GTPase Sar1 (16). After approximately 8 h,
most of the CWM is contained within ESVs. At this point, ESVs
are no longer associated with COPII or Sar1 but are associated
with Arf1, a GTPase whose activity as a molecular switch leads to
the recruitment of the coat proteins COPI and clathrin (16). Arf1
activity is required for subsequent ESV maturation and CWP traf-
ficking out of the cell (13, 16). ESVs are sites of CWP processing,
which includes several posttranslational modifications (17–19).
As ESVs mature they grow in size, and approximately 12 h into the
encystation process, a major processing event leads to the forma-
tion of a condensed core with an outer fluid phase. Core conden-
sation is catalyzed by cleavage of pro-CWP2 into N- and
C-terminal fragments by a cysteine protease (20, 21). The frag-
ments are then partitioned so that the fluid phase is composed
of the N-terminal fragment of CWP2 in addition to CWP1,
whereas the core contains CWP3 and the C-terminal part of
CWP2. At the same time, a GalNAc carbohydrate homopoly-
mer is produced and trafficked by distinct carbohydrate-
positive vesicles that are deposited at the surface of encysting
cells ahead of cyst wall protein secretion (22, 23). The curled
fibrils of the GalNAc carbohydrate serve as a scaffold for direct
binding of CWP1 via a lectin domain (22). The cyst wall is
thought to be formed by a rapid secretion event that releases
CWP1 and the N-terminal part of CWP2, likely within min-
utes, to form the first layer of the cyst wall; this is followed by
slower deposition of the condensed core cargo, CWP3, and the
C-terminal part of CWP2 (9). While considerable progress has
been made in describing these sequential events of encystation,
the signaling events which trigger secretion remain elusive.
Since CWM secretion is necessary for the formation of
environment-resistant infectious cysts, uncovering the mech-
anisms that regulate and temporally coordinate secretion of
CWM could potentially identify potential drug targets of Giar-
dia and also uncover conserved principles of protozoan encys-
tation.

Rho GTPases are potential candidates for regulating CWP se-
cretion, as they have important roles in coordinating vesicle traf-
ficking and the cytoskeleton in plants and animals (24–28). Rho
family GTPases have undergone extensive gene duplication and
functional diversification in most eukaryotic lineages (copy num-
ber in humans, 22; in Arabidopsis thaliana, 11; in Saccharomyces
cerevisiae, 5). However, the Giardia genome contains just a single
Rho family GTPase, GlRac, and the entire signaling system ap-
pears to be minimalistic compared to that of mammals (see Ta-
ble S1 in the supplemental material) (29–31). Interestingly, Rac
has been reported to be the evolutionary founding member of the
Rho family GTPases (32). Therefore, studies of G. lamblia, which
is itself placed in a critical, albeit controversial, deep-branching
position on the tree of life (33–35), may provide insight into the
ancestral function of Rho family GTPases.

Here, we set out to determine if GlRac has a role in regulating
membrane trafficking in Giardia. We report that GlRac is associ-
ated with the ER in trophozoites and with both the ER and the
Golgi complex-like ESVs during encystation. GlRac is crucial for
production of CWP1, maturation of ESVs, and most importantly,
for secretion of CWP1, which is used in a cooperative manner to
form viable cysts. These roles in Giardia indicate a conserved and
ancient role for Rac homologs in membrane trafficking.

RESULTS
GlRac associates with the ER and encystation-specific vesicles.
We previously observed that expression of a constitutively active
GlRac mutant (tetracycline/doxycycline-inducible Q47L HA-Rac;
HA-RacCA, equivalent to Q61L Rac1 [see Fig. S1 in the supple-
mental material]), alters actin organization and, sometimes, re-
sults in formation of large vesicular structures in nonencysting
trophozoites (31). The latter result suggested a possible role for
GlRac in endomembrane organization. To further examine this
possibility, we determined GlRac localization by endogenously
tagging the protein at the N terminus with a triple hemagglutinin
(HA) tag (HA-Rac). Localization of HA-Rac in trophozoites, the
proliferative stage that colonizes the host intestine, revealed a pat-
tern similar to that reported for the ER (36). We therefore exam-
ined its location relative to protein disulfide isomerase 2 (PDI2),
an ER lumenal enzyme that catalyzes disulfide bond formation
and protein folding (36). We observed considerable overlap be-
tween the two signals (Fig. 1A), indicating that a portion of GlRac
is ER associated. To determine whether GlRac localization might
be altered during the stage conversion to cysts, we induced encys-
tation by exchanging standard medium for encystation medium
and then examined the localization of HA-Rac 12 h into the en-
cystation process. We found that HA-Rac was associated with the
perimeter of CWP1-positive vesicles known as ESVs (Fig. 1B). The
localization of GlRac to the ER and ESVs could indicate a role for
Rac in regulating protein trafficking in Giardia.

Constitutive GlRac signaling impairs ER function, CWP1
production, and cyst viability. To assess whether GlRac activity
affects the ER, we tested the impact of inducing HA-RacCA expres-
sion on PDI2 localization 24 h after the addition of doxycycline
(Fig. 2A). We observed a striking increase in PDI2 staining. Quan-
tification verified a 4-fold increase in PDI2 levels as a result of
induced HA-RacCA expression above that of the uninduced con-
trol (Fig. 2B). To verify a functional role for GlRac in encystation,
we assessed the impact of constitutive GlRac signaling on CWP1
levels and the production and viability of cysts. We chose to follow
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FIG 1 GlRac associates with the ER and ESVs. (A) Trophozoites were stained
for HA-Rac (green), PDI2 (red), and DNA (blue) (merged image). HA-Rac
staining partially overlapped with the ER marker PDI2. The inset shows en-
richment of HA-Rac at the perinuclear ER. (B) Encysting cells were stained for
HA-Rac (green), CWP1 (ESV marker; red), and DNA (blue). Bar � 5 �m.
DIC, differential interference contrast images.
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CWP1 because it is the best-characterized cyst wall component
and the only marker for which a commercial antibody is available.
HA-RacCA expression led to over a 70% reduction in CWP1 levels
24 h into the encystation process, compared with its levels in un-
induced control cells, as measured by quantitative immunoblot-
ting (Fig. 2C and D). Consequently, the number of cysts formed
by HA-RacCA-expressing cells compared to the uninduced control
was reduced by 49%. To compare the quality of the cyst walls
formed by these two populations, we assessed the ability of the
formed cysts to exclude the vital dye trypan blue after treatment
with distilled water. Cysts with defective walls lyse in distilled wa-
ter and stain blue. We observed a significant increase in trypan
blue-positive cysts in the HA-RacCA-expressing population
(Fig. 2E).

Since misregulation of GlRac signaling impacted the ER,
CWP1 levels, and cyst production, we questioned whether GlRac
levels change during the encystation process. SAGE data in Giar-
diaDB reported that GlRac levels (GL50803_8496) decreased
upon the initiation of encystation and then increased above the
levels of nonencysting trophozoites 7 h into encystation (37). We
used quantitative reverse transcription-PCR (RT-PCR) to analyze
the time course of GlRac expression in wild-type (WT) cells at 0, 2,
8, 16, and 20 h post-induction of encystation (p.i.e.) relative to
expression of the housekeeping gene GAPDH (38). In contrast to
the SAGE and recently published transcriptome sequencing
(RNA-Seq) data (8, 37), we did not observe reduced GlRac expres-
sion upon initiation of encystation, but we did observe that GlRac
levels increased significantly at 8 h p.i.e. (Fig. 2F) (P � 0.05).
Together, our studies indicate that GlRac is transcriptionally up-
regulated from ~7 to 12 h p.i.e.

While GlRac localizes to the ER, it may be mostly inactive
there. Rho GTPases act as molecular switches by changing confor-
mation based upon their nucleotide binding state. The active
GTP-bound state functions by recruiting effectors to carry out
specific activities, and it then becomes inactive after GTP hydro-
lysis and disassociation with effector proteins. Rho GTPases are
activated by guanine nucleotide exchange factors (GEFs) through
exchange of GDP for GTP (39). Therefore, the ER could be a
source of sequestered GlRac positioned to associate with budding
vesicles. In support of the notion that GlRac is largely inactive at
the ER, constitutively active GlRac increased PDI2 levels, indicat-
ing ER stress (40). To further examine the impact of constitutive
GlRac signaling on organization of the ER and other endomem-
branes, we analyzed the impact of HA-RacCA at the level of elec-
tron microscopy. In transmission electron micrographs (TEMs)
of WT cells, ESVs are vesicles with a uniform electron density, and
the ER appears as thin tubules (Fig. 2G; see also Fig. S2 in the
supplemental material). In doxycycline-induced HA-RacCA en-
cysting cells, we observed marked changes in endomembrane or-
ganization that likely correlated with the extent of HA-RacCA ex-
pression. In severely perturbed cells, we observed atypical ER
morphology, with extensive swelling potentially indicating an ER
exit defect. Our TEM analysis, in the absence of any markers, did
not allow us to determine which if any of the vesicular structures
observed in the most severely disrupted cells were ESVs. In any
case, we observed electron-dense staining of vesicular content that
we have not observed in wild-type controls (see Fig. S2 in the
supplemental material). We interpret the electron-dense staining
within vesicles to indicate defective CWM processing, and this
may account for the reduction of CWP1 in HA-RacCA-expressing
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FIG 2 Constitutive GlRac signaling impairs ER function, CWP1 production,
and cyst viability. (A) Expression of constitutively active GlRac resulted in
increased PDI2 levels (red); representative images were acquired and scaled
equally. Note that PDI2 levels in the control are similar to that of endogenously
tagged Rac (see Fig. 1A); it was necessary to scale the image differently so that
the induced HA-RacCA image would not be saturated. (B) Quantification of
PDI2 levels. Statistical significance was evaluated from three independent ex-
periments by t test (n � 45) for each condition: ****, P � 0.0001. a.u., arbitrary
units. Bar, 5 �m. (C) Western blot analysis showed decreased production of
CWP1 in doxycycline-induced HA-RacCA encysting cells at 8, 20, and 24 h
p.i.e. compared to production in the uninduced control. CWP1 was probed on
the same blot after stripping. (D) Quantification of CWP1 levels from three
independent experiments. Control cells at 24 h p.i.e. were set to 100%, and the
relative amount of CWP1 was calculated based on normalization to the tubu-
lin loading control. Statistical significance was evaluated by using the t test.
****, P � 0.0001. (E) Cyst production was quantified for induced HA-RacCA

and control cells. Additionally, the cells were stained with the vital dye trypan
blue to assay cyst wall integrity. Cysts production and viability data were ac-
quired from three independent experiments, each with �200 cysts. Statistical
significance was evaluated by using the t test. **, P � 0.01. (F) Relative expres-
sion of GlRac at 0, 2, 8, 16, and 20 h p.i.e. was tested by quantitative RT-PCR,
for which GAPDH was used as a control. Three independent replicates, each
consisting of three technical replicates, were evaluated by using the t test. *, P �
0.05. (G) TEM imaging of wild-type and doxycycline-induced HA-RacCA cells
13 h p.i.e. Yellow arrows, putative ER; N, nucleus; *, putative ESV. Bar, 200 nm.
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cells. Taken together, we conclude that GlRac has a critical regu-
latory role in encystation, based on four observations: (i) GlRac
associates with the ER and ESVs; (ii) GlRac is temporally upregu-
lated during encystation; (iii) constitutive GlRac signaling causes
ER swelling and reduces cellular CWP1 levels; and (iv) constitu-
tive GlRac signaling reduces encystation rates as well as disrupts
cyst wall integrity.

GlRac promotes ESV maturation. To better understand the
temporal role of GlRac in encystation, we encysted doxycycline-
induced HA-RacCA and the endogenously tagged HA-Rac cell
lines. Cells were collected every 2 h from 2 to 24 h p.i.e. and stained
for CWP1 and HA (see Fig. S3 in the supplemental material).
Consistent with the results described above, in which GlRac ex-
pression levels were shown to increase by 8 h p.i.e., we observed a
striking difference between HA-Rac and HA-RacCA cells at 8 h
p.i.e. ESVs in HA-RacCA-expressing cells were fewer, larger in vol-
ume, and more often displayed a ring-like CWP1 distribution
than did the HA-Rac control (Fig. 3A; see also Fig. S3). The ring-
like CWP1 distribution is characteristic of mature ESVs that have
undergone processing and condensation and is not typically ob-
served until 12 to 16 h p.i.e. (9). We quantified the number and
volume of ESVs in the cells via three-dimensional (3D) image
segmentation. The number of ESVs formed per cell was reduced
by 73.6% in HA-RacCA-expressing cells compared to HA-Rac cells
(Fig. 3B and C). Additionally, the average volume of individual
ESVs was 50% larger in HA-RacCA-expressing cells than in HA-
Rac cells (Fig. 3B and D). Due to leaky expression (see Fig. S4A in
the supplemental material), uninduced HA-RacCA cells displayed
an intermediate phenotype (see Fig. S4B and C), which is why we
used HA-Rac cells as a negative control here. Nevertheless, the
doxycycline-induced HA-RacCA cells had a significant increase in
volume over uninduced HA-RacCA cells. These findings indicate
that GlRac signaling can promote increased ESV size and preco-
cious maturation, a result that corresponds well with its transcrip-
tional increase at 7 to 12 h p.i.e. in wild-type Giardia.

Rac drives secretion of CWP1, which can be utilized by the
entire population of cysts. Cyst wall formation is thought to be
temporally regulated, because CWM is held in the Golgi complex-
like ESVs for processing and sorting before its concerted secretion
to form the cyst wall (9). Our observations of precocious ESV
maturation and reduced intracellular CWP1 may be consistent
with a switch from regulated to constitutive secretion of CWM.
Therefore, we expected that if HA-RacCA caused secretion in a
temporally uncontrolled manner, we would detect free CWP1 in
the medium, as secreting cells would not yet be competent to bind
CWP1. This was indeed found to be the case. Cells expressing
HA-RacCA displayed an increased ratio of CWP1 exported into the
medium compared to the CWP1 remaining in the cells (Fig. 4A
and B). While we had expected to find free CWP1 in the medium
of HA-RacCA-expressing cells, we were surprised to find such high
levels of CWP1 in the medium of the control. This prompted us to
ask whether the CWP1 detected in the medium was functional
(i.e., could be incorporated into the cyst wall of any cell in the
population), a possibility that would implicate encystation as a
cooperative process. Furthermore, cooperative production of
CWP1 might in part account for previous observations that en-
cystation rates improve with greater parasite densities (5). To test
this, we conducted a medium swap experiment. Beginning with
confluent cultures (~1 � 106 cells/ml), CWP1-mCherry-
expressing cells or WT cells were incubated in encystation me-

dium for 24 h. The medium in which CWP1-mCherry cells were
encysted (CWP1-mCherry medium) was cleared of cells by cen-
trifugation and filtration (0.22 �m) before being used to replace
the medium of encysting WT cells. Following incubation for a
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Krtková et al.

4 ® mbio.asm.org July/August 2016 Volume 7 Issue 4 e01003-16

mbio.asm.org


further 24 h, we found that 100% (50/50) of the WT cysts were
mCherry positive and, as expected, 0/50 WT cells from the plain
medium condition had detectable red fluorescence under identi-
cal image acquisition and scaling (Fig. 4C). Consistent with the
idea that only cells at a specific stage (i.e., the cells at later stages of
encystation, displaying GalNAc homopolymers) are competent to
bind CWP1 (22), we only found mCherry-CWP1 on rounded-up
late-stage encysting cells or cysts and never on trophozoite-shaped
cells (Fig. 4C). These results indicate that secreted CWP1 can be
utilized at the population level and help to start explaining the
improved encystation rates associated with greater parasite den-
sity (5).

To further validate the role of GlRac in secretion, we sought
to inhibit GlRac signaling through loss-of-function. The ability
to knock out genes in Giardia with genome editing has yet to be
accomplished, and RNA interference is ineffective. Therefore,
we sought to deplete GlRac by using translation-blocking mor-
pholinos (41). In order to monitor GlRac protein levels with-
out a custom antibody, we developed an endogenously tagged
morpholino-sensitive HA-GlRac construct (HA-RacMS) by in-
cluding the first 27 bp of the Rac coding region in front of the HA
tag (see Fig. S5 in the supplemental material). Without this short
sequence, the 5= HA tag would render the tagged copy of GlRac
morpholino resistant (42). HA-RacMS localization was indistin-
guishable from that of the previously used endogenously tagged
HA-Rac (see Fig. S5D). Western blot analysis confirmed that
GlRac expression was reduced by 72% at 24 h after morpholino
electroporation (see Fig. S5). Depletion of GlRac in trophozoites
led to defects in morphology, polarity, and cytokinesis (see
Fig. S5D). In agreement with the notion that GlRac activity is not
required for the initial stages of encystation, GlRac depletion did
not cause an appreciable change in cellular CWP1 content
(Fig. 4D and E); it did, however, impair CWP1 secretion, as indi-
cated by the significantly decreased amount of CWP1 detected in
the medium during the later stages of encystation (Fig. 4F and G;
see also Fig. S6 in the supplemental material). Consistent with this
phenotype, we frequently observed cells with ESVs persisting at
the periphery of the cells. We interpret this finding to indicate
that ESV fusion with the plasma membrane was impaired and
thus the CWM cargo remained trapped in the cell (Fig. 4H; see
also Fig. S6).

Taken together, our findings demonstrate two major functions
for GlRac in encystation. GlRac signaling promotes an increase in
ESV size and maturation and is required for CWP1 secretion.

DISCUSSION

We set out to determine whether GlRac plays a critical role in
regulating membrane trafficking and, more specifically, if it has a
role in regulating the trafficking of CWM. The initial production
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medium versus that found in cells was quantified at 20 h p.i.e. from three
independent experiments (levels for cells and media were first normalized to
the uninduced control before calculating the ratio). (C) Free CWP1 detected in
the medium can be used by the entire population. Sterile filtered medium from
encysting CWP1-mCherry-expressing cells at 24 was replaced with the me-
dium of WT cells. After a subsequent 24 h in the CWP1-mCherry medium,
100% (50/50) of the WT cysts were CWP1-mCherry positive, while 0/50 WT
cells encysted after 48 h displayed red fluorescence. (D) Quantitative Western
blot showing CWP1 levels after depleting GlRac with translation-blocking
morpholinos (see Fig. S6B in the supplemental material). (E) Quantification of
results from three independent experiments, indicating that GlRac depletion
does not significantly impair the production of CWP1 in encysting cells after 8,
20, and 24 h p.i.e. (CWP1 in control cells at 24 h p.i.e. was normalized to 100%;
ns, nonsignificant). (F) Analysis of CWP1 levels in the medium of

(Continued)

Figure Legend Continued

morpholino-treated cells. Note that plain encystation medium was loaded as a
negative control and lysates of encysting cells were loaded as positive controls.
(G) Quantification of secreted CWP1 from three independent experiments
(CWP1 levels in control cells at 24 h were normalized to 100%). (H) Immu-
nofluorescence localization of HA-RacMS (green) and CWP1 (red) were ana-
lyzed at 20 h p.i.e. Note that ESVs in KD cells appear to be larger and stuck
beneath the plasma membrane (see also Fig. S6A in the supplemental mate-
rial). Bar, 5 �m. Statistical significance was evaluated with the t test. **, P �
0.01; *, P � 0.05.
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of CWM is dependent on the ER (10). Enrichment of GlRac at the
ER in nonencysting and encysting trophozoites (Fig. 1) is consis-
tent with a role in regulating ER structure and/or function. CWP1
release from the ER depends on functional ERES and is a necessary
first step in ESV biogenesis (10). The accumulation of PDI2 and
the swollen ER phenotype associated with HA-RacCA expression
suggest an ER exit defect (Fig. 2B and G; see also Fig. S2 in the
supplemental material). Whether GlRac has a regulatory role for
ERES remains to be elucidated. Interestingly, however, upregula-
tion of GlRac expression coincides with the completion of CWP
loading into nascent ESVs around 8 h p.i.e. (16). There is also
precedence for Rho GTPase regulation of ERES. SPIKE1, an Ara-
bidopsis guanine nucleotide exchange factor (GEF), localizes to
ERES, where it activates the Rac homolog Rho of plants 2 (At-
ROP2) (29, 43). Expression of AtROP2 dominant-negative or
constitutively active mutants resulted in upregulation of ER stress
response genes (43), which is similar to our observation that con-
stitutive GlRac signaling increased PDI2 levels, a known ER stress
response (40). We speculate that constitutive GlRac signaling
caused ER trafficking defects that resulted in reduced CWP1 levels
as a consequence of overall reduced capacity to produce and sort
CWP1.

Precedent also exists for Rho family GTPases controlling secre-
tory traffic through coordination of the cytoskeleton and mem-
brane trafficking systems (25). We previously demonstrated that
GlRac has a role in regulating the actin cytoskeleton in Giardia
(31). Furthermore, actin was shown to localize to late-stage ESVs
(31). Since GlRac is enriched around ESVs (Fig. 1B), it is tempting
to speculate that GlRac works to coordinate the cytoskeleton and
membrane trafficking systems during ESV maturation and secre-
tion. For example, GlRac could trigger actin-based translocation
of smaller ESVs in order to bring them into proximity for fusion.
A general role in coordinating the cytoskeleton and membrane
trafficking systems would be in line with Rho GTPase functions in
other eukaryotes. Considering that Rac is the evolutionary found-
ing member of the Rho family GTPases (32) and that Giardia
belongs to a potentially early-branching group of eukaryotes (34,
44), our results suggest that the ancestral Rac homolog was capa-
ble of regulating multiple processes and that the functional diver-
sification of the expanded Rho family GTPases is a modern adap-
tation.

Model of GlRac regulation of encystation. Giardia’s parasitic
life cycle is dependent on stage conversion from trophozoites to
infectious water-resistant cysts, which preserves their viability in
the outer environment and passage through stomach acid. Encys-
tation features sequential vesicle trafficking events and pulsed se-
cretion of CWM to the surface of the newly formed cyst (9). Our
results and the current understanding of the process are summa-
rized in Fig. 5, an updated model for encystation (9, 45). Newly
produced CWPs destined to form the impermeable cyst wall are
produced in the ER and sorted into nascent ESVs (15, 46). ESV
neogenesis is dependent on functional ERES (10), which use the
small GTPase Sar1 and COPII to form export vesicles (13, 16).
Our data suggest that Rac signaling is inhibitory at this stage of
trafficking (Fig. 2; see also Fig. S3 in the supplemental material).
During early encystation (around 8 to 12 h p.i.e.), we observe the
transition from many small ESVs to fewer larger ESVs; this process
is promoted by GlRac signaling (Fig. 3). Coincidentally, Arf1 be-
gins to associate with ESVs, and its activity is required for ESV
maturation and ultimately CWP secretion (13, 16), around the

FIG 5 Model of GlRac regulation of encystation. Based on our findings from
this study, we propose a model of encystation where GlRac coordinates the
encystation process. Newly synthesized CWM is produced in the ER and ex-
ported from the ER into nascent ESVs (15, 46). GlRac signaling disrupts export
from the ER, a process dependent on active ERES and the small GTPase Sar1
(10, 16). Active GlRac drives maturation of ESVs (black arrows). Mature ESVs
are composed of the condensed core (con), containing CWP3 and the
C-terminal part of processed CWP2, and the fluid outer phase (fl), composed
of CWP1 and the N-terminal part of processed CWP2 (9). Maturation of ESVs
is a consequence of CWP2 processing by a cysteine protease (20). Double-
phase ESVs decondense to be sorted and sequentially secreted. Ahead of CWP
secretion, GalNAc homopolymer is exported to the cyst surface by distinct
carbohydrate-positive vesicles (ECVs) (22, 23). CWP1 secretion is regulated
by GlRac signaling (black arrows) and is crucial to form the first protein layer
of the impermeable cyst wall. CWP1 binds the GalNAc carbohydrate fibrils
present at the surface of the encysting cell (22) but can also diffuse away and be
bound by other “primed” encysting cells (black arrows). By affecting CWP1
levels in the cell, temporal regulation of ESVs maturation, and CWP1 secre-
tion, GlRac signaling coordinates the sequential CWP1 production and traf-
ficking events necessary for the production of viable cysts.
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same time GlRac transcript levels rise. It is tempting to speculate
that these events are related, as cross talk between Arf and Rho
GTPases has been observed for Arf and Rho GTPase homologs in
plants and animals (reviewed in references 47 and 48). CWM pro-
cessing occurs during the transition to larger ESVs and is apparent
as an outer fluid phase and an inner condensed phase. The outer
fluid phase is composed of CWP1 and the N-terminal processed
portion of CWP2, while the condensed core is composed of CWP3
and C-terminal part of CWP2 (9). The mechanism by which
GlRac signaling promotes an increase in ESV volume and concur-
rent CWM processing remains to be elucidated. We speculate that
the mechanism will involve fusion of early ESVs and vesicles con-
taining the protease responsible for the proteolytic cleavage of
CWP2 (20, 21). During the later stages of encystation, in a second
sorting event, the fluid and condensed phases of mature ESVs are
separated and secreted in sequential steps to form a double-
layered cyst wall (9). First, the fluid phase, composed of CWP1
and the N-terminal region of CWP2, is secreted in a GlRac-
dependent manner (�16 h p.i.e.). CWP1 has been proposed to
contain a lectin domain that interacts with GalNAc homopolymer
fibrils present at the surface of the forming cyst (22). Our results
indicate that this is a cooperative process where CWP1 cannot
only bind the cell it is secreted from but also contribute toward
cyst wall formation of neighboring encysting cells (Fig. 5). In the
final stages of encystation (�20 h p.i.e.), the cyst wall is “sealed”
with CWP3 and the C-terminal part of CWP2; these proteins are
exported from the subpopulation of ESVs that inherited con-
densed cores (9). Overall, Giardia’s sole Rho family GTPase ap-
pears to play a central role in coordinating maturation and secre-
tion of CWP1. We hypothesize that GlRac’s roles in ESV
maturation (Fig. 3), formation of aberrant vesicles (Fig. 4) (31),
and CWP secretion (Fig. 5) could all be explained by a role for
GlRac in promoting membrane fusion. The specific effectors ac-
tivated by GlRac signaling remain to be identified.

Conclusion. Our data indicate that the sole Rho family GTPase
in Giardia has a critical role in regulating the encystation process.
GlRac is key to temporal coordination of CWP1 production, ESV
maturation, and CWP1 secretion, all of which are required for cyst
formation and viability. The relative simplicity of Giardia’s mem-
brane trafficking and Rho GTPase signaling system, whether evo-
lutionarily ancient or derived, may be a powerful tool for uncov-
ering core principles of cellular signaling, membrane trafficking,
and the encystation process. In addition, Rho GTPases are drug-
gable targets (49, 50), so the modulation of GlRac activity may be
a potent tool to suppress Giardia infection and transmission. In-
deed, rational drug design has been successfully used to target
human Rac1 while sparing the related Rho family GTPases RhoA
and Cdc42 (49–51). Since human Rac1 is more similar to human
Cdc42 (70% identity) than to GlRac (50% identity), this diver-
gence should allow for Giardia-specific inhibitors to be developed,
and thus we suggest GlRac as a promising new candidate for drug
development.

MATERIALS AND METHODS
Strain and culture conditions. G. lamblia strain WB clone C6 (ATCC
50803) was cultured as described in reference 52. Knockdown experi-
ments were performed as described elsewhere (41) using the Rac morpho-
lino oligonucleotide 5= TATCCTCATTTCCTGTACTAGTCAT 3= and a
control (Ctrl) morpholino oligonucleotide (5= CCTCTTACCTCAGTTA
CAATTTATA 3=). For transfection, 5 to 50 �g DNA was electroporated

(375 V, 1,000 �F, 750 �; GenePulser Xcell; BioRad, Hercules, CA) into
trophozoites. Expression of RacCA was induced with 10 or 20 �g/ml doxy-
cycline hydrochloride 12 to 24 h before the start of experiments.

Encystation and viability assay. To allow observation of different en-
cystation stages, cells were synchronized by using the two-step encystation
protocol (53). Confluent cultures of ~1 � 106 cells/ml were cultivated for
24 h in preencystation medium (without bile). Encystation was induced as
described previously (54) in medium with a pH of 7.8 and supplemented
with 10 g/liter bovine/ovine bile. Trophozoites were encysted 12 to 24 h
post-morpholino treatment or induction of RacCA expression. Two days
after water treatment, cysts were stained with trypan blue and counted by
using a hemocytometer.

Vector construction. Construction of the tetracycline-inducible WT
and Q74L HA-GlRac (HA-RacCA) vectors is described in reference 31.
N-terminally HA-tagged GlRac (GL50803_8496) and morpholino-
sensitive GlRac under endogenous promoters (HA-RacMS) were con-
structed as follows. The HA-Rac fragment was cleaved with NcoI and
EcoRI from a tetHA-Rac.pac vector and ligated into pKS-HA.pac en-
riched with an NcoI site. The NcoI restriction site was introduced into the
pKS-HA.pac vector by using adapter oligonucleotides NcoI F= (GATCC
CCATGGG) and NcoI R= (AATTCCCATGGG). To create an N-
terminally tagged endogenously expressed HA-Rac that would remain
sensitive to morpholinos, we introduced the first 27 bp of the Rac coding
sequence before the HA tag (see Fig. S5A in the supplemental material).
Native promoter-only or native promoter plus the first 27 bp (morpho-
lino binding site for RacMS) of the Rac gene flanking XbaI and NcoI sites
was PCR amplified from Giardia genomic DNA using the primers
XbaRacprom_F (5= AAATCTAGAGTGCCGAGGCGGGATTGCTC 3=)
and RacpromNcoI_R (5= AAACCATGGTTTTTAATTTTTGTAACATG
3=) for GlRac and XbaRacprom_F (5= AAATCTAGAGTGCCGAGGCGG
GATTGCTC 3=) and NcoRacMORF_R= (5=ATTCCATGGCTGTATCCT
CATTTCCTGTAC 3=) for RacMS, respectively. The HA-RacMS plasmid
was linearized for homologous recombination into the Giardia genome
by using PstI.

To construct CWP1-mCherry, pKS-3HA.neo was digested with
BamHI and EcoRI to remove the 3� HA tag. CWP1, including endoge-
nous promoter sequence, was PCR amplified from Giardia genomic
DNA by using the primer CWP1prom_F (5= AAAGGATCCAAGCTTCT
AGCCACGCATGGGCTG 3=) with flanking BamHI site and the
CWP1_R (5= CCGACCGGTccCCAAGGCGGGGTGAGGCAG 3=)
primer with flanking AgeI site. mCherry was PCR amplified from a donor
vector by using mCherry_F (5= GGGACCGGTTGGAGGCGGAGGGAG
CGGCGGGGGCGGAAGCATGGTGAGCAAGGGCGAG 3=) primer
flanking AgeI site and a spacer to ensure proper folding of the fusion
protein and mCherry_R (5= AAAGAATTCTCACTTGTACAGCTC
GTCC 3=) primer flanking the EcoRI site. The three fragments were li-
gated, and the sequence was verified before being transfected for episomal
expression.

RT-PCR. RNA from encysting WT cells at the indicated times post-
induction of encystation was isolated using the Illustra RNAspin kit (GE
Healthcare Life Sciences, Pittsburgh, PA). RNA was reverse transcribed to
cDNA by using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA).
Quantitative PCR (qPCR) was performed using SsoAdvanced Universal
SYBR Green supermix (Bio-Rad, Hercules, CA), and primers were de-
signed using Primer3 software as follows. For Rac cDNA, primers qPCR
RAC F2 (5= GTGCAGAGGAAGTTGCAAAAG 3=) and qPCR RAC R12
(5= GCGGATTGCACTATCAAACA 3=) were used. For glyceraldehyde
3-phosphate dehydrogenase (GAPDH) housekeeping gene cDNA
(GL50803_6687), used as a control (38, 55), primers qPCR GAP1 F2 (5=
CAAGGGGATCATGACCTACAC 3=) and qPCR GAP1 R2 (5= AGGCAA
CCAGCTTAACGAAC 3=) were used.

Transmission electron microscopy. For TEM, cells attached to
carbon-coated sapphire disks were fixed with 2.5% glutaraldehyde in
0.1 M Na/K-phosphate (pH 7.4) for 1 h, washed with 0.1 M Na/K-
phosphate, postfixed with 1% osmium tetroxide in 0.1 M Na/K-
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phosphate for 1 h, and dehydrated in a series of ethanol starting at 70%.
After two changes in acetone, the processed cells were embedded in Epon
at room temperature followed by polymerization at 60°C for 2.5 days.
Sections of 60 to 80 nm in thickness were stained with uranyl acetate and
lead citrate and analyzed in a transmission electron microscope (CM12;
FEI, Eindhoven, the Netherlands) equipped with a charge-coupled-device
camera (Ultrascan 1000; Gatan, Pleasanton, CA) at an acceleration volt-
age of 100 kV.

Immunofluorescence microscopy. For the immunofluorescence mi-
croscopy, cells were pelleted at 500 � g at room temperature and the pellet
was fixed in PME [100 mM PIPES (pH 7.0), 5 mM EGTA, 10 mM MgSO4;
PIPES is an abbreviation for piperazine-N,N=-bis(ethanesulfonic acid)]
supplemented with 2% paraformaldehyde (Electron Microscopy
Sciences, Hatfield, PA), 100 �M 3-maleimidobenzoic acid N-
hydroxysuccinimide ester (Sigma-Aldrich), 100 �M ethylene glycol
bis(succinimidyl succinate) (Pierce), and 0.025% Triton X-100 for 30 min
at 37°C. Cells were washed two times in PME and then adhered to cover-
slips coated with poly-L-lysine (Sigma-Aldrich). The cells were washed
again and permeabilized with 0.1% Triton X-100 in PME for 10 min. After
two washes with PME, the cells were blocked for 30 min in PMEBALG
(PME plus 1% bovine serum albumin, 0.1% NaN3, 100 mM lysine, 0.5%
cold water fish skin gelatin [Sigma-Aldrich]). Rabbit anti-Giardia actin
(GlActin) antibody 28PB�1 (31) and anti-HA mouse monoclonal HA7
antibody (Sigma-Aldrich) were both diluted 1:125 in PMEBALG, and
cells were incubated in antibody solution overnight. After three washes
with PME plus 0.05% Triton X-100, Alexa 488-conjugated goat anti-
mouse and Alexa 555-conjugated goat anti-rabbit (Molecular Probes)
secondary antibodies were diluted 1:200 in PMEBALG, and cells were
incubated in these mixtures for 2 h. After three washes with PME plus
0.05% Triton X-100, the cells were postfixed in PME plus 1% parafor-
maldehyde and 0.025% Triton X-100 for 15 min, briefly washed three
times in PME plus 0.05% Triton X-100, blocked in PMEBALG for
30 min, and incubated in 1:200 Alexa 647-conjugated anti-CWP1 an-
tibody (Waterborne, New Orleans, LA) for 2 h. After three washes with
PME plus 0.05% Triton X-100, coverslips were mounted with ProLong
Gold antifade plus 4=,6-diamidino-2-phenylindole (DAPI; Molecular
Probes). Anti-PDI2 antibody was used to detect the ER (36, 56). A
Zenon mouse IgG labeling kit (Life Technologies, CA, USA) was used
to costain HA-Rac and PDI2. Fluorescent images were acquired on a
DeltaVision Elite microscope using a 100�, 1.4-numerical aperture
objective and a PCO Edge sCMOS camera. Deconvolution was per-
formed with SoftWorx (API, Issaquah, WA).

Protein analysis and immunodetection. Giardia parasites were har-
vested for protein analysis and immunodetection after chilling the culture
tubes in ice for 30 min. After detachment, cells were pelleted at 700 � g
and washed once in HEPES-buffered saline. To detect secreted CWP1, the
medium was filtered, denatured in sample buffer, and boiled. The cells
were resuspended in 300 �l of lysis buffer (50 mM Tris [pH 7.5], 150 mM
NaCl, 7.5% glycerol, 0.25 mM CaCl2, 0.25 mM ATP, 0.5 mM dithiothre-
itol, 0.5 mM phenylmethylsulfonyl fluoride, 0.1% Triton X-100, Halt pro-
tease inhibitors [Pierce]) and sonicated. The lysate was cleared by centrif-
ugation at 10,000 � g for 10 min at 4°C and then boiled in sample buffer.
Blotting was performed using an Immobilon-FL polyvinylidene difluo-
ride membrane (Milipore) following the manufacturer’s directions. Rab-
bit anti-GlActin polyclonal antibody (31), anti-HA mouse monoclonal
HA7 antibody (IgG1; Sigma-Aldrich), and mouse monoclonal anti-
acetylated tubulin clone 6-11B-1 antibody (IgG2b; product T 6793;
Sigma-Aldrich) were used at 1:2,500 in blocking solution (5% dry milk,
0.05% Tween 20 in Tris-buffered saline). Secondary anti-mouse isotype-
specific antibodies conjugated with Alexa 488 (anti-IgG2b), Alexa 555
(anti-IgG1), and anti-rabbit Alexa 647 were used. For CWP1 staining,
Alexa 647-conjugated anti-CWP1 antibody (Waterborne, New Orleans,
LA) was used at 1:200. Horseradish peroxidase-linked anti-mouse or anti-
rabbit antibodies (Bio-Rad) were used at 1:7,000. Multiplex immunoblots
were imaged by using a Chemidoc MP system (Bio-Rad).

Image analysis. Segmentation analysis was performed with Imaris
software (Bitplane, version 8.1). Images were processed with ImageJ (57),
and figures were assembled using Adobe Illustrator.
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