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Background: Accurate prediction of clinical outcome is of utmost importance for

choices regarding the endovascular treatment (EVT) of acute stroke. Recent studies

on the prediction modeling for stroke focused mostly on clinical characteristics and

radiological scores available at baseline. Radiological images are composed of millions

of voxels, and a lot of information can be lost when representing this information by a

single value. Therefore, in this study we aimed at developing prediction models that take

into account the whole imaging data combined with clinical data available at baseline.

Methods: We included 3,279 patients from the MR CLEAN Registry; a prospective,

observational, multicenter registry of patients with ischemic stroke treated with EVT. We

developed two approaches to combine the imaging data with the clinical data. The first

approach was based on radiomics features, extracted from 70 atlas regions combined

with the clinical data to train machine learning models. For the second approach,

we trained 3D deep learning models using the whole images and the clinical data.

Models trained with the clinical data only were compared with models trained with the

combination of clinical and image data. Finally, we explored feature importance plots for

the best models and identified many known variables and image features/brain regions

that were relevant in the model decision process.

Results: From 3,279 patients included, 1,241 (37%) patients had a good functional

outcome [modified Rankin Scale (mRS) ≤ 2] and 1,954 (60%) patients had good

reperfusion [modified Thrombolysis in Cerebral Infarction (eTICI) ≥ 2b]. There was no
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significant improvement by combining the image data to the clinical data for mRS

prediction [mean area under the receiver operating characteristic (ROC) curve (AUC)

of 0.81 vs. 0.80] above using the clinical data only, regardless of the approach used.

Regarding predicting reperfusion, there was a significant improvement when image and

clinical features were combined (mean AUC of 0.54 vs. 0.61), with the highest AUC

obtained by the deep learning approach.

Conclusions: The combination of radiomics and deep learning image features with

clinical data significantly improved the prediction of good reperfusion. The visualization

of prediction feature importance showed both known and novel clinical and imaging

features with predictive values.

Keywords: ischemia stroke, radiomics, deep learning, data combination, outcome prediction

INTRODUCTION

Approximately one-third of patients who suffer from acute
ischemic stroke die or become functionally dependent, making
stroke a very severe condition worldwide (1). An occlusion in
one of the major cerebral arteries is present in one-third of
patients, and is often referred as large vessel occlusion (LVO)
(2). Endovascular treatment (EVT) is the standard treatment
for LVO, and its great benefits have been proven extensively
(3–6). However, despite successful treatment, ∼30% of patients
still present a poor outcome at 3 months. The outcome
after treatment is dependent on multiple factors, from patient
characteristics and condition to severity and location of the
occlusion (7). Accurate prediction of patient outcome has been
explored in several studies and it is of utmost importance to
correctly identify patients who will and who will not have a good
outcome after EVT. This information can be used to further
personalize acute stroke care (7, 8).

Most prediction models found in literature focused on the
small subsets of clinical features (7), although some recent
studies have explored a broader set of variables (8, 9). In most
cases, information in radiological images was included in the
form of visual scores, such as Alberta stroke program early CT
score (ASPECTS) and the collateral score. However, translating
millions of voxels in a radiological image to one or several visual
scores with a limited number of categories can potentially result
in significant information loss.

In this study we explored a more extensive feature
representation of radiological images, such as a multitude
of handcrafted features (radiomics) and automatically learned
features using deep learning approaches. We hypothesized that
a more extensive image feature representation can lead to an
improved outcome prediction of patients with ischemic stroke
through leveraging information that is complementary to or
more detailed than radiological scores. On the other hand, a
deep learning approach allows the extraction of images features
that are automatically learned by the network, reducing the
risk of bias. We performed the combination of automatically
extracted images features with patient data available at baseline,
and evaluated their impact on the prediction accuracy of both
clinical and radiological outcomes. Finally, we presented the

feature importance for the best models and their impact in
the predictions.

METHODS

Study Population
We included 3,279 patients from the MR CLEAN Registry,
which is a prospective, observational, multicenter study, that
consecutively included all EVT-treated patients with acute
ischemic stroke in the Netherlands since the completion of
the MR CLEAN trial in March 2014 (10). The central medical
ethics committee of the Erasmus Medical Center Rotterdam,
the Netherlands, evaluated the study protocol and granted
permission (MEC-2014–235) to carry out the data collection
as a registry (11). Patients provided permission for study
participation through an opt-out procedure. Data that have been
used for this study are available upon reasonable request from the
MR CLEAN Registry committee (mrclean@erasmusmc.nl).

Variables and Outcome
All radiological and clinical variables available at baseline were
included in the models. In total, 50 variables were selectively
included. Ordinal variables, such as pre-stroke modified Rankin
Scale (mRS), collaterals, ASPECTS, National Institutes of Health
Stroke Scale (NIHSS), Clot Burden Score (CBS), and Glasgow
Coma Scale were treated as linear continuous scores. For non-
ordinal variables with multiple categories, we created separate
binary variables for all categories. The final input size for the
models consisted of 58 features. A complete list of variables
available can be found in Table 1.

We created the two sets of prediction models for the following
outcome variables, (1) favorable functional outcome after 3
months, defined by the mRS ≤ 2 and (2) good reperfusion
defined by the modified Thrombolysis in Cerebral Infarction
(eTICI)-score after EVT (post-eTICI ≥ 2b).

Image Data Pre-Processing
We included CT angiography (CTA) scans from all patients
available in the dataset, following the approach from (12), where
the added value of CTA for outcome predictions has already
been proven. The first step in pre-processing the images was
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TABLE 1 | Details of included variables.

Name Occurrence

(%) N = 3,279

Missing

n (%)

Analyzed

as

Previous stroke 27 (1) Cat

0—no 2,706 (83)

1—yes 546 (17)

Myocardial infarction 67 (2) Cat

0—no 2,759 (84)

1—yes 453 (14)

Peripheral arterial disease 68 (2) Cat

0—no 2.910 (89)

1—yes 301 (9)

Diabetes 24 (1) Cat

0—no 2,723 (83)

1—yes 532 (16)

Hypertension 66 (2) Cat

1—yes 1,688 (51)

0—no 1,525 (47)

Atrial fibrillation 43 (1) Cat

0—no 2,464 (75)

1—yes 772 (24)

Hypercholesterolemia 143 (4) Cat

0—no 2,169 (66)

1—yes 967 (29)

Antiplatelet use 41 (1) Cat

0—no 2,227 (68)

1—yes 1,011 (31)

DOAC use 40 (1) Cat

0—no 3,132 (96)

1—yes 107 (3)

Coumarin use 24 (1) Cat

0—no 2,839 (87)

1—yes 416 (13)

Heparin use 43 (1) Cat

0—no 3,135 (96)

1—yes 101 (3)

Blood pressure

medication

62 (2) Cat

1—yes 1,739 (53)

0—no 1,478 (45)

Statin use 74 (2) Cat

0—no 2,070 (63)

1—yes 1,135 (35)

HAS on baseline NCCT 131 (4) Cat

1—yes 1,704 (52)

0—no 1,444 (44)

Relevant (new) ischemia /

hypodensity

157 (5) Cat

1—yes 1,908 (58)

0—no 1,214 (37)

Hemorrhagic

transformation

137 (4) Cat

0—no 3,098 (94)

1—yes 44 (1)

(Continued)

TABLE 1 | Continued

Name Occurrence

(%) N = 3,279

Missing

n (%)

Analyzed

as

Leukoariosis 128 (4) Cat

0—no 1,903 (58)

1—yes 1,248 (38)

Old infarcts in same

ASPECTS region?

126 (4) Cat

0—no 2,721 (83)

1—yes 432 (13)

Intracranial atherosclerosis

on CTA scored by core lab

132 (4) Cat

1—yes 1,886 (58)

0—no 1,261 (38)

Sex 0 (0) Cat

Male 1,696 (52)

Female 1,583 (48)

Most proximal occlusion

segment on CTA scored

by core lab, based on

CBS

151 (5) Cat

Distal M1 1,061 (32)

Proximal M1 754 (23)

ICA-T 663 (20)

M2 455 (14)

Intracranial

ICA

161 (5)

None 13 (0)

M3 9 (0)

A2 6 (0)

A1 6 (0)

Smoking 758 (23) Cat

0—no 1,813 (55)

1—yes 708 (22)

Inclusion on weekday or

weekend

0 (0) Cat

0—weekday 2,415 (74)

1—weekend 864 (26)

Admission between 17.00

and 08-00 (weekday)/

weekend or holiday.

Based on ER time.

0 (0) Cat

1—office

hours

2,088 (64)

0—outside

office hours

1,191 (36)

Transfer from other

hospital

1 (0) Cat

1—transfer 1,783 (54)

0—no

transfer

1,495 (46)

Contraindications for IVT 2,461 (75) Cat

0—no 772 (24)

1—yes 46 (1)

(Continued)
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TABLE 1 | Continued

Name Occurrence

(%) N = 3,279

Missing

n (%)

Analyzed

as

No abnormalities at

symptomatic carotid

bifurcation on CTA

baseline by core lab

400 (12) Cat

0—no

abnormalities

2,110 (64)

1—any

abnormalities

769 (23)

50% or more

atherosclerotic stenosis at

symptomatic carotid

bifurcation on CTA

baseline

400 (12) Cat

0—no 2,615 (80)

1—yes 264 (8)

Atherosclerotic occlusion

at symptomatic carotid

bifurcation on CTA

baseline by core lab

400 (12) Cat

0—no 2,564 (78)

1—yes 315 (10)

Floating thrombus at

symptomatic carotid

bifurcation on CTA

baseline by core lab

400 (12) Cat

0—no 2,826 (86)

1—yes 53 (2)

Pseudo-occlusion at

symptomatic carotid

bifurcation on CTA

baseline by core lab

400 (12) Cat

0—no 2,684 (82)

1—yes 195 (6)

Carotid dissection at

symptomatic carotid

bifurcation on CTA

baseline by core lab

400 (12) Cat

0—no 2,777 (85)

1—yes 102 (3)

Occlusion side on CTA

scored by core lab

2 (0) Cat

Left

hemisphere

1,745 (53)

Right

hemisphere

1,515 (46)

Neither 17 (1)

In-hospital stroke 534 (16) Cat

0—no 2,416 (74)

1—yes 329 (10)

Second occlusion in other

territory present on CTA

scored by core lab

546 (17) Cat

0—no 2,454 (75)

1—yes 279 (9)

(Continued)

TABLE 1 | Continued

Name Occurrence

(%) N = 3,279

Missing

n (%)

Analyzed

as

Collateral score on CTA

scored by core lab

207 (6) Cont

100% of

occluded area

595 (18)

>50% but

less <100%

1,190 (36)

filling <50%

of occluded

area

1,100 (34)

Absent

collaterals

187 (6)

Pre-stroke mRS 72 (2) Cont

0 2,170 (66)

1 424 (13)

2 241 (7)

3 211 (6)

4 133 (4)

5 28 (1)

90-day mRS 214 (7) Cat

6 886 (27)

2 561 (17)

1 471 (14)

3 404 (12)

4 366 (11)

0 209 (6)

5 168 (5)

Post-eTICI 90 (3) Cat

3 905 (28)

2b 702 (21)

2a 597 (18)

0 543 (17)

2c 347 (11)

1 95 (3)

ASPECTS baseline scored

by core lab—median (IQR)

9 (7–10) 109 (3) Cont

CBS at baseline—median

(IQR)

6 (4–8) 766 (23) Cont

NIHSS at

baseline—median (IQR)

16 (11–20) 55 (2) Cont

Glucose level at

baseline—median (IQR)

7 (6–8) 371 (11) Cont

RR systolic at

baseline—median (IQR)

150 (131–165) 89 (3) Cont

RR diastolic at

baseline—median (IQR)

80 (71–91) 97 (3) Cont

INR at baseline—median

(IQR)

1 (1–1) 608 (19) Cont

Thrombocyte count at

baseline—median (IQR)

234 (194–289) 445 (14) Cont

CRP level at

baseline—median (IQR)

4 (2–10) 651 (20) Cont

Age—median (IQR) 72 (61–80) 0 (0) Cont

(Continued)
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TABLE 1 | Continued

Name Occurrence

(%) N = 3,279

Missing

n (%)

Analyzed

as

Total glasgow coma scale

at baseline—median (IQR)

13 (11–15) 113 (3) Cont

Duration from onset to

groin in minutes—median

(IQR)

195 (150–260) 15 (0) Cont

Duration: onset to IVT in

minutes in first

hospital—median (IQR)

24 (18–33) 1,353 (41) Cont

A1, first segment of anterior cerebral artery; ASPECTS, Alberta stroke program early CT

score; cat, categorical; CBS, clot burden score; cont, continuous; CRP, C-reactive protein;

CTA, CT angiography; DOAC, direct oral anticoagulant; ER, emergency room; HAS,

hyperdense artery sign; IQR, interquartile range; M1/M2/M3, first/second/third segment

of middle cerebral artery; mRS, modified Rankin Scale; NCCT, non-contrast CT; NIHSS,

National Institutes of Health stroke scale; RR, blood pressure (Riva-Rocci).

to strip the skull, since it contains voxels that are not relevant
for the prediction tasks (13). For this segmentation task, we
used a U-Net (14), (a convolutional neural network designed
for the segmentation of biomedical images) trained on skull
segmentations that were created using the approach described in
(15) and subsequently manually corrected.

Since the slice thickness and the orientation of the head varied
significantly between different scans, we registered the images to
a reference scan using rigid and affine transformations. For this,
we used an atlas as a reference scan (16), with a size of 256 ×

256 × 90 voxels. This atlas was developed using the Laboratory
of Neuro Imaging Probabilistic Brain Atlas (LPBA40), which is
publicly available (17). The atlas served not only as a reference
for registration, but it also contains the annotation of 70 brain
regions, which allowed the region-based feature extraction.

Radiomics Approach
For the first approach, we computed radiomics features for each
of the 70 brain regions of the scans that were registered to the
atlas. An advantage of crafting features from specific regions
is that we can easily trace back which regions of the brain
were the most important for prediction. We used all 70 regions
contained in the atlas. For each region, 18 first-order features
(Supplementary Table I) were computed using the Pyradiomics
library (18). This resulted in a total of 1,260 features. Since
some regions overlapped and others were relatively small, we
checked the correlation between the features using the Pearson
correlation coefficient. Due to the large number of correlated
features, we only kept the ones that were <50% correlated to
the others (19) reducing the number of radiomics features to
68. This was necessary since multiple highly correlated features
(multicollinearity) can hamper learning (19). For example, in
the case of Logistic Regression (LR), multicollinearity can lead
severe variations in the coefficients, making the results less
robust and trustworthy. Moreover, the large number of features
would also be a problem because of the limited sample size
n = 3,001 (20). A complete list of the computed features is
presented in the Supplementary Table I. These features were

subsequently combined (concatenated) with the clinical data
available at baseline and used to create prediction models
for the outcomes. We selected the following state-of-the-art
machine learning techniques from different families: random
forest classifier (RFC) (21), support vector machine (SVM) (22),
artificial neural networks (NN) (23), gradient boosting (XGB)
(24), and logistic regression (LR).

Deep Learning Approach
In the deep learning approach, the skull-stripped scans were used
to train convolutional neural networks (CNNs) to predict the
outcome. We opted for using skull-stripped scans prior to the
image registration to keep the information in the scans as raw
as possible, and avoid changes in the Hounsfield units caused by
the registration process. Moreover, we included transformations
for data augmentation, such as rotation and flipping, which
makes registration a futile step. Therefore, the registered scans
were only used in radiomics approach. Since the input for deep
learning models has to be uniform, and the voxel size among
scans was not, we resampled the scans in all directions. The
final input size to the network was 256 × 256 × 30 voxels. To
increase the number of training samples and account for possible
variations in the data, we performed data augmentation (vertical
flipping and rotation) using the training set. We trained and
optimized 3D CNNs to predict the favorable functional outcome
and good reperfusion.

We selected the ResNet10 architecture since it has produced
comparable results to the deeper architectures inmedical imaging
related tasks (25) while keeping training time feasible. For
each network implemented, we added a Squeeze and Excitation
(SE) module before the fully-connected layers (26), since it has
been shown to greatly improve the results in diverse ResNet
models in multiple prediction tasks. The SE module models
interdependencies between channels by adding learnable weights
channels-wise. This way, the contribution of certain features in a
given channel can have more or less impact than the others in
the final prediction. Finally, we combined the clinical features
with the image features by concatenating the clinical features
to the image features before the fully-connected layers of the
CNN (27–29).

The models were trained from scratch with the SE module.
Finally, we explored the effect of Transfer Learning in our
models, leveraging the model developed in (25). In that model,
the aim was to develop a robust ResNet by training it in a large
amount of medical data (by putting together multiple datasets),
such as CT and MRI scans. The resulting CNN was able to learn
filters that can extract relevant image features and generalized
well to other tasks, making it ideal for transfer learning to other
datasets with less images.

The ResNet model was trained from scratch for 75 epochs,
and for 50 epochs when Transfer Learning was used. Following
the results presented in (30), we opted to train the models built
from scratch for longer than those using Transfer Learning to
allow for a more fair comparison. We optimize our models
using the Focal Loss (31), since there was some class imbalance
in our labels (∼0.4/0.6 for both labels). Finally, we used an
Adam optimizer (32), with a learning rate of 0.001 and the
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weight decay to 0.00006. The other hyper-parameters were
left unchanged. The mini-batch size was kept at two due to
memory limitations.

Pipeline and Experimental Setup
Several of the 58 clinical variables included in our experiments
had missing values. We imputed the missing values (from
the features and outcomes) using Multiple Imputation with
Chained Equations (33), since it has shown the state-of-the-art
results. Imputation was performed on the training and test sets
separately, by training the imputation model on the training
set and applying it to the test set to prevent the data leakage.
The data were then scaled by subtracting the mean and divided
by the standard deviation (SD), for the optimal performance
of ML models. We used an inner and outer k-fold cross-
validation strategy (nested cross-validation) to train, validate,
and test our models. First, in the outer cross-validation loop,
the dataset was split into training and testing using a 5-fold
cross-validation strategy (4-folds are used for training and 1
for testing). The training set was then split again (inner-cross-
validation) into training and validation, with 20% being used
for validation. The validation set is used to assess the model
performance during training, for early-stopping and for hyper-
parameter optimization. All experiments (based on radiomics or
deep learning) used the same cross-validation setup described
above. The list of the hyper-parameters used to optimize the

models is shown in the Supplementary Table II. The assessment
and final reporting of performance was done on the test sets.

For each approach, we designed four experiments to predict
the outcomes: first (coined clinical), using all clinical features
available at baseline, therefore including patient demographics
and image-derived scores, such as ASPECTS; second (coined
image), using only the features hand-crafted or learned
(radiomics or deep learning features) from the CTA scans; third
(coined combination), by combining all the features from the
first experiment with the features of the second (all clinical
data available at baseline, such as image scores, and features
learned from CTA scans), and fourth (coined no image score), by
repeating the first and third experiments, but without any image
derived scores, such as ASPECTS or collateral scores.

We evaluated the models using the area under the receiver

operating characteristic (ROC) curve (AUC), the negative

predictive value (NPV), the positive predictive value (PPV),

the sensitivity, and specificity. To assess statistically significant

differences between the models, we reported the confidence
intervals (CIs) for all the cross-validation iterations and used
McNemar’s and Delong’s tests (34, 35).

A diagram is presented in Figure 1 with an overview
of the main imaging pre-processing steps and data
combination approaches.

All codes used for the development of models and data
analysis are available at: https://github.com/L-Ramos/mrclean_
combination.

FIGURE 1 | Diagram with an overview of the main data pre-processing steps and combination approaches.
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Feature Importance
To visualize the feature importance in our models, we used
SHapley Additive exPlanations (SHAP), which is based on a
game theory to explain the output of any machine learning
model (36). In SHAP, the contribution of a feature is given
by computing the average contribution of all features by
permuting all of them. SHAP has many advantages over other
feature visualization techniques, such as Local Interpretable
Model-agnostic Explanations (LIME) (37). SHAP provides global
explanations instead of sample-oriented ones, offers tools to
evaluate the feature dependence and interactions and, the output
explanations are generated based on the trained model provided
by the user, instead of training a newmodel to explain the feature
importance, which is the case for LIME. Finally, with SHAP, the
impact of low and high values of a given feature in the final
outcome can be more clearly evaluated with the plots, along with
how important the feature is in predicting the correct class (36).
Positive SHAP values (above zero in the x-axis) mean that the
feature values are associated to the positive class (good functional
outcome or reperfusion), while SHAP values below zero indicate
the opposite.

RESULTS

Study Population
Of 3,279 patients that were eligible for this study, 278 were
excluded due to either failure during skull-stripping (133
patients), or because of incomplete scans, severe artifacts or
due to failure during image registration (145 patients). In total,
3,001 patients were included, the mean age was 72 years old,
and median baseline NIHSS was 16 (Table 1). At 90 days, 1,241
(37%) patients had a good functional outcome (mRS ≤ 2) with
214 missing values (7%). Regarding reperfusion (post-eTICI ≥
2b), 1,954 (60%) patient had good reperfusion after treatment,
with 90 missing values (3%). Figure 2 contains a few examples
of skull-stripped scans (on the left) and a few examples of scans
that were registered to the atlas (on the right). It is important
to highlight that due to registration, the scans no longer have
the same slice thickness and number of slices, so there is no
one-to-one matching.

Radiomics Approach
We present the results of good functional outcome prediction
using the radiomics approach in Table 2. The AUC value was
the highest for the clinical experiment (0.81), though it does not
differ significantly from the combination experiment. The AUC is
the lowest for the image experiment (0.69). For the combination
experiment, the best AUCwas 0.80. Sensitivity was the highest for
the clinical experiment (0.79), while specificity was the highest for
the combination (0.77). The difference between the clinical and
the combination experiments was not statistically significant (p=
0.12) for the RFC.

There was no significant difference (drop of 0.01 or at most
0.02 in the average of all measures) in the results of the no
image score experiment when compared with other experiments
as shown in Supplementary Table III.

In Table 3, we show the results for good reperfusion
prediction (post-eTICI ≥ 2b). The highest AUC was for the
combination experiment (0.57), while the lowest was for the
clinical experiment (0.51). Sensitivity was the highest (0.91) for
the image experiment, but specificity was the lowest (0.11),
showing that the RFC model might be biased toward one of the
classes in this experiment. The same does not occur for all models
in the image experiment, LR for instance, shows a good balance
between sensitivity and specificity values for all experiments. The
difference between the clinical and the combination experiments
was statistically significant, p = 0.008 for the RFC. We provide
results from the Delong test in Table 6, which confirmed that the
difference between the clinical and combinations experiments was
statistically significant.

We present the ROC curves for all models trained in the
clinical experiment for predicting mRs in Figure 3A and a
comparison between the clinical and combination experiment
for predicting eTICI in Figure 3B. Moreover, we provide the
confusion matrices for the clinical and combination experiments
for mRs in Figure 4A and eTICI in Figure 4C.

Finally, there was no significant difference in the
measures for the no image scores experiment as shown in
Supplementary Table IV.

Feature Importance—Radiomics Approach
In Figures 5, 6, we present feature importance using SHAP
for the clinical (Figure 5) and the combination (Figure 6)
experiments for RFC model and mRS prediction (for all 5-
fold cross-validation iterations). We do not present feature
importance for the Image experiment since results for this
experiment were often inferior and in clinical practice, patient
demographics are always taken into account for decision-
making. The performance measures were the same across the
models, therefore, we present feature importance for the RFC
model only, since SHAP has extensive support for three-based
models. Despite the addition of multiple radiomics features in the
combination experiment, the top three most important features
remain the same for both experiments (age, NIHSS at baseline,
and pre-stroke mRS). Ii is clear that the low values of these three
features are associated with good functional outcome. Collateral
score and the GCS become more important when the radiomics
features are combined to the clinical data. Other features, such
as leukoariosis and sex seem to lose importance when the
radiomics features are combined. Finally, radiomics features
from the following regions seem to have a significant impact on
the prediction model, despite the lack of improvements in the
performance measures: precuneus cortex, middle frontal gyrus,
superior temporal gyrus, temporal fusiform cortex, frontal orbital
cortex, lateral occipital cortex, and subcallosal cortex.

In Figures 7, 8, we show the feature importance using
SHAP for the clinical (Figure 7) and combination (Figure 8)
experiments for the prediction of good reperfusion using an RFC
model. In this case, the most important features are different
from each other when comparing both experiments. While the
duration from onset to Intravenous Thrombolysis (IVT), the
RR systolic, C-reactive protein (CRP) level, and age seem to be
the most important for the clinical experiment, these features
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FIGURE 2 | Example of skull stripped scans (Left) and post-registration results (Right).

Frontiers in Neurology | www.frontiersin.org 8 April 2022 | Volume 13 | Article 809343

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramos et al. Data Combination for Stroke Outcome Prediction

TABLE 2 | Results of the clinical, image, and combination for the radiomics approach for predicting the good functional outcome (mRS ≤ 2).

Methods AUC 95% CI F1-Score Sensitivity Specificity PPV NPV

Clinical experiment

RFC 0.81 (0.79–0.82) 0.69 (0.67–0.72) 0.72 (0.68–0.76) 0.75 (0.72–0.77) 0.67 (0.63–0.71) 0.79 (0.76–0.82)

SVM 0.81 (0.80–0.83) 0.71 (0.68–0.74) 0.79 (0.75–0.82) 0.70 (0.68–0.72) 0.65 (0.61–0.69) 0.82 (0.79–0.85)

LR 0.81 (0.80–0.82) 0.71 (0.68–0.73) 0.77 (0.74–0.80) 0.71 (0.69–0.73) 0.65 (0.62–0.69) 0.81 (0.78–0.84)

XGB 0.81 (0.80–0.82) 0.71 (0.68–0.74) 0.77 (0.74–0.81) 0.71 (0.70–0.72) 0.66 (0.62–0.69) 0.82 (0.79–0.84)

NN 0.81 (0.80–0.82) 0.69 (0.68–0.71) 0.73 (0.66–0.80) 0.74 (0.67–0.81) 0.67 (0.60–0.73) 0.79 (0.75–0.84)

Image experiment

RFC 0.68 (0.65–0.70) 0.50 (0.42–0.58) 0.45 (0.33–0.57) 0.77 (0.71–0.83) 0.58 (0.53–0.62) 0.66 (0.61–0.71)

SVM 0.69 (0.66–0.71) 0.60 (0.54–0.65) 0.64 (0.58–0.71) 0.64 (0.62–0.66) 0.56 (0.50–0.62) 0.72 (0.67–0.76)

LR 0.68 (0.66–0.70) 0.58 (0.53–0.63) 0.60 (0.53–0.66) 0.67 (0.65–0.69) 0.56 (0.53–0.60) 0.70 (0.65–0.74)

XGB 0.67 (0.65–0.69) 0.55 (0.52–0.58) 0.56 (0.51–0.61) 0.67 (0.63–0.71) 0.55 (0.51–0.59) 0.68 (0.64–0.72)

NN 0.65 (0.59–0.71) 0.49 (0.45–0.52) 0.45 (0.37–0.52) 0.72 (0.61–0.83) 0.54 (0.48–0.61) 0.65 (0.60–0.69)

Combination experiment

RFC 0.80 (0.79–0.81) 0.67 (0.64–0.70) 0.66 (0.60–0.73) 0.77 (0.72–0.82) 0.67 (0.63–0.72) 0.76 (0.73–0.80)

SVM 0.79 (0.78–0.81) 0.70 (0.67–0.73) 0.78 (0.73–0.82) 0.68 (0.66–0.71) 0.64 (0.60–0.67) 0.81 (0.78–0.84)

LR 0.80 (0.78–0.81) 0.70 (0.66–0.73) 0.76 (0.72–0.80) 0.70 (0.68–0.73) 0.65 (0.60–0.69) 0.80 (0.78–0.83)

XGB 0.80 (0.78–0.81) 0.69 (0.67–0.71) 0.76 (0.72–0.79) 0.69 (0.66–0.72) 0.64 (0.61–0.67) 0.80 (0.77–0.83)

NN 0.78 (0.77–0.79) 0.67 (0.65–0.68) 0.64 (0.60–0.68) 0.74 (0.70–0.75) 0.66 (0.62–0.68) 0.74 (0.68–0.76)

Average over 5-fold cross-validation. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient boosting; NN, neural networks. AUC, area

under the curve; NPV, negative predictive value; PPV, positive predictive value. Values in bold indicate the best Sensitivity and Specificity values for a given experimental setup.

TABLE 3 | Results of the clinical, image, and combination experiments for the radiomics approach for predicting the good reperfusion [post-modified Thrombolysis in

Cerebral Infarction (eTICI) ≥ 2b].

Methods AUC 95% CI F1-Score Sensitivity Specificity PPV NPV

Clinical experiment

RFC 0.53 (0.51–0.55) 0.71 (0.68–0.74) 0.79 (0.74–0.84) 0.26 (0.19–0.32) 0.64 (0.60–0.69) 0.42 (0.36–0.48)

SVM 0.54 (0.53–0.56) 0.39 (0.08–0.70) 0.32 (0.01–0.64) 0.73 (0.44–1.02) 0.68 (0.65–0.72) 0.39 (0.35–0.43)

LR 0.54 (0.51–0.56) 0.61 (0.57–0.66) 0.59 (0.54–0.64) 0.44 (0.39–0.50) 0.64 (0.61–0.68) 0.39 (0.34–0.43)

XGB 0.51 (0.50–0.54) 0.63 (0.57–0.69) 0.63 (0.55–0.71) 0.37 (0.30–0.45) 0.63 (0.58–0.68) 0.37 (0.33–0.41)

NN 0.51 (0.50–0.53) 0.70 (0.62–0.79) 0.81 (0.60–1.03) 0.19 (0.03–0.41) 0.63 (0.59–0.67) 0.37 (0.32–0.43)

Image experiment

RFC 0.54 (0.52–0.56) 0.75 (0.74–0.75) 0.91 (0.81–1.01) 0.11 (0.01–0.22) 0.64 (0.59–0.68) 0.42 (0.35–0.50)

SVM 0.55 (0.53–0.57) 0.70 (0.61–0.79) 0.79 (0.55–1.03) 0.25 (0.03–0.53) 0.64 (0.60–0.69) 0.41 (0.37–0.46)

LR 0.53 (0.50–0.57) 0.61 (0.57–0.64) 0.57 (0.53–0.61) 0.47 (0.40–0.54) 0.65 (0.61–0.69) 0.39 (0.32–0.46)

XGB 0.53 (0.50–0.56) 0.64 (0.60–0.68) 0.65 (0.54–0.75) 0.39 (0.28–0.49) 0.64 (0.61–0.68) 0.40 (0.33–0.46)

NN 0.53 (0.50–0.56) 0.67 (0.65–0.69) 0.69 (0.66–0.73) 0.36 (0.32–0.40) 0.65 (0.61–0.69) 0.41 (0.35–0.46)

Combination experiment

RFC 0.57 (0.55–0.59) 0.75 (0.71–0.78) 0.89 (0.85–0.93) 0.15 (0.10–0.19) 0.64 (0.60–0.68) 0.45 (0.38–0.52)

SVM 0.57 (0.54–0.61) 0.63 (0.59–0.66) 0.58 (0.55–0.61) 0.52 (0.46–0.58) 0.68 (0.63–0.72) 0.42 (0.38–0.47)

LR 0.57 (0.54–0.60) 0.63 (0.60–0.66) 0.59 (0.57–0.62) 0.50 (0.46–0.55) 0.67 (0.63–0.72) 0.42 (0.38–0.46)

XGB 0.57 (0.55–0.58) 0.59 (0.55–0.64) 0.54 (0.46–0.61) 0.55 (0.46–0.63) 0.67 (0.63–0.71) 0.41 (0.36–0.46)

NN 0.53 (0.51–0.55) 0.66 (0.62–0.70) 0.68 (0.63–0.72) 0.37 (0.32–0.43) 0.65 (0.60–0.70) 0.40 (0.37–0.43)

Average over 5-fold cross-validation. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient boosting; NN, neural networks. AUC, area

under the curve; NPV, negative predictive value; PPV, positive predictive value.

are all replaced by many radiomics features from multiple
brain regions in the combination experiment. In addition, this
difference can also explain the slightly increased performance of
the combination experiment when compared with the clinical and
image ones.

Deep Learning Approach
In Table 4, we present the results for predicting good functional
outcome using the deep learning approach. To keep the number
of experiments feasible, we present results for the clinical and
combination experiments. All the measures were similar for both
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FIGURE 3 | Receiver operating characteristic (ROC) for the different experimental setups. (A) The modified Rankin Scale (mRs) prediction for the clinical experiment,

(B) Modified Thrombolysis in Cerebral Infarction (eTICI) prediction using the radiomics data, and (C) eTICI prediction using deep learning.

the clinical and combination experiments. In the combination
experiment, training the ResNet10 models from scratch resulted
in a worse performance than when using Transfer Learning
from other image datasets. Similar to the radiomics approach,
there seems to be no improvement in the performance measures
when combining the image learned image features with the
clinical data (AUC of 0.77 for both). The difference between
the results of clinical and the combination experiments was
not significant, p = 0.285 for the ResNet10 trained using
Transfer Learning.

Finally, we present in Table 5 the results for predicting
good reperfusion. All evaluation measures are higher for the
combination experiment, and, despite often overlapping CIs,
the average AUC is 0.08 higher. Again, the Transfer Learning
approach for the ResNet10 model yielded better results than
training from scratch. The difference between the clinical and the
combination experiments was statistically significant, p < 0.005
for the ResNet10 trained using Transfer Learning. We provide
results from the Delong test in Table 6, which confirms that the
difference between the clinical and combinations experiments was
statistically significant.

We present ROC curves for the clinical and combination
experiments for predicting eTICI in Figure 3C. Moreover, we
provide the confusion matrices of the deep learning approach for

the clinical and combination experiments (mRs) in Figure 4B and
eTICI in Figure 4D.

DISCUSSION

Our results suggest that there is a statistically significant
improvement in discriminative performance for the prediction
of good reperfusion (post-eTICI ≥ 2b) when data driven image
features were combined with the clinical data, regardless of
the approach (radiomics or deep learning). In contrary, the
addition of image features does not improve the prediction of
good functional outcome (mRS ≤ 2), regardless of the approach.
Despite the lack of improvement in prediction accuracy for good
functional outcome, radiomics features were relatively important
for the models, when viewing 20 features with the highest
feature importance.

In the terms of prediction accuracy, our results are in
line with previous works on mRS and reperfusion prediction,
where AUCs of ∼0.80 and 0.57, respectively, were reported
(7, 8). The current study is among the first to assess the
combination of clinical and image features using both a
radiomics and deep learning approaches for the prediction of
good functional outcome and reperfusion. A previous study (38)
explored a combination of clinical and image data using deep
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FIGURE 4 | Confusion matrices of both radiomics and deep learning approaches. (A) Clinical experiment (left) vs. combination (right) for mRs prediction using the

radiomics approach; (B) clinical experiment (left) vs. combination (right) for mRs prediction using the deep learning approach; (C) clinical experiment (left) vs.

combination (right) for eTICI prediction using radiomics approach; and (D) clinical experiment (left) vs. combination (right) for eTICI prediction using the deep learning

approach.

Frontiers in Neurology | www.frontiersin.org 11 April 2022 | Volume 13 | Article 809343

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramos et al. Data Combination for Stroke Outcome Prediction

FIGURE 5 | SHapley Additive exPlanations (SHAP) feature importance for the clinical experiment for mRS prediction using the random forest classifier (RFC) model.

For visualization purposes, we included only the top 20 features. Features are shown in order of importance, from most important (top) to less important (bottom). The

color legend on the right shows how the feature values influence outcome: high values are depicted in red, while low values are presented in blue. Positive SHAP

values (above zero in the x-axis) mean that the feature values are associated to the positive outcome (in this case good functional outcome), while SHAP values below

zero indicate the opposite. *At symptomatic carotid bifurcation on CT angiography (CTA) at baseline.

learning approaches to predict the good functional outcome
at baseline, and found a significant improvement in the AUC,
despite presenting AUC values lower than the ones reported
here and in the literature (8). Despite not finding the same
improvements as reported (38), our work included a much
larger population (3,279 patients vs. 500, respectively). In
addition, we performed extra cross-validation iterations, while
(38) reported the results for only 1-fold, which might be
due to chance.

Limitations
Several methodological challenges need to be considered when
interpreting the results of this study. First, only a relatively
small number of deep learning models were used, and they
were all based on the same architecture (ResNet10). Second,

while other, deeper architectures are available and could yield
better results, training a deeper architecture often requires more
data and computing power. Since each validation iteration of
our experiments takes ∼24 h to compute on a single graphics
processing unit (GPU) (and deeper 3D architectures would not
fit the GPU memory), optimizing other models was out of the
scope of this study. Moreover, given the size of our dataset,
one could performmore cross-validation iterations, which would
make our results more robust. Third, another limitation is the use
of CTA modality, while other modalities could also be of added
value, such as non contrast CT (NCCT). We chose to use CTA
instead of NCCT because previous deep learning studies (12)
already found a significant added value of CTAs for predicting
the good outcome, but did not explore a 3D approach for the
images or their combination with clinical data. Fourth, the large
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FIGURE 6 | SHapley Additive exPlanations feature importance for the combination experiment for mRS prediction using an RFC model. For visualization purposes,

we included only the top 20 features. Features are shown in order of importance, from most important (top) to less important (bottom). The color legend on the right

shows how the feature values influence outcome: high values are depicted in red, while low values are presented in blue. Positive SHAP values (above zero in the

x-axis) mean that the feature values are associated with the positive outcome (in this case good functional outcome), while SHAP values below zero indicate the

opposite. *At symptomatic carotid bifurcation on CTA at baseline.

number of variables included can also be a downside, since some
are not readily available at baseline, despite all being possible
to compute before treatment (either from the patient history or
recent imaging).

Strengths
The strengths of our study include the large and heterogeneous
population of patients with LVO as compared with previous
studies that aimed at predicting the good functional outcome
and reperfusion (7, 8, 12). A heterogeneous dataset is important
since we aimed to develop models on data that are as close to the
clinical practice as possible. Besides, we employed two different
approaches for combining the data, a radiomics approach,
offering a more interpretable and visual solution, and a deep
learning approach, which is a more state-of-the-art solution,
increasing our chances of finding significant improvements.
Another strength of our study is the use of inner and outer
cross-validation for optimizing and testing the models. We
opted to use a nested-cross validation strategy due to the high

risk of bias that having only one single random test set can
cause, which can lead to wrong conclusions. By using multiple
random test sets (that are unseen during the whole training
process), we reduced the risk of random findings due to lucky
dataset splits.

Clinical Interpretation
This study contributes to the understanding of imaging and
clinical features that are associated with good functional outcome
and reperfusion. Age, NIHSS at baseline, and pre-stroke mRS
were found to be the top most important variables for functional
outcome prediction, regardless of the data experiment, and
have also been found to be relevant in previous studies (7,
8). In addition, with our imaging approaches we identified
many relevant brain regions that have also been reported to be
significantly associated to functional outcome (16). Predicting
the functional outcome at baseline potentially provides the
most benefit in clinical practice for assisting decision-making.
However, at baseline many prognostic characteristics about the
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FIGURE 7 | SHapley Additive exPlanations feature importance for the clinical experiment for the prediction of good reperfusion using an RFC model. For visualization

purposes we included only the top 20 features. Features are shown in order of importance, from most important (top) to less important (bottom). The color legend on

the right shows how the feature values influence outcome: high values are depicted in red, while low values are presented in blue. Positive SHAP values (above zero in

the x-axis) mean that the feature values are associated to the positive outcome (in this case good r), while SHAP values below zero indicate the opposite. *At

symptomatic carotid bifurcation on CTA at baseline.

severity of the patient are unknown, making it a challenging
task. Baseline variables that capture the severity of patients
with stroke (such as, NIHSS and pre-stroke mRS) seem to
provide the most insight for prediction, but high predictive
values that have been previously reported in the literature (8)
can only be achieved when post-treatment variables, such as
reperfusion, are available. A perfect prediction of reperfusion
could assist the interventionist in their decision to initiate or
continue treatment. Moreover, such accurate prediction could
assist the prediction of salvaged tissue, and motivate treatment
beyond standard inclusion criteria or terminate futile procedures.
The prediction of good perfusion for specific treatment devices
may support the choice of which device to use during the
intervention. The identified variables may furthermore support
the understanding of treatments and the improvement of
treatment strategies in the near future. Finally, one could
consider the prediction of other EVT related outcome, such

as treatment complications, that could be of great assistance
during EVT.

Regarding feature importance for good reperfusion
prediction, despite the poor predictive accuracy, various
variables were identified to be relevant. In previous studies the
predictors of successful reperfusion have been addressed and
resulted in low prognostic value. In these studies, selected device,
collaterals, time from onset to IVT, age, ASPECTS, NIHSS,
among others, have already been reported to be predictive of
reperfusion (39). Nevertheless, despite the risk of chance findings
among the variables in Figures 7, 8, most of the variables deemed
relevant have either already been reported in the literature, such
as duration onset to IVT (40), age (41), occlusion location (42)
(M1 occlusions are easier to treat and M2 occlusions increase
the risk of symptomatic intracranial hemorrhage), high blood
pressure being associated with poor reperfusion (43), among
others. Moreover, the relationship between variables should also
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FIGURE 8 | SHapley Additive exPlanations feature importance for the combination experiment for the prediction of good reperfusion using an RFC model. For

visualization purposes, we included only the top 20 features. Features are shown in order of importance, from most important (top) to less important (bottom). The

color legend on the right shows how the feature values influence outcome: high values are depicted in red, while low values are presented in blue. Positive SHAP

values (above zero in the x-axis) mean that the feature values are associated to the positive outcome (in this case good r), while SHAP values below zero indicate the

opposite. *At symptomatic carotid bifurcation on CTA at baseline.

TABLE 4 | Results of all experiments from the deep learning approaches for predicting the good functional outcome [modified Rankin Scale (mRS) ≤ 2].

Methods AUC F1-Score Sensitivity Specificity PPV NPV

Clinical experiment

Feed forward 0.77 (0.76–0.78) 0.66 (0.61–0.71) 0.70 (0.66–0.73) 0.70 (0.67–0.74) 0.63 (0.57–0.70) 0.76 (0.72–0.80)

Combination experiment

ResNet10 from scratch 0.54 (0.45–0.64) 0.29 (0.13–0.70) 0.30 (0.20–0.79) 0.78 (0.39–1.00) 0.58 (0.25–0.91) 0.61 (0.51–0.72)

Combination experiment

ResNet10 transfer learning 0.77 (0.75–0.78) 0.66 (0.62–0.70) 0.70 (0.67–0.73) 0.70 (0.68–0.73) 0.63 (0.57–0.68) 0.76 (0.72–0.80)

Average over 5-fold cross-validation.

be taken into account when assessing feature importance, since
known predictors, such as time from onset to treatment might
have a direct interaction with transfer from another hospital,
influencing their impact on the model. Since the main focus of
our research was to assess the added value of combining baseline
imaging features with the clinical ones, we did not explore the
combination with post-treatment variables. Combining baseline
images features with post-treatment variables would probably

significantly reduce the added value of the (pre-treatment)
image features, since the predictive value of post-treatment
variables (such as, reperfusion during EVT, duration of EVT
procedure, NIHSS at 24–48 h, among others) has already been
shown in the literature (8). Nevertheless, such approach could
be considered in future models. For future research, one should
consider computing more complex radiomics, such as the
gray level co-occurrence matrix or shape based features, since
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TABLE 5 | Results of all experiments from the deep learning approach for predicting good reperfusion (post-eTICI ≥ 2b).

Methods AUC F1-Score Sensitivity Specificity PPV NPV

Clinical experiment

Feed forward 0.53 (0.50–0.55) 0.57 (0.54–0.61) 0.51 (0.48–0.54) 0.53 (0.52–0.55) 0.65 (0.59–0.71) 0.38 (0.32–0.43)

Combination experiment

ResNet10 from scratch 0.50 (0.50–0.52) 0.13 (0.00–0.56) 0.12 (0.00–0.51) 0.87 (0.46–1.00) 0.15 (0.00–0.62) 0.36 (0.31–0.40)

Combination experiment

ResNet10 transfer learning 0.61 (0.50–0.72) 0.63 (0.54–0.71) 0.57 (0.50–0.64) 0.57 (0.50–0.64) 0.69 (0.60–0.80) 0.43 (0.40–0.45)

Average over 5-fold cross-validation.

TABLE 6 | Delong’s test results for the best performing models from eTICI.

Approach Experiment

1 + model

Experiment

2 + model

Outcome

label

P-value

Radiomics Clinical—RFC Combination—

RFC

eTICI 0.04

Deep

Learning

Clinical—

Feed

Forward

Combination—

ResNet10

Transfer

Learning

eTICI >0.01

these have already been shown to be significantly associated
to the outcome of patient with stroke (44). Regarding deep
learning, deeper ResNet networks could be considered, provided
that enough data are available to train such models, and a
Transfer Learning approach should often be explored, since this
can greatly surpass models trained from scratch as shown in
this study.

CONCLUSION

We found a significant improvement in the prediction of
good reperfusion when combining image to clinical features.
Regarding functional outcome, the addition of image features
had no impact on the prediction accuracy. Nevertheless, the
prediction accuracy of our models for reperfusion prediction
is still rather limited to be considered in clinical practice.
The visualization of prediction feature importance showed
both known and novel clinical and imaging features with
predictive value.
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