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Abstract

Purpose

This study aims to establish a highly adaptable workflow downstream of microfluidic enrich-

ment for facilitating systematic CTC enumeration and genetic discovery.

Methods

To facilitate CTC enumeration, we established a CK/EPCAM-combined immunostaining

strategy and an automated CTC analytical pipeline using an open-source image analyzer.

By virtue of this workflow, we conducted a pilot study of 56 cancer patients and 21 healthy

individuals using a high-throughput spiral microfluidic chip system. To facilitate genetic dis-

covery of somatic mutations in CTCs, we integrated the CTC enumeration into next-genera-

tion sequencing and established a straightforward amplicon library comprising diversifier

random sequences to sequence CTC samples.

Results

The CTC staining and enumeration workflow achieved 80.4% sensitivity and 85.7% specific-

ity (AUC = 0.87, p = 0.004, power = 0.985), as evaluated by ROC analysis. Univariate and

multivariate analysis verified that the CTC (CK/EpCAM+CD45−), but not other cell popula-

tions, is a significant and independent biomarker for cancer patients (p < 0.01). Serial CTC

monitoring of the patients revealed reduction in CTC numbers after treatments, suggesting

its clinical utility in pharmacodynamic studies. Deep sequencing of CTC samples revealed

somatic mutations in TP53 and ESR1.

Conclusions

The significance of this report is to demonstrate a systematic and adaptable workflow to

bridge the gap between the microfluidic enrichment and CTC analyses, which fosters

broader applications of CTCs in both clinical settings and academic studies.
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Introduction

Circulating tumor cell (CTC) research has been under the spotlight for non-invasive cancer

monitoring [1]. In an era of precision medicine, it is anticipated to guide the selection of effec-

tive treatment regimens for patients. Indisputably, the rapid advances in bioengineering have

propelled the CTC field. A burgeoning number of compelling microfluidic technologies are

emerging to enrich the extremely rare CTC population from billions of blood cells. What fol-

lows, importantly, is a streamlined workflow for downstream systematic and unbiased CTC

analysis for CTC enumeration and genetic discovery. For CTC identification and enumera-

tion, immuno-detection of antigens on CTCs is by far the most commonly accepted approach.

Cytokeratin and EpCAM are surrogate CTC markers widely used in the field [2–4] due to

their expression in epithelial cancer cells and their clinical relevance [5–7]. However, with usu-

ally only one CTC occurring per 107 WBCs, it remains challenging to identify and count the

rare CTCs in the background of white blood cells (WBCs). Therefore, a detailed and validated

protocol for the downstream CTC identification, enumeration, and visualization is essentially

needed. In some reports, CTCs were identified and counted manually. Manual cell counting is

tedious, time-consuming, and subject to bias, which significantly impedes the efforts to

achieve clinical utility of CTC analyses. Therefore, a systematic and reliable CTC counting

workflow is imperative to obtain high-quality results and promote the applications of CTCs

for translational use. This study aims to demonstrate and validate a highly adaptable CTC

counting pipeline for systematic CTC application.

Besides CTC enumeration, genomic analysis of CTCs provides a window to strategically

assess a potentially metastatic population of cancer cells. For precision medicine, most of the

current treatment regimens rely on the genetic information from primary tumors [8], rather

than those from the metastatic subpopulation of cancer cells. CTCs are considered as the ‘cul-

prits’ of metastasis, which account for about 90% of cancer deaths [9, 10]. Next-generation

sequencing (NGS) analysis of CTCs appears to be an effective tool to provide a snapshot of the

rapidly evolving mutation landscape of these metastatic ‘culprits’. The approach offers a way to

non-invasively monitor the emerging therapeutic gene targets and drug resistance mutations

in real-time. With many convincing CTC isolation technologies emerging, a straightforward

targeted sequencing workflow for CTCs is especially needed to broaden the application of

CTC technology.

To bridge the aforementioned technical gap between microfluidic enrichment and CTC

applications, this study aims to (1) illustrate a systematic CTC enumeration pipeline; (2) estab-

lish a straightforward sequencing workflow for CTC samples; and (3) validate the enumeration

and sequencing workflows with clinical samples.

Materials and methods

Patient & blood collection

All patients had been diagnosed with one of the six primary cancers from the colon, lung,

breast, stomach, liver, and prostate from July 2015 to October 2016. All blood samples were

obtained after written informed consent from patients. The study was approved by the Institu-

tional Review Board of the University of Hong Kong. A total of 56 cancer patients (22 liver, 11

colorectal, 7 lung, 6 gastric, 5 breast, and 5 prostate cancer) and 21 normal healthy donors

were recruited. Eight milliliters of peripheral blood samples were collected in the BCT Cell-

Free DNA tubes (Streck Inc., USA). For serial cancer monitoring, blood samples were col-

lected one week before and three months after treatments (radiotherapy or targeted therapy—

Sorafenib). All samples were processed within 72 hours of collection.

CTC enumeration and sequencing workflow
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Sample preparation and CTC isolation

A volume of eight milliliters of blood samples was used for microfluidic enrichment for each

run. Prior to CTC isolation using label-free microfluidic equipment (ClearCell1 FX1 system,

Clearbridge BioMedics, Singapore), blood samples were subjected to RBC lysis. CTCs are iso-

lated from the blood based on cell size. The isolated CTCs in a background of WBCs were

immobilized on positively-charged microscope slides and were subsequently identified by

immunofluorescence staining. For cell culture, KYSE30 and KYSE270 esophageal cancer cell

lines were cultured in RPMI 1640 medium supplemented with 2mM Glutamine and 10% fetal

bovine serum [11, 12].

Immunofluorescence staining

DAPI, Alexa Fluor 555-conjugated pan-CK (Cell Signaling Technology, USA), Alexa Fluor

555-conjugated EpCAM (Cell Signaling Technology, USA) and APC-conjugated CD45 (BD

Biosciences, USA) antibodies were used to identify CTCs. The fluorescent dye-conjugated

antibodies were added to cell smears and incubated for two hours at room temperature. After

staining, slides were mounted in DAPI-containing anti-fade mounting reagent (Thermo

Fisher Scientific, USA) and scanned using a Cytation 5 Cell Imaging Multi-Mode Reader (Bio-

Teck, USA). All images were captured under the same conditions. We applied DAPI staining

to label DNA for identifying nucleated cells, CK/EpCAM staining to label CTCs, and CD45

staining to label WBCs.

CTC enumeration pipeline by CellProfiler and CellProfiler Analyst

The CTC enumeration and visualization process using the CellProfiler and CellProfiler Ana-

lyst [13, 14] (http://www.cellprofiler.org) are as follows. 1) Primary object identification: nucle-

ated cells (primary objects) were first identified on the images of DNA staining with the

"Global threshold strategy" in CellProfiler. This strategy is robust for detecting cell objects in

fluorescent images that have a uniform background. 2) Primary object filtering: the sizes of the

nuclei were measured. Nuclei with 9 μm to 36 μm in diameter were filtered for further analysis.

3) Shape measurement: "Eccentricity", a ratio of the between-foci distance and the major axis

length, was then measured. The values of eccentricity are from zero to one (a value of zero

means circular object). The eccentricity represents nuclear circularity, which is used to exclude

WBCs (e.g. neutrophils, basophils, monocytes) that have lobular and irregular nuclear shapes.

4) Secondary object identification: secondary objects were created based on the coordinates of

primary objects for measuring quantitative features. 5) Mean intensity measurement: "Mean-

Intensity", the average pixel intensity within an object, was measured from the secondary

objects created on CK/EpCAM and CD45 images. 6) Data export: the measurements were

exported as an SQLite database file, which was then opened by CellProfiler Analyst. 7) Cell

enumeration: by CellProfiler Analyst, cell gating, enumeration, and visualization were done

using the built-in filtering and image-viewing tools on the interactive scatterplots showing the

mean intensity and the shape of objects. Positive and negative gates for CK/EpCAM and CD45

staining are set for CTC enumeration and visualization. Two staining controls were used for

references: a cancer cell line (KYSE-30) stained with CK, EpCAM, and CD45 antibodies and

the buffy coat fraction of the same patients were stained with isotype antibodies.

Library preparation and next-generation sequencing

Outputs from the microfluidic chip were subjected to DNA extraction using the QIAamp

DNA Micro Kit (QIAGEN, Germany). In parallel, five hundred WBCs were counted and

CTC enumeration and sequencing workflow
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subjected to DNA extraction. After DNA quantification with Qubit dsDNA HS Assay Kit

(Thermo Fisher Scientific, USA), a 2-step PCR library preparation was performed with Q5

High-Fidelity DNA Polymerases (NEB, USA).

The first PCR serves to amplify target exon regions and introduce a 10-bp diversifier

sequence and a portion of sequencing adapters (i.e. P5 and P7 adapters) to the amplicon

library. The diversifier sequence is a sequence of ten random nucleotides, which was designed

to increase the sequence diversity of libraries for accurate cluster identification by Illumina

sequencer. The second PCR serves to extend the remaining portion of Illumina Adapter

Sequences (Illumina, USA). Primer sequences are listed in S1 and S2 Tables. Libraries were

then purified by magnetic SeqCap EZ purification beads (Roche, Switzerland) and then quan-

tified with NEBNext Library Quant Kit (NEB, USA). Libraries were multiplexed in equimolar

amounts and sequenced with MiSeq sequencing kit v2, according to Illumina’s guidelines. In

general, 12 pM multiplexed library and 5% phiX spike-in were loaded.

Bioinformatics analysis

For bioinformatics analysis, the sequencing data from MiSeq were processed by Trimmo-

matic [15] to trim out P5 and P7 adapters and the diversifier sequences. The sequencing

reads were aligned to the reference human genome (hg19) by Burrows—Wheeler Aligner

(BWA-MEM) [16]. Subsequently, the aligned files were then calibrated with the GATK Indel

Realigner tool [17]. Somatic variant calling was then performed with VarScan2 [18], followed

by variant annotation with ANNOVAR [19]. To increase the accuracy of variant identifica-

tion, tumor purity (i.e. CTC purity) estimated from the CTC counting pipeline was input as

a parameter to VarScan2 [18] to adjust variant frequency threshold and optimize Fisher’s

exact test. The test compares the number of reference-supporting and variant-supporting

reads in tumor samples (i.e. CTC output samples) with those of normal samples (i.e. WBC

samples).

For sequencing clinical samples, two tubes of blood (8 mL each) were collected from each

patient and were allocated to sequencing workflow and counting workflow in parallel. The

tumor purity estimated from counting pipeline was input into VarScan2 for somatic mutation

analysis. Mutations with a consistent somatic p value lower than 0.05 in two technical repeats

were called as consensus somatic mutations.

Statistical analysis and data visualization

Receiver Operating Characteristic (ROC) Curve Analysis for the estimation of area under the

curve, sensitivity, and specificity was performed in SPSS 19 (IBM Corporation, Armonk, NY).

The estimation of correlation coefficient, the univariate and multivariate analyses, 2-tailed stu-

dent t test, and 95% confidence interval estimation were performed in R environment (version

3.3.1). The calculation of statistical power was done using pwr package in R. The effect size for

the 2-tailed student t test was estimated by the difference between two means divided by

pooled standard deviation. The effect sizes for the univariate and multivariate analyses were

estimated based on the odds ratios. For the Kaplan-Meier (KM) survival analysis, data from

TCGA and METABRIC were downloaded from cBioPortal (http://www.cbioportal.org/) and

then analyzed and visualized in R. Cancer patients harboring mutations in NRAS, ESR1, EGFR,

KRAS, BRAF, or TP53 were classified as “With mutation(s)” group while cancer patients with

no mutations in those genes were assigned to “No mutation” group for KM analysis. The data

visualizations in this study were done with ggplot2, plot3D, plotROC, OmicCircos [20], surv-

miner, and venneuler packages in R.

CTC enumeration and sequencing workflow
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Results and discussion

Overview of CTC analytical workflows

The spiral microfluidic chip system is one of the highly desirable CTC enrichment methods,

which utilizes inherent centrifugal force in the spiral microchannel to deplete WBCs and

enrich CTCs based on their cell sizes [21]. The spiral microfluidic chip enriches CTCs by

shunting them towards a CTC enrichment outlet. This allows high-throughput and continu-

ous enrichment of CTCs. When compared with immune-mediated CTC capturing systems,

the microfluidic platform gives a higher CTC recovery and detection sensitivity [22]. There-

fore, we employed this technology to enrich CTCs and to develop a downstream enumeration

and sequencing workflow (Fig 1).

In the following sections, we illustrate the collateral workflows for downstream CTC enu-

meration and sequencing analyses (Fig 1). For the CTC enumeration workflow, we illustrate

our CK/EPCAM-combined staining strategy and quantitative image analysis, followed by clin-

ical validation of the workflow in a pilot study of 77 individuals. Next, we demonstrate the

importance of the CTC enumeration result in CTC sequencing pipeline. Finally, we show our

NGS library design, library preparation protocol, and analytical validation with simulated

CTC samples, followed by sequencing of clinical CTC samples.

CK/EpCAM-combined staining for CTCs

To ensure the quality of CTC immunostaining, fluorescence interference should be minimized

by avoiding overlap of multiple fluorescence spectra. Therefore, it is important to judiciously

utilize the limiting number of available labeling channels. Conventional identification of CTCs

requires immunostaining of four markers including CK, EpCAM, CD45, and DAPI [1–4].

Combining different markers of similar function into one channel is a solution to establish a

succinct CTC counting workflow to accelerate the process of CTC enumeration. The remain-

ing staining channel allows the opportunity to further understand the CTC biology by staining

with additional markers. For instance, cancer stem cell markers (e.g. CD44), EMT markers

(e.g. Vimentin), or proliferation markers (e.g. Ki-67) are some interesting biomarkers that

merit further exploration. For these reasons, our CTC immunostaining was done by combin-

ing CK and EpCAM staining into one fluorescence channel of Alexa Fluor 555 (Fig 2A). The

purpose is to establish a succinct staining workflow to expedite the whole staining and enu-

meration process, as well as allowing the remaining fluorescence channel to be used for other

staining studies.

CTC enumeration and visualization

To establish a systematic CTC enumeration and visualization pipeline, we utilized CellProfiler

and CellProfiler Analyst, freely available and versatile image analysis programs developed by

the Broad Institute. Automated analysis pipeline was set to measure quantitative features (i.e.

mean staining intensities, cell size, and cell shape; see Methods for setting up the pipeline)

from fluorescent images. As shown in Fig 2B, a significant population of cells in the CTC

microfluidic output express CK/EpCAM proteins. Although the CK/EpCAM expressions of

these cells are heterogeneous, the expression levels are clearly distinguishable from the negative

controls, and therefore, enable accurate CTC enumeration after gating. Subsequently, CTCs

were gated, enumerated, and visualized as an image gallery by using CellProfiler Analyst (Fig

2B and 2C). By virtue of the pipeline, we defined different cell populations from the immunos-

taining of microfluidic outputs for further validation, namely, typical CTC (EpCAM/

CK+CD45−), dual-positive cell (EpCAM/CK+CD45+), and the total cell.

CTC enumeration and sequencing workflow
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Fig 1. An overview of CTC enrichment, counting, an sequencing workflow.

https://doi.org/10.1371/journal.pone.0177276.g001
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Clinical validation of the CTC staining and enumeration workflow

To validate our CTC staining and enumeration workflow, we conducted a pilot study involv-

ing 77 clinical samples (56 cancer patients and 21 healthy individuals) using the spiral micro-

fluidic chip system. The numbers of typical CTCs in cancer patients are significantly higher

than that in healthy individuals (p = 0.004, power = 0.985, two-tailed student t test; Fig 3A).

Fig 3B depicts the CTC counts in individual patients diagnosed with six common cancer types.

Apart from typical CTCs, atypical dual-positive cells were observed in the blood samples of

cancer patients, but the clinical significance of this remains unclear [23]. We counted the dual-

positive cells and compared their numbers with typical CTCs. The ROC curve analysis con-

firmed that the typical CTC count is a significant biomarker for differentiating cancer patients

from normal individuals (AUC = 0.87, 95%CI = 0.79–0.95, p = 0.000; Fig 3C). In contrast, the

number of dual-positive cells and total cells showed no differentiation value (AUC < 0.5 and

p> 0.05). The CTC test achieved a sensitivity of 80.4% and specificity of 85.7% (cut-off

value = 3.5). Additionally, as shown in Fig 3D, univariate and multivariate analysis identified a

significant association between CTC number and the presence of cancer (univariate analysis:

odds ratio = 1.41, p = 0.004, power = 1; multivariate analysis: odds ratio = 1.51, p = 0.007,

power = 1). In contrast, no association could be found between the number of dual-positive

cells or total cells with the presence of cancer (p> 0.05; Fig 3D). The multivariate analyses

Fig 2. CTC staining, gating, and visualization. (A) Immunofluorescence staining of blood samples before and after microfluidic

enrichment. The samples were stained with DAPI (blue), CK/EpCAM (green), and CD45 (red) antibodies. (B) 3D plots showing data

extracted from CellProfiler. Cells from buffy coats were stained with isotype control antibodies and served as negative controls. The box with

red dashed line indicates gating of CTCs. (C) Individual cell image gallery generated from the enumeration pipeline. CTCs (DAPI+CK/

EpCAM+CD45−) and WBCs (DAPI+CK/EpCAM−CD45+) are shown.

https://doi.org/10.1371/journal.pone.0177276.g002
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were also performed for individual cancer types (S3 Table), and the odds ratios for CTC num-

ber are consistently larger than 1. Taken together, our CTC staining protocol coupled with the

illustrated enumeration pipeline was validated and shown to be highly adaptable to systematic

analyses of CTCs in clinical settings.

Cancer monitoring by CTC count

To examine the reproducibility of our CTC tests, two tubes of blood (8 ml each) were received

from each of four patients. The blood samples were processed separately with different chips

on two microfluidic machines. As shown in Fig 3E, the CTC enumeration results were highly

reproducible with low variance. Next, we sought to explore clinical application of our CTC

enumeration pipeline in serial cancer monitoring. Pre- and post-treatment blood samples

from patients with hepatocellular carcinoma (n = 4) were collected for CTC counting. We

observed a marked decline of CTC number in the post-treatment samples [i.e. reduction of

CTC number: patient-1: 82.5%, patient-2: 66.7%, patient-3: 47.7%, and patient-4: 100%]. The

decreasing trend of CTC number after treatment suggests a potential clinical utility for phar-

macodynamics studies. In HCC, the EpCAM-expressing CTCs were reported as tumor-initiat-

ing cells [24], which were significantly correlated with poor prognosis of patients after tumor

resection [25]. Though this evidence strongly supported the importance of EpCAM-expressing

CTCs, pilot studies with larger sample size are needed to demonstrate the usefulness of CTCs

Fig 3. Validation analysis for the CTC enumeration pipeline. (A) CTC counts are significantly higher in cancer patients (n = 56) than

those in healthy individuals (n = 21), p = 0.004. (B) A bar chart displaying individual CTC counts for each cancer patient and healthy

donor. (C) Receiver operating characteristic (ROC) plot exhibiting the power of CTC counts in differentiating samples from cancer

patients and healthy individuals. (D) Univariate and multivariate analyses testing for the correlation of the number of CTCs, dual-

positive cells, and total cells with the clinical presentation of cancer (i.e. presence of cancer). (E) Inter-experimental reproducibility of

CTC assays. SD: standard deviation CV: coefficient of variation (CV).

https://doi.org/10.1371/journal.pone.0177276.g003
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in cancer monitoring. Taken together, our CTC analytical pipeline can achieve a reliable and

systematic CTC assessment, which can broaden the downstream applications of CTC analysis.

CTC enumeration is important for CTC sequencing

Apart from pharmacodynamics studies, the preceding CTC counting workflow also plays a

key role for accurate somatic mutation detection in NGS study. Since the microfluidic output

contains a hematopoietic cell background, the somatic mutations in CTCs are expected to

occur at a low variant frequency (VF). To facilitate accurate estimation of somatic mutations,

the CTC purity in the microfluidic output is used to adjust the frequency threshold and to

reduce false negative error during statistical analysis. To do so, the CTC number obtained

from the CTC enumeration workflow was used to estimate CTC purity (i.e. CTC number /

total cell number). The CTC purity was then input into VarScan2 [18] to adjust the Fisher’s

exact test for calling somatic mutations (see Methods for details).

NGS library design and preparation

The preparation of NGS library is straightforward; it simply involves two PCR steps for library

preparation (Fig 4A). The resulting amplicon libraries contain 1) P5 and P7 adapters for bind-

ing onto the flowcell; 2) a 10-bp diversifier sequence; and 3) targeted exon region. The 10-bp

diversifier sequence composes of random Ns and is essential for enhancing the library diversity

to achieve precise DNA cluster identification during the sequencing. On the flowcell of the

Illumina sequencing system, each DNA cluster is a single sequencing read, which needs to be

precisely detected for high-quality sequencing outputs. In the Illumina MiSeq, NextSeq, and

HiSeq platforms, the success of DNA cluster identification and mapping largely relies on the

sequence diversity of the library during the first five sequencing cycles. However, the amplicon

library generally is low in sequence diversity, which can cause ambiguous cluster detection,

thereby resulting in low-quality reads and data loss after sequence filtering. To increase

sequence diversity for accurate cluster identification, we introduced a sequence composed of

random Ns in the amplicon libraries.

In our sequencing workflow, we sought to sequence clinically relevant cancer genes harbor-

ing pathogenic mutations and/or clinically actionable mutations. The targeting genes in our

library design include NRAS, ESR1, EGFR, KRAS, BRAF, and TP53. We utilized TCGA and

METABRIC datasets to explore the clinical relevance of this gene panel. KM survival analysis

showed significant associations (log-rank p value < 0.05) between mutation occurrence and

the patient survival in breast cancer (n = 1865), liver cancer (n = 319), prostate cancer

(n = 491), thyroid cancer (n = 388), kidney cancer (n = 64), and pancreatic cancer (n = 115)

(Fig 4B). Cancer patients with mutation(s) in the gene panel were associated with poor overall

survival or disease-free survival. We envision that sequencing this gene panel in CTCs may

also provide important information in both academic and clinical settings.

To demonstrate the sequencing workflow for the gene panel, we designed primers flanking

the target exons of NRAS, ESR1, EGFR, KRAS, BRAF, and TP53 genes, which harbor clinically

relevant somatic mutations as recorded in the Catalogue Of Somatic Mutations (COSMIC)

and ClinVar databases. Tracks 1 to 3 in Fig 5A depict the sequencing gene targets and the asso-

ciated mutations (pathogenic or drug-response associated mutations) reported in the COS-

MIC and ClinVar databases.

Validation of sequencing performance

Next we benchmarked our targeted sequencing workflow by sequencing a series of simulated

microfluidic outputs. To mimic hematopoietic cell background, we applied a widely used

CTC enumeration and sequencing workflow
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Fig 4. Schematic diagram of the 2-step library preparation. (A) Libraries were prepared by two PCRs. The primer pair for

the first PCR contains 1) target-hybridizing sequences (blue), which bind to and amplify the exon targets; 2) a 10-bp diversifier

sequence composed of random nucleotides (orange), which promotes accurate DNA cluster detection during sequencing

runs; 3) a portion of P5 and P7 adapter sequences (green). The universal primer pairs for the second PCR add a full P5 and

P7 sequencing adapter (green) to the libraries. Primer sequences are listed in S1 and S2 Tables. (B) Kaplan-Meier survival

curves of cancer patients stratified by existence of mutations in their tumor tissues. Patients were grouped into “No mutation”

or “With mutation(s)” for analysis, according to their mutation status of NRAS, ESR1, EGFR, KRAS, BRAF and TP53 genes.

The log-rank test p values comparing two survival curves are shown in each plot.

https://doi.org/10.1371/journal.pone.0177276.g004
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Fig 5. Sequencing target regions and the sequencing results. (A) Descriptions from outer track to inner

track are as follows: Track 1 (target genes and exons sequenced); Track 2 (somatic mutations): The bars

indicate somatic mutations reported in the COSMIC database; Track 3 (clinically-relevant mutations): The

bars represent clinically relevant mutations reported in the ClinVar database; Track 4 (validation assay): The

interlaced dots indicate three representative sequencing results of simulated CTC samples. The size of the

dots is proportional to the frequency. See (B) for the correlation between frequencies. Track 5 (consensus

somatic mutations detected in the clinical samples): library preparation and sequencing of CTC microfluidic

CTC enumeration and sequencing workflow
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reference DNA control (NA12878), which is a gold standard benchmark validated by the

NIST-led Genome in a Bottle Consortium. To mimic CTCs, we used DNA from an esophageal

cancer cell line (KYSE 270), which contains a clinically relevant EGFR L861Q mutation [26,

27], as recorded in the COSMIC database.

To evaluate whether the detected variant frequency (VF) from the sequencing workflow is

linearly correlated with the expected VF, we conducted a linearity validation assay using a

series of simulated CTC microfluidic outputs by spiking different percentages of KYSE270

DNA (mimicking CTCs) into a background of NA12878 DNA (mimicking hematopoietic cell

background). The expected VFs from simulated CTC samples were 0%, 0.08%, 0.8%, 2.68%,

and 8% for EGFR L861Q mutation (Fig 5B). Remarkably, our sequencing workflow showed a

high linearity and correlation coefficient between the expected and the detected VF (n = 10, R2

= 0.997, slope = 0.966, power = 1; Fig 5B). In addition, the EGFR L861Q mutation can be

detected even down to 0.08% expected VF (somatic p value = 7.54 x 10−4), which indicated a

high detection sensitivity for the sequencing workflow (Fig 5B). Furthermore, by analyzing the

simulated CTC samples (n = 5, 0.8% VF), we observed that the performance of mutation iden-

tification can be improved by increasing the number of technical replications (Fig 5C). Partic-

ularly, in technical duplication, when consensus mutations across the sequencing results were

called, there is an obvious elevation of positive prediction value (PPV) (from 25% to 75%) and

a corresponding decline of false discovery rate (FDR) (Fig 5C), whereas the sensitivity remains

steadily high (100%). Parenthetically, the sequencing performance may also be improved by

testing various bioinformatics tools [28], but this is beyond the scope of present study.

Sequencing clinical CTC samples

By virtue of our sequencing workflow, we sequenced microfluidic outputs from two patients

diagnosed with hepatocellular carcinoma. The patients’ WBCs were used as a reference control

for bioinformatics analysis. Library preparation and sequencing of CTC microfluidic outputs

were performed in technical duplicates. Consensus mutations across the technical repeats,

with significant somatic p values, were called for further analysis. We found a TP53 somatic

missense mutation (A364S) and an ESR1 missense mutation (S559A) in CTC samples (Fig 5A

and Table 1). In silico prediction suggested a damaging effect conferred by this TP53 A364S

mutation (Table 1). It is noteworthy that the missense mutation on A364 site was reported in

ovarian cancer in the COSMIC database (mutation ID: COSM46361). On the other hand,

ESR1 was linked to the susceptibility to HCC [29] and was suggested to be a tumor suppressor

gene in HCC [30]. Mutation frequency of ESR1 is 1.6% (6/366 sequenced cases) in the TCGA

provisional data set of HCC. Taken together, we demonstrated a straightforward amplicon-

based targeted sequencing workflow to gain insight into the genetic discovery of CTCs.

Conclusion

In conclusion, this report demonstrates a highly adaptable workflow for CTC staining, enu-

meration, and targeted sequencing. A systematic workflow for CTC enumeration and genetic

analysis can bridge the technical gap between the advancement of CTC microfluidic enrich-

ment and systematic investigation of CTCs. An integrated pipeline of the fascinating

outputs were performed in technical duplicates. Consensus mutations are shown in dots. (B) Results of

dilution sequencing assay for linearity validation. The relationship between the expected and the detected

frequency is shown. (C) Bar charts showing the change in sensitivity, positive prediction value (PPV), and

false discovery rate (FDR), after increasing the number of technical replicates. An obvious improvement of

PPV and FDR was noted and indicated as pink bars.

https://doi.org/10.1371/journal.pone.0177276.g005
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microfluidic advances and the illustrated workflows can pave the way to better define the biol-

ogy of CTCs and explore their clinical applications in cancer monitoring and personalized

medicine.
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Table 1. Sequencing results for the CTC microfluidic outputs from patients.

Sample CTC number Genomic

coordinate

Mutation Somatic p value in technical repeat

(coverage)

Predictor | Score | Prediction

Patient-

12

10 Chr17: 7573937 A364S Run 1 • FATHMM score | -5.49 | Deleterious

• RadialSVM score | 0.76 | Damaging

• LR score | 0.91 | Damaging

p = 1.8 x 10−7(448952)

Run 2

p = 1.9 x 10−3(335959)

Patient-

19

45 Chr6: 152419988 S559A Run 1 • PolyPhen 2 HDIV | 0.95 | Possibly

damaging

• PolyPhen 2 HVAR | 0.80 | Possibly

damaging

• MutationTaster | 0.78 | Disease-causing

p = 7.9 x 10−4 (57352)

Run 2

p = 0.023 (62598)
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