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The aim of this work was to re-evaluate electrophysiological data from a
previous study on motor imagery (MI) with a special focus on observed inter-
and intra-individual differences. More concretely, we investigated event-related
desynchronization/synchronization patterns during sports MI (playing tennis) compared
with simple MI (squeezing a ball) and discovered high variability across participants.
Thirty healthy volunteers were divided in two groups; the experimental group (EG)
performed a physical exercise between two imagery sessions, and the control group
(CG) watched a landscape movie without physical activity. We computed inter-individual
differences by assessing the dissimilarities among subjects for each group, condition,
time period, and frequency band. In the alpha band, we observe some clustering in
the ranking of the subjects, therefore showing smaller distances than others. Moreover,
in our statistical evaluation, we observed a consistency in ranking across time periods
both for the EG and for the CG. For the latter, we also observed similar rankings across
conditions. On the contrary, in the beta band, the ranking of the subjects was more
similar for the EG across conditions and time periods than for the subjects of the
CG. With this study, we would like to draw attention to variability measures instead of
primarily focusing on the identification of common patterns across participants, which
often do not reflect the whole neurophysiological reality.

Keywords: EEG, ERD/S, motor imagery, variability, inter-individual differences

INTRODUCTION

Motor imagery (MI) is defined as an internal representation of simple or complex movements in
absence of any physical action or any kind of peripheral muscular activity (Jeannerod, 1994; Annett,
1995; Jeannerod and Decety, 1995; Porro et al., 1996). It is well-known that MI improves motor
learning comparable with real physical exercises which results in neural and structural changes in
the brain (Grèzes and Decety, 2001; Miller et al., 2010; Sharma and Baron, 2013). Furthermore,
MI is a common task in brain–computer interface (BCI) research because users often cannot
perform an overt motor execution task due to some degree of motor disability (Neuper et al.,
2006; Pfurtscheller and Neuper, 2006; Pfurtscheller et al., 2006; Leeb et al., 2007a; Höhne et al.,
2014). With the so-called motor-imagery-based BCI, users send mental commands by performing
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MI tasks, e.g., movement imagination or attempts (Pfurtscheller
and Neuper, 2001; Neuper and Pfurtscheller, 2010; Lotte et al.,
2013). Even though improved signal processing and classification
algorithms are available, a tremendous inter- and intra-subject
variability has been observed in terms of performance (Allison
and Neuper, 2010; Wolpaw and Wolpaw, 2012; Kübler et al.,
2013). Thus, it is indisputable that one of the major aspects
contributing to MI–BCI control performance is the individual
characteristic and consequently neural pattern of the BCI user
(Kübler et al., 2013; Ahn and Jun, 2015).

In the past years, researchers identified different factors
like cognitive, attentional, or personal skills which influence
BCI performance (Leeb et al., 2007a,b; Blankertz et al., 2010;
González-Franco et al., 2011; Kübler et al., 2011; Halder
et al., 2013; Kleih and Kübler, 2013; Lotte et al., 2013;
Höhne et al., 2014; Schreuder, 2014). The observed large
inter-individual variability motivated researchers to investigate
important predictors related to a user’s personality and
cognitive profile. Jeunet et al. (2016) suggested the following
three categories of MI–BCI performance predictors: (1) users’
relationship with the technology, (2) attention, and (3)
spatial abilities. The attention-related predictors seem to be
particularly relevant. There is large inter-individual variability
in the efficiency of neural activity in the attention network
accounting for the inter-individual variations in attentional
abilities important for BCI control (Petersen and Posner, 2012).
Moreover, several other researchers have identified attention-
related brain patterns which are important to BCI performance.

For example, Grosse-Wentrup and Schölkopf (2012) found
that the variation in gamma power highly correlates with
BCI performance, hence being able to predict successful
or unsuccessful classification (Grosse-Wentrup et al., 2011;
Grosse-Wentrup, 2012; Grosse-Wentrup and Schölkopf, 2012;
Schumacher et al., 2015). Others found that the extent of
activation of the dorsolateral prefrontal cortex (associated with
the executive attention system; Posner and Petersen, 1990) differs
between high and low BCI performers (Halder et al., 2011).
Finally, Bamdadian et al. (2014) found that frontal theta, occipital
alpha, and midline beta power could be other predictors for
BCI performance.

Besides attention, there are several other factors that
contribute to a high variability in BCI users. For example, Kübler
et al. (2011) suggested a model of BCI control that contains
four categories: “Individual characteristics,” “Characteristics
of the BCI,” “Feedback and Instruction,” and “Application.”
Summarizing this classification, it can be distinguished between
two fundamental aspects. One aspect is the user’s part and the
other one the system’s part. It has been shown that within the
same BCI system, some subjects cannot perform successfully
(Allison and Neuper, 2010; Blankertz et al., 2010). These results
indicate the importance to understand why some individuals
perform differently in the same system. Other researchers like
Saha and Baumert (2019) reported that neurophysiological
processes during MI often vary over time and across subjects
(Meyer et al., 2013; Saha et al., 2017). Because the motor learning
process differs across individuals and consequently cortical
activity varies among subjects during MI, its utility for BCI

applications is largely restricted. Hence, it is very important to
more closely investigate inter- and intra-subject variability during
MI to find further predictors of inter-individual differences that
can improve future MI-based BCI systems.

In a former study, we investigated MI of playing tennis,
resulting in different mu rhythm patterns of activation on
the basis of individual expertise for the specific task. For
instance, experienced tennis players showed a more focal event-
related desynchronization (ERD) pattern over sensorimotor
regions surrounded by ERS with respect to non-experts
(Wriessnegger et al., 2018). Surprisingly, our data clearly show
high inter- and intra-individual differences in event-related
desynchronization/synchronization (ERD/S) patterns in all tasks
and groups reflected in the time–frequency visualization of
ERD/S patterns in the alpha band for the same tasks. For
example, while one person showed increased ERD during MI
of tennis, another one showed increased ERS for the same
task. Consequently, an overall analysis of the grand average
activity during tennis MI was quite problematic. Such high
inter- and intra-subject variability of mu rhythms during MI
tasks was also reported by other studies (Doppelmayr et al.,
1998; Pineda, 2005; Pfurtscheller and Neuper, 2006; Pfurtscheller
et al., 2006; Halme and Parkkonen, 2018; Corsi et al., 2019).
For example, Daeglau et al. (2020) attributed the inter-individual
differences in MI induced ERD to the experimental setup they
used. Concretely, they assumed that task and experimental
setup can affect the interplay of motor execution and MI
for each individual differently. Others discussed inter-subject
variability in the alpha frequency in relation with age and
genetic factors, supported by twin studies (Smit et al., 2012;
Bodenmann et al., 2009). But also, task demands and cognitive
factors like working memory performance influence the alpha
peak frequency (Klimesch, 1999). In addition, intra-subject
variability in alpha peak frequency has been observed reflecting
different alpha networks being activated dependent on task
demands (Klimesch, 1999). Following this, alpha frequency can
be interpreted as “trait” variable on the one side and “state”
variable on the other side. While the former might explain
differences in overall cognitive performance among subjects,
the latter could explain the observed intra-subject variability.
Moreover, this variability might reflect any fluctuations in real-
time performance.

These results and the high inter-individual differences in
ERD/S patterns elicited in our previous study (Wriessnegger
et al., 2018) motivated us to investigate more closely the
variability among and between subjects of this dataset. The
individual activation patterns during MI are largely neglected in
most of the studies which primarily focused on the identification
of common patterns across participants.

MATERIALS AND METHODS

Participants
Thirty healthy right-handed students participated in the study.
All reported normal or corrected to normal vision and none
of them had a history of psychiatric or neurological disorders.
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Participants were matched with regard to sex and age, and they
were randomly assigned to the control group (CG) (N = 15;
mean age: 24.9; range: 20–30 years; 7 women and 8 men) or
to the experimental group (EG) (N = 15; mean age: 24.8;
range: 20–28 years; 7 women and 8 men). The participants
were all naive regarding MI, 70% of them regularly perform
different kinds of sports and only five play tennis. The original
study was approved by the local ethics committee (Medical
University of Graz) and is in accordance with the ethical
standards of the Declaration of Helsinki. After detailed written
and oral instruction participants gave informed written consent
to participate in the study. They received financial compensation
(€7.50/hour) for their participation.

Experimental Design
The experimental procedure encompassed a pre-measurement,
the execution or relaxing intervention, and a post-measurement.
During the pre-measurement, participants from both groups
performed the MI task according to the written instructions
while simultaneously their EEG was recorded. Whenever the
letter “T” appeared on the screen in front of them, participants
had to imagine playing tennis for 6 s repetitively. The concrete
instruction was to imagine a repetitive right forehand movement
of returning balls from a first-person perspective. If the letter
“H” appeared on the computer screen, the task was to imagine
squeezing a ball for 6 s with the right hand. Participants had to
imagine each type of MI 15 times per run in pseudo-randomized
order. The whole experiment consisted of four runs with 60 trials
of squeezing a ball and other 60 trials of playing tennis.

During the intervention phase, participants from the EG
played virtual tennis via motion control (Kinect) and squeezed
a real ball for 5 min each. In this phase, no EEG was
recorded. The described execution interventions were performed
in randomized order within the EG. In the control group (CG),
participants performed no physical exercise, instead they watched
a landscape movie for 10 min.

In the last session, after the intervention phase, participants
of the EG and the CG performed the same MI (playing tennis
and squeezing a ball) tasks like in the first session while their
EEG was recorded. A trial consisted of a fixation cross (4 s), the
imagery phase (6 s), and a pause (4 s), which leads to a total trail
time of 14 s. In one run, 30 trials (15 per MI task) in total are
performed, with four runs in the pre-recording and 4 runs in
the post-recording phase. Each participant performed eight runs
with 240 trials in total. For a more detailed description of the
experimental setup, please see Wriessnegger et al. (2018).

EEG Preprocessing and ERD/ERS
Analysis
The raw EEG data, taken from the original study (Wriessnegger
et al., 2018), was down-sampled to 250 Hz and re-referenced to
channel Cz. We manually inspected the continuous EEG signals
and marked segments containing artifacts, which we discarded in
all subsequent analyses. Next, we used non-causal FIR bandpass
filters to extract time signals in the bands 8–13 Hz (alpha band)
and 16–24 Hz (beta band). We considered segments from−3.5 to

3.5 s relative to each cue for our ERD/ERS calculation, where the
baseline and activation intervals ranged from−3.5 to 0.5 s and 0.5
to 3.5 s, respectively. Finally, we averaged groups of channels into
the following six regions of interest (ROIs) (Figure 1): prefrontal
left (F5a, F3a, F1a, FC5b, FC3b, FC1d, and FC1c), prefrontal right
(F2a, F4a, F6a, FC2c, FC2d, FC4b, and FC6b), central left (FC5a,
FC3a, FC1b, FC1a, C5a, C3, C1b,C1a, CP5a, CP3a, CP1b, and
CP1a), central right (FC2a, FC2b, FC4a, FC6a, C2a, C2b, C4, C6a,
CP2a, CP2b, CP4a, and CP6a), parietal left (CP5b, CP3b, CP1d,
CP1c, P5a, P3a, and P1a), and parietal right (CP2c, CP2d, CP4b,
CP6b, P2a, P4a, and P6a). We computed time/frequency ERD/S
maps similar to the procedure used to calculate ERD/S values.

Calculating Intra- and Inter-individual
Differences
For every subject from the two groups (experimental and
control), each condition (hand and tennis), time period (pre-
and post-intervention), and frequency band (alpha and beta),
we averaged the time–frequency patterns during the task (0.5 to
3.5 s) of single channels within each of the six ROIs. Then, we
computed the ERD/S patterns and investigated their distribution
among subjects during pre- and post-intervention time periods.

Next, we concatenated the average ERD/S values of the six
ROIs for alpha and for beta frequency bands for all the subjects,
and assessed the dissimilarity between these patterns by means
of a pairwise distance computed as 1 - rho, where rho is
the Spearman correlation. We ranked and scaled the distances
between 0 and 1, and computed the distance matrix between
pairs of conditions. We computed inter-individual differences
by assessing the dissimilarities among subjects for each group,
condition, time period, and frequency band (Figures 4A,B).

To visualize the distances between different subjects in several
conditions, we used multidimensional scaling (MDS) (Kruskal
and Wish, 1978). MDS is a general dimensionality reduction
method that projects entities in a low-dimensional space, such
that their distances reflect their similarities. Specifically, similar
entries will be located closer to one another, while dissimilar ones
will be farther apart. For MDS visualization as a 2D plot that
reflects the distribution of the subjects in terms of their ranking,
we performed non-metric MDS for two dimensions with the
squared stress criterion.

Next, we investigated the variability of these pairwise distances
among subjects in each of the two groups (experimental and
control) among conditions, time periods, and frequency bands
using Kendall’s tau b and reporting their associated p-values. We
corrected for multiple comparisons using the Bonferroni–Holm
correction.

RESULTS

Subject-Specific ERD/S Patterns
Figure 2 shows subject-specific ERD/S values averaged over the
channels of each ROI. In every subplot, the vertical black line
separates the values for alpha and beta frequency bands, whereas
the horizontal black line separates the two groups of subjects:
experimental and control groups. Finally, the top row shows all

Frontiers in Human Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 576241

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-576241 October 28, 2020 Time: 15:11 # 4

Wriessnegger et al. Neural Variability in Motor Imagery

FIGURE 1 | Layout of the EEG channels and description of the ROIs.

these patterns for the hand condition: on the left side during the
pre-intervention time period and on the right side during the
post-intervention time period. Similarly, the bottom row shows
these patterns for the tennis condition.

We can observe that for some subjects, the within-subject
ERD/S values remain similar throughout the conditions and time
points. However, across subjects, these values are very different.
For example, subject EG3 shows a strong negative ERD/S value
at the level of ROI3 and ROI5 in both hand and tennis pre-
conditions for both alpha and beta frequencies. These values
slightly increase but remain negative for all the conditions and
frequencies in the post-intervention period. However, as another
example, subject EG14 presents positive ERD/S values in all
conditions. Similar observations can be found in the control
group (e.g., CG3 and CG12). We also found that the ERD/S values
for the beta frequency show less variability among subjects for
either group compared with the alpha frequency band.

In Figures 3A,B, we use boxplots to visualize summary
statistics at the group level, based on ERD/S values for each
condition (hand and tennis), respectively, for alpha and beta
frequency bands and for all six ROIs. For both conditions, the
distribution of ERD/S values shows larger variability in the alpha
band than in the beta band throughout the ROIs. We can also

observe that in the EG, some subjects contribute as outliers to
the larger variability observed in the alpha band in the pre-
intervention period (large positive ERD/S values in the top left
subplot in Figures 3A,B).

Moreover, the median values among ROIs for the hand
condition are more negative for the EGs than for the control
group in the pre-intervention period in the alpha band. For the
tennis conditions, the medians of the ROIs are similar between
groups and between time periods.

Distance Matrices and Variability Results
Inter-individual differences are illustrated in terms of distance
measures between subject-specific ERD/S patterns for the alpha
band in Figure 4A and for the beta band in Figure 4B, for the
factors group (EG/CG), time period (pre/post), and condition
(hand/tennis). The distances are calculated between pairs of
subjects considering as a pattern the ERD/S during the task
period of all the channels, without averaging them. In Figure 4A,
we observe some clustering in the ranking of the subjects,
therefore showing smaller distances than others. Moreover, we
observed a consistency in ranking across time periods both for
the EG and for the control group. For the latter, we also observed
similar rankings across conditions. For example, subjects 6, 8,

Frontiers in Human Neuroscience | www.frontiersin.org 4 October 2020 | Volume 14 | Article 576241

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-576241 October 28, 2020 Time: 15:11 # 5

Wriessnegger et al. Neural Variability in Motor Imagery

FIGURE 2 | Subject-specific ERD/S magnitudes in each of the six ROIs in the hand and tennis conditions (top and bottom panels), during the pre- and
post-intervention time periods (left and right panels) within the alpha and beta frequency bands.

9, and 10 from the EG show a strong similarity, therefore small
distances among each other across conditions; whereas subjects
4, 8, 9, and 12 from the control group are consistently different
independent of the condition or time period, by showing large
distances among each other.

In the beta band, the ranking of the subjects was more
similar for the EG across conditions and time periods than for
the subjects of the control group. For example, subjects 3, 8,
9, 12, and 13 were very similar in ranking across conditions
and time periods. We have not observed such a consistency in
the control group.

For an intuitive visualization of the relationship between
the ERD/S magnitudes of different subjects, we used MDS.
In Figures 5A,B, we show their relation for each of the two
frequency bands, respectively. With red dots we show the
subjects from the EG and with blue the subjects from the
control group. The closer the two dots are to one another,

the more similar the magnitude of the ERD/S for the two
subjects. For example, in Figure 5A, in the EG hand pre-
condition, subject 1 is similar to subjects 3 and 5 but very
different to subject 2 or 13. In each figure, we visualize
separately the structure of the rankings of the subjects for
different conditions and time periods. We observe that some
subjects remain consistent in their ranking with respect to
others across conditions and time periods. For example, in
the EG, subjects 8, 12, and 13 maintain their similarity across
conditions and time periods. Another example is subject 6
from the control group which shows a larger dissimilarity to
the other subjects from the same group independent of the
condition or time period.

In Figure 5B for the beta band, we also observed that some
subjects cluster together, for example, for the EG, subjects 12
and 13 are close in their rankings both across conditions and
time periods, and also across frequency bands, as we have seen in
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FIGURE 3 | (A) Distribution of ERD/S patterns across frequency bands and ROIs for the hand condition. Each dot represents a subject-specific average ERD/S in
the time period of the task (0.5 to 3.5 s w.r.t. the task cue) for a particular frequency band and ROI. The subplots on the left column show the ERD/S distribution for
the pre-intervention period for the experimental group (top) and for the control group (bottom). The right column shows the post-intervention ERD/S distribution.
(B) Distribution of ERD/S patterns across frequency bands and ROIs for the tennis condition. Each dot represents a subject-specific average ERD/S in the time
period of the task (0.5 to 3.5 s w.r.t. the task cue) for a particular frequency band and ROI. The subplots on the left column show the ERDS distribution for the
pre-intervention period for the experimental group (top) and for the control group (bottom). The right column shows the post-intervention ERD/S distribution.

Figure 5A. For the control group, we observed a different ranking
of the subjects between conditions and time periods compared
with the consistency in ranking found in the alpha band.

Figure 6 shows the degree of similarity between the pairs of
conditions and time points in which we evaluated the rankings
of the subjects. We chose Kendall’s Tau-b correlation coefficient
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FIGURE 4 | (A) Distance matrices—alpha frequency band. Each matrix displays the distance between subject-specific ERDS patterns in the alpha frequency band
for a group (experimental or control), a condition (hand or tennis motor imagery), and a time period (pre- or post-intervention). The distance is computed as 1 - rho,
where rho is the Spearman correlation. (B) Distance matrices—beta frequency band. Each matrix displays the distance between subject-specific ERDS patterns in
the beta frequency band for a group (experimental or control), a condition (hand or tennis motor imagery) and a time period (pre- or post-intervention). The distance
is computed as 1 - rho, where rho is the Spearman correlation.

to adjust for ties in the ranking, and we also report the
associated p-values corrected for multiple comparisons using
the Bonferroni–Holm correction. We found that the ranking
of the magnitude of the ERD/S patterns for the subjects in
the EG hand pre-beta was correlated with the one in the EG

hand pre-alpha (τb = 0.23, p = 0.03), which indicates that the
ranking of the subject is maintained across frequency bands
for the hand condition in the pre-intervention time period.
We also found stronger correlations between the EG tennis
post-alpha and EG hand post-alpha (τb = 0.34, p = 0.0001)
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FIGURE 5 | (A) Multidimensional scaling (MDS) scatter plots showing the relation among the subject-specific ERD/S patterns in the alpha frequency band for
subjects in the experimental group (red dots) and subjects in the control group (blue dots). (B) Multidimensional scaling scatter plots showing the relation among the
subject-specific ERD/S patterns in the beta frequency band for subjects in the experimental group (red dots) and subjects in the control group (blue dots).

as well as EG tennis pre-alpha (τb = 0.35, p = 0.00009),
which suggest consistency in ranking in the alpha band across
conditions (τb = 0.32, p= 0.0005) and time periods. For the beta

band, we observed a stronger correlation across both conditions:
τb= 0.38, p= 0.000007 for tennis pre-hand pre, and time periods:
τb = 0.32, p = 0.0006 for hand pre–hand post and τb = 0.38,
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FIGURE 6 | Kendall’s Tau-b correlation among the eight conditions for each of the two groups of subjects (experimental and control) and their associated p-values.
A significant p-value leads to the rejection of the null hypothesis that the correlation would be 0 (i.e., independent conditions), and it indicates that the pair of
conditions shares a similar distribution.

p = 0.000007 for tennis pre-tennis post than in the alpha band
for the subjects in the EG.

For the subjects in the control group, we found a stronger
consistency in ranking in the alpha band than in the beta band,
especially across time periods (τb = 0.47, p = 9.2∗e–11 for the
hand pre alpha to hand post-alpha and τb = 0.45, p = 9.6∗e–10
for the tennis pre alpha to tennis post-alpha). The consistency
across conditions was also significant: τb = 0.33, p = 0.0005 for
tennis pre alpha to hand pre alpha and τb = 0.25, p = 0.006 for
tennis post-alpha to hand post-alpha. In the beta band, the only
significant correlation was between hand post and the hand pre
(τb = 0.23, p = 0.02). The other significant correlations were
found across frequency bands but for the same condition or time
period (τb = 0.27, p= 0.002 for hand pre beta to hand pre alpha,
τb = 0.29, p = 0.0005 for hand pre beta to hand post-alpha, and
τb = 0.3, p = 0.0004 for hand post-beta to hand post-alpha). For

the tennis condition, the significant correlations were τb = 0.22,
p = 0.047 for pre beta to pre alpha and τb = 0.25, p = 0.009 for
post-beta to pre alpha.

DISCUSSION

The aim of this work was to re-evaluate data from a previous
study focusing on intra- and inter-individual differences in the
observed brain patterns of the individuals. More concretely, we
investigated ERD/S patterns during sports motor imagery and
discovered high variability among the subjects. By taking into
account the ERD/S patterns at the level of all the six ROIs,
we assessed the dissimilarity between these patterns by means
of distances. The subject-specific ERD/S values for each ROI
(Figure 2) shows that some subjects elicit similar ERD/S values
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throughout the conditions and time points. However, we found
very different ERD/S values among subjects in the EG. For
example, subject EG3 shows a strong negative ERD/S value
at the level of ROI3 and ROI5 in both hand and tennis pre
conditions for both alpha and beta frequencies. These values
slightly increase but remain negative for all the conditions
and frequencies in the post-intervention period. Contrarily,
another subject (EG14) presents positive ERD/S values over all
conditions. Similar observations have been found in the control
group, for example, subject CG3 compared with subject CG12.
Moreover, we observed that the ERD/S values for the beta
frequency show less variability within and among the subjects
for either group compared with the alpha frequency band which
was also observed in the study by Haegens et al. (2014). This
variability was further assessed in the ERD/S values at the group
level. For both conditions, hand and tennis, the distribution of
ERD/S values shows larger variability in the alpha band than in
the beta band throughout the ROIs (Figures 3A,B). Moreover, we
observed that in the EG, some subjects show large positive ERD/S
values in the alpha band in the pre-intervention period indicating
a strong variability among this sample of participants. Especially
for MI of tennis, the ERD/S patterns before the intervention
phase show a high distribution across frequency bands and ROIs
(Figure 3B). Based on these results, it is somehow speculative
to attribute any activity changes particularly to the intervention.
Beside some outliers, the variability in the beta band is quite low
for all conditions and groups.

The results of inter-individual differences in terms of distance
measures between subject-specific ERD/S patterns show again
more differences for the alpha compared with the beta band.
In the alpha band (Figure 4A), we observed some clustering in
the ranking of the subjects, therefore showing smaller distances
than others. Furthermore, a consistency in ranking across time
periods both for the EG and for the control group exists. For
the control group, we also observed similar rankings across
conditions. In the beta band (Figure 4B), the ranking of the
subjects was more similar for the EG across conditions and time
periods than for the subjects of the control group. Moreover,
the range of the variability was larger for the alpha band than
for the beta band. In other words, when assessing the distance
between a pair of subjects in terms of the ERD/S values in the
alpha band, we can find subjects that show strong (dis)similarities
with others, whereas in the beta band the magnitude of these
(dis)similarities is more contained. A better visualization of the
relationship between the ERD/S magnitudes of different subjects
is illustrated in the MDS plots (Figures 5A,B). In the alpha band,
we observe that some subjects remain consistent in their ranking
with respect to others across conditions and time periods. For
example, in the EG subjects 8, 12, and 13 maintain their similarity
across conditions and time periods. For the beta band, we also
observed that some subjects cluster together, for example, for the
EG, subjects 12 and 13 are close in their rankings both across
conditions and time periods, and also across frequency bands, as
we have seen in Figure 5A. For the control group, we observed
a different ranking of the subjects between conditions and time
periods compared with the consistency in ranking found in the
alpha band (Figure 6).

Haegens et al. (2014) reported similar findings of inter-
subject variability in posterior alpha peak frequency by means
of magnetoencephalography. They investigated how alpha peak
frequency differed across cognitive conditions and ROIs within
and between subjects with an N-back paradigm. Compared
with beta peak frequencies, the alpha peak frequency in
posterior regions increases with increasing cognitive demands
and engagement. Furthermore, they showed that it is also valid
across a wider frequency range than the commonly used 8–12 Hz
band. This should be taken into account when comparing power
values between different conditions. Moreover, they claimed
that using a fixed alpha band might bias results against certain
subjects and conditions. Even though many researchers observed
that individual differences in brain oscillations predict certain
cognitive performance (Klimesch et al., 1990a; Park et al.,
2014; Jiang et al., 2015), further research considering individual
oscillatory (dis)similarity is essential for a better understanding
of its correlation. The variability in alpha power plays also an
important role in studies investigating the resting state, especially
in fMRI experiments (Laufs et al., 2003; Moosmann et al.,
2003; Gonçalves et al., 2006). For example, Gonçalves et al.
(2006) performed a simultaneous recording of EEG-fMRI to
identify blood oxygenation level–dependent changes associated
with spontaneous variations of the alpha rhythm, which is an
indicator of the brain resting state (Goldman et al., 2002). Their
analysis was focused on inter-subject variability associated with
the resting state. Results suggest that the resting state varies over
subjects and, sometimes, even within one subject. Following this,
they suggested that the inter-subject variability of the resting state
should be addressed when comparing fMRI results from different
subjects. Although there is evidence that brain network structure
differs between persons (Chu et al., 2012; Cox et al., 2018), the
contribution of different frequency bands and oscillatory activity
is still unknown and needs further fine-grained characterization.

Another study revealed anatomical structure of the premotor-
parietal network to be an effective factor contributing to
inter-individual differences in brain activation (Kasahara et al.,
2015). They found that MI related patterns are associated
with development of non-primary somatosensory and motor
areas. In their study, they found that gray matter volume
in motor-related cortical areas like the supplementary motor
area (SMA) and the dorsal premotor cortex (PMd) correlated
with BCI success rate. These areas are well-known as the
substrates of motor imagery and planning (Hanakawa et al.,
2003, 2008). Participants with greater gray matter volume
in the SMA, SSA, and pre-PMd are more likely to show
the desired brain activity during motor imagery to increase
BCI performance. Advancing our understanding of BCI
performance in relation to its neuroanatomical correlates may
lead to better customization of BCIs based on individual
brain structure.

Finally, the outcome of this variability analysis brings us
to the following suggestions for future studies: especially in
the application of motor imagery paradigms for EEG-based
BCI systems, a user-centered measurement design might be
beneficial. Beside the investigation of subject-specific motor-
related oscillations (ERD or ERS), demographic and individual
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features of the participants might be relevant. For example, like
we observed in our study (Wriessnegger et al., 2018), participants
which are used to playing tennis frequently show different ERD/S
patterns in the alpha band compared with participants being
less sportive. Previous studies already reported different factors
influencing BCI performance (Blankertz et al., 2010; Kübler et al.,
2011; Jeunet et al., 2016); nevertheless, attention should also
be paid to special sports, skills, or habits that the participant
might have. Moreover, a pre-investigation of the subject-specific
patterns during a certain training or intervention might be
important for every future study focusing on neural correlates of
motor imagery, especially when comparing experts and novices
in a special cognitive task or sports performance. Generally, more
attention should be paid to the composition of the sample of
participants and a standard analysis of variability should always
be included in the usual mean value analysis. In any case, the
calculation of average parameters alone might lead to an over-
or underestimation of the suspected neuronal activation patterns
during motor imagery performances.

Because ERD measures are conventionally analyzed within
fixed frequency bands, inter-individual differences like those we
have observed in our study often occur. This means that an inter-
individual difference of about 1–2 Hz is quite a common case
(Klimesch, 1997). These inter-individual differences in the alpha
band are primarily due to differences in memory performance
(Klimesch et al., 1990b, 1993). By calculating ERD in the alpha
band (Pfurtscheller and Aranibar, 1977) significant parts of alpha
power will fall outside of a fixed frequency window and elicited
large inter-individual variability.

To solve this problem, one can adjust the frequency bands
to the individual alpha frequency (IAF) for each participant and
calculate the bandwidth for the alpha frequency as a percentage
of IAF (Doppelmayr et al., 1998; Goljahani et al., 2012; Grandy
et al., 2013).

CONCLUSION

Many authors often reported observing high inter- and intra-
individual differences in brain activity among subjects but
without paying much attention to it. This fact and the observation
of great variability in the data of our previous study led us
to perform additional (dis)similarities analysis. By calculating
different distribution measurements of distances, we confirmed
a high variability among participants during motor imagery
primarily in the alpha frequency band. More concretely, when

assessing the distance between a pair of subjects in terms
of the ERD/S values in the alpha band, some subjects show
strong (dis)similarities with others, whereas in the beta band the
magnitude of these (dis)similarities is more contained. Moreover,
we can observe that for some subjects, the within-subject ERD/S
values remain similar throughout the conditions and time points;
however, among subjects these values are very different. Although
we identified a high variability among subjects during MI, the
extent to which these inter-individual differences are a reliable
indicator of the heterogeneity of a group needs to be further
assessed in a longitudinal study involving further participants.
In conclusion, we believe that metrics of intra- and inter-
individual differences should be more frequently reported in
BCI studies. These metrics could inform the development of
generic BCI systems that target the adaptation among multiple
users and sessions.
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