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OBJECTIVES: Sepsis and septic shock are leading causes of in-hospital mor-
tality. Timely treatment is crucial in improving patient outcome, yet treatment delays 
remain common. Early prediction of those patients with sepsis who will progress 
to its most severe form, septic shock, can increase the actionable window for 
interventions. We aim to extend a time-evolving risk score, previously developed in 
adult patients, to predict pediatric sepsis patients who are likely to develop septic 
shock before its onset, and to determine whether or not these risk scores stratify 
into groups with distinct temporal evolution once this prediction is made.

DESIGN: Retrospective cohort study.

SETTING: Academic medical center from July 1, 2016, to December 11, 2020.

PATIENTS: Six-thousand one-hundred sixty-one patients under 18 admitted to 
the Johns Hopkins Hospital PICU.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We trained risk models to predict 
impending transition into septic shock and compute time-evolving risk scores repre-
sentative of a patient’s probability of developing septic shock. We obtain early pre-
diction performance of 0.90 area under the receiver operating curve, 43% overall 
positive predictive value, patient-specific positive predictive value as high as 62%, 
and an 8.9-hour median early warning time using Sepsis-3 labels based on age-
adjusted Sequential Organ Failure Assessment score. Using spectral clustering, we 
stratified pediatric sepsis patients into two clusters differing in septic shock preva-
lence, mortality, and proportion of patients adequately fluid resuscitated.

CONCLUSIONS: We demonstrate the applicability of our methodology for early pre-
diction and stratification for risk of septic shock in pediatric sepsis patients. Through 
analyses of risk score evolution over time, we corroborate our past finding of an abrupt 
transition preceding onset of septic shock in children and are able to stratify pediatric 
sepsis patients using their risk score trajectories into low and high-risk categories.

KEY WORDS: cluster analysis; electronic health records; intensive care units, 
pediatric; machine learning; sepsis; shock, septic

Sepsis and septic shock are leading causes of in-hospital mortality for both 
adults and children worldwide (1, 2). Kumar et al (3) showed in adult 
septic shock patients that every hour of delayed treatment is associated 

with an 8% increase in mortality. Weiss et al (4) found this same association in 
pediatric patients, and that treatment delays remain common.

The Third International Consensus Definitions for Sepsis and Septic Shock 
(Sepsis-3) (5) reflect the most recent understanding of adult sepsis as organ dysfunc-
tion caused by dysregulated immune response to infection. However, consensus 
definitions for pediatric sepsis were last updated in 2005 (6) and closely modeled 
the adult Sepsis-2 definitions (7). Recently, individual groups have proposed age-
adjusted Sepsis-3 criteria for children (8–10), and an international expert group 
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published new guidelines for the treatment of pediatric 
septic shock and its associated organ dysfunction (11).

Several computational approaches for early predic-
tion of sepsis and septic shock using electronic health 
record (EHR) data have been developed with the aim 
of reducing treatment delays in adults (12–15). We 
predicted impending transition from sepsis to septic 
shock based on the hypothesis that there exists a phys-
iologically distinct state of sepsis, which we termed 
“preshock,” and that entry into this state presages the 
onset of septic shock (13, 15). Through analyses of the 
temporal evolution of patient state, we stratified adult 
sepsis patients by outcomes and interventions received 
and discovered that entry into preshock was marked 
by a rapid shift in both patient physiology and risk 
occurring within a 30–60 minutes timeframe (16).

In this study, we evaluated age-adjusted Sepsis-3 cri-
teria and applied our previously published method for 
early prediction of septic shock to patients admitted 
to an academic, quaternary center PICU. We corrobo-
rated our past finding of an abrupt transition preced-
ing septic shock onset in children and stratified sepsis 
patients using their risk score trajectories into low- and 
high-risk categories.

METHODS

Study Population

We conducted a retrospective observational cohort 
study of all patients admitted to the Johns Hopkins PICU 
beginning July 1, 2016, discharged before December 
11, 2020. Patients 18 years old and older were excluded. 
The Johns Hopkins Medicine Institutional Review 
Board approved the study (Protocol IRB00258534) 
with a waiver of consent. We also present results on the 
publicly available pediatric intensive care (PIC) dataset 
(17), containing EHR data from patients admitted to 
ICUs at the Children’s Hospital, Zhejiang University 
School of Medicine, between 2010 and 2018 (Results 
in an Independent Cohort, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647).

Data Extraction and Processing

Raw data were sourced from an EHR data report and 
included patient demographics, encounter diagnosis 
codes, admit-discharge-transfer codes (with patient 
room/bed assignments), provider-entered flowsheets 
(which included nurse-validated vitals and respiratory 

therapist-validated ventilator settings and measure-
ments), a subset of laboratory results, medication or-
ders, and medication administrations. Missing values 
were imputed using a Bayesian structural time series 
model (18, 19) trained for each feature.

Labeling Clinical States

Suspected infection was determined using the presence 
of concomitant orders for antibiotics and blood cultures, 
as specified by Seymour et al (20). Comorbidities (Table 
S1, Supplemental Digital Content 1, http://links.lww.com/
CCX/A647) were computed according to the Pediatric 
Complex Chronic Condition Classification (21, 22). Labels 
were reevaluated at each new observation of clinical data, 
and if no prior observations of a feature were available, the 
patient was assumed to be within normal ranges.

According to the Goldstein consensus criteria (6), 
sepsis is defined as suspected infection and two or 
more age-adjusted systemic inflammatory response 
syndrome (SIRS) criteria (Labeling Clinical States, 
Table S2, Supplemental Digital Content 1, http://links.
lww.com/CCX/A647). Septic shock is defined as sepsis 
with cardiovascular dysfunction.

According to the Sepsis-3 criteria, sepsis is defined as 
organ dysfunction consequent to suspected infection. 
We determine organ dysfunction as a 2-point rise in age-
adjusted Sequential Organ Failure Assessment (SOFA) 
score, as defined by Matics et al (9) by using Pediatric 
Logistic Organ Dysfunction-2 (PELOD-2) (23) cut 
offs for mean arterial pressure (MAP) and creatinine, 
respectively (Table S3, Supplemental Digital Content 
1, http://links.lww.com/CCX/A647), and by a 2-point 
rise or a 6-point rise in PELOD-2 (23). Septic shock 
patients are sepsis patients adequately fluid resuscitated, 
administered vasopressors, and exhibiting serum lactate 
greater than 2 mmol/L. Fluid resuscitation was deter-
mined using the 2020 Surviving Sepsis Campaign (SSC) 
pediatric guidelines (11), defined as 40 mL/kg of fluids 
in a 3-hour window, or having attained the resuscitation 
target of MAP at the fifth percentile or higher for age, 
estimated as 1.5 × age in years + 40 mm Hg (24).

Risk Modeling and Prediction

Risk models were built as previously described, using 26 
features extracted from EHR data (13). MAP and heart 
rate were normalized to percentile values by age (24, 25). 
In order to characterize the preshock state, XGBoost and 
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generalized linear models (GLMs) were trained using 
data from sepsis in patients who do not develop septic 
shock and from a time window spanning 100 minutes 
prior to septic shock onset to 1 minute prior in septic 
shock patients. Lasso regularization was used for fea-
ture selection in GLM. We also compared the use of Cox 
proportional hazards modeling (26) to compute the risk 
score, as well as the use of age-adjusted SOFA score alone.

All four scores (XGBoost, GLM, Cox, SOFA) were cal-
culated at each time where there are EHR data. Prediction 
of impending septic shock occurs when a patient’s risk 
score first exceeds a threshold value, determined from 
training data as the threshold (for a given model) cor-
responding to the point on the receiver operating char-
acteristic (ROC) curve closest to the top left. One result 
is generated per hospital admission: a true positive is a 
patient who develops septic shock and whose risk score 
exceeds the threshold prior to septic shock onset; a true 
negative is a patient who never develops septic shock and 
whose risk score always remains below the threshold. 
Early warning time (EWT) is defined as the difference 
between the time when the risk score crosses threshold 
and time of septic shock onset. CIs for performance cri-
teria were estimated using bootstrap, for 100 iterations: 
bootstrapped datasets were generated by sampling hos-
pital admissions with replacement.

Stratification of Sepsis Patients

Stratification of sepsis patients by risk score trajecto-
ries was performed as previously described and is a 
separate analysis from early prediction (16). Risk score 

trajectories for each patient were computed by apply-
ing the XGBoost model at each of the 12 hours fol-
lowing time of threshold crossing. Spectral clustering 
was applied to stratify patients into clusters with sim-
ilar risk trajectories following early prediction (27, 28) 
(Spectral Clustering, Supplemental Digital Content 1, 
http://links.lww.com/CCX/A647).

RESULTS

The dataset contains EHR data from 6,560 distinct 
patients and 9,330 hospital admissions. Excluding 
patients 18 years old and older yields our analysis set 
of 6,161 patients and 8,630 hospital admissions, with 
overall sepsis prevalence of 17.58%, as determined by 
age-adjusted Sepsis-3 criteria (Table 1) (8, 9). Availability 
of data and central tendency measures are given in 
Table S4 (Supplemental Digital Content 1, http://links.
lww.com/CCX/A647) and Table S5 (Supplemental 
Digital Content 1, http://links.lww.com/CCX/A647). 
Data entries are comprised of timestamp-value pairs, 
with identifier (ID) numbers for patients, hospital 
admissions, and PICU stays, as well as an ID indicat-
ing the feature associated with each value (Table S6,  
S12, and S13, Supplemental Digital Content 1, http://
links.lww.com/CCX/A647). Seventy percent of patients 
were uniformly sampled into the training set, and the 
remaining 30% reserved for testing.

Baseline Statistics

We applied four sets of diagnostic criteria for distin-
guishing sepsis and septic shock: the 2005 Goldstein 

TABLE 1. 
Baseline Statistics of the Dataset

Most Severe Clinical  
State Reached No Sepsis

Sepsis Without  
Septic Shock

Sepsis Leading to  
Septic Shock Overall

Admissions, n (%) 7,113 (82.42) 1,203 (13.94) 314 (3.64) 8,630 (100)

Patients, n (%) 4,921 (79.87) 938 (15.22) 302 (4.90) 6,161 (100)

PICU stays, n (%) 7,487 (78.74) 1,522 (16.01) 500 (5.26) 9,509 (100)

In-hospital mortality, n (%) 61 (0.86) 51 (4.24) 74 (23.57) 186 (2.16)

Gender, % 55.76 male, 
44.24 female

55.78 male, 
44.22 female

54.14 male, 
45.86 female

55.70 male, 
44.30 female

Median ICU stay length,  
d (interquartile range)

1.55 
(0.90–2.91)

5.90 
(2.47–15.45)

12.09 
(3.59–33.46)

1.80 
(0.95–3.91)

Mean age, yr (sd) 6.44 (5.73) 4.12 (5.39) 4.27 (5.80) 6.04 (5.75)

Sepsis cohorts are determined using age-adjusted Sequential Organ Failure Assessment score.
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consensus criteria (6) and three others evaluated by 
Schlapbach et al (8). Using these labels, we computed 
the prevalence and mortality of each cohort (Table 2). 
Depending on the criteria, sepsis prevalence varies 
between 7.65% and 26.02%, and septic shock preva-
lence ranges from 2.32% to 17.80%. We find that sepsis 
patients labeled using age-adjusted Sepsis-3 criteria have 
greater mortality than those labeled using the Goldstein 
criteria. When using age-adjusted SOFA scores to de-
termine clinical state labels, mortality in both sepsis 
cohorts (sepsis without shock and septic shock patients) 
is higher than in the corresponding cohort determined 
using the SIRS-based Goldstein criteria. Defining 
organ dysfunction by an increase of 6 points or greater 
in PELOD-2 score results in the lowest prevalence of 
sepsis and the highest mortality in both sepsis cohorts. 
The Goldstein criteria result in the highest prevalence 
of sepsis but the lowest mortality in both sepsis cohorts.

Early Prediction of Septic Shock

Figure 1 shows risk score trajectories using XGBoost 
(29) from patients with sepsis who do (Fig. 1A) and do 
not (Fig. 1B) develop septic shock. The risk score of the 
patient who does not develop shock remains below the 
threshold, whereas the patient who ultimately develops 
shock has a risk score which rapidly increases above 
the threshold in advance of septic shock onset.

Early prediction of septic shock was evaluated for two 
machine learning methods, GLM (30) and XGBoost 
(29). Figure 2 shows the ROC curves, precision-recall 

curves, and performance metrics using age-adjusted 
SOFA scores for labels. Figure S6 (Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647) shows the 
calibration curves for these two models. We evaluated 
early prediction using all clinical criteria and found that 
best performance was obtained with labels using age-
adjusted SOFA scores (Fig. S1, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647). In the 
held-out test set, XGBoost yields greatest performance 
of 0.90 area under the ROC curve (AUC), compared 
with 0.87 with GLM, 0.82 with the Cox proportional 
hazards model, and 0.72 with SOFA score (Table S7, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A647). With XGBoost, the threshold chosen 
yields a median EWT of 8.9 hours and 43% average pos-
itive predictive value (PPV) (77 true positives, 98 false 
positives, 481 true negatives, 13 false negatives). Feature 
importance is given in Table S8 (Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647). Early pre-
diction using both XGBoost and GLM risk scores yields 
greater performance than a Cox proportional hazards 
model, and all three models yield greater performance 
than SOFA score alone. Applying fitted models to the 
external dataset obtained from PIC, we obtain moderate 
performance in early prediction of septic shock in an 
independent cohort (Fig. 3). In this dataset, XGBoost 
also yields the greatest performance (Table S14, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A647), with 0.82 AUC, 48 hours median EWT, 
and 22% overall PPV (280 true positives, 989 false posi-
tives, 2438 true negatives, 72 false negatives).

TABLE 2. 
Comparison of Diagnostic Criteria

Criteria Nonsepsis, n (%) Sepsis Without Shock, n (%) Septic Shock, n (%)

Goldstein 6,385 (73.99) 709 (8.22) 1,536 (17.80)

50 (0.78) 8 (1.13) 128 (8.33)

Age-adjusted Sequential 
Organ Failure Assessment

7,113 (82.42) 1,203 (13.94) 314 (3.64)

61 (0.86) 51 (4.24) 74 (23.57)

PELOD-2 (2 points) 6,480 (75.09) 1,777 (20.59) 373 (4.32)

50 (0.77) 58 (3.26) 78 (20.91)

PELOD-2 (6 points) 7,970 (92.35) 460 (5.33) 200 (2.32)

77 (0.97) 43 (9.35) 66 (33.00)

PELOD, Pediatric Logistic Organ Dysfunction.
Hospital admission counts and proportion of all admissions represented by each cohort in parentheses. Counts for age-adjusted Se-
quential Organ Failure Assessment correspond to the admission counts given in Table 1. Hospital admission counts ending in mortality 
are given in bold, with the proportion of all admissions within each cohort ending in mortality in parentheses.
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Figure 1. Example risk trajectories for (A) a patient who developed septic shock and (B) a nonshock sepsis patient. Threshold for 
early prediction is indicated by the red horizontal line (with a value of 0.715), and time of septic shock onset is indicated by the blue 
vertical line.

Figure 2. Performance of early prediction of septic shock in pediatric patients: (A) receiver operating characteristic (ROC) curves and 
90% CIs, (B) precision-recall curves and 90% CIs, (C) area under the ROC curve (AUC), positive predictive value (PPV), sensitivity 
(sens), and specificity (spec), (D) early warning time (EWT) for generalized linear model (GLM), XGBoost, Cox, and Sequential Organ 
Failure Assessment (SOFA) score, with box plots indicating minimum, maximum, median, and first and third quartiles.
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Stratification of Sepsis Patients

As previously described (13), our approach to early 
prediction allows calculation of a patient-specific PPV 
based on the first value of risk score that exceeds the 
threshold. These values were binned into quintiles, 
and PPV was computed for patients in each bin, esti-
mating the probability that a prediction of impending 
septic shock onset for a patient whose risk score falls 
into the specified range is a true positive (Table S9, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A647). In higher quintiles, the likelihood that 
predictions are true positives is greater than in lower 
quintiles, with PPV as high as 62%.

We repeated our analyses of risk score trajectories 
for stratification of sepsis patients (16). Spectral clus-
tering (27) of risk score trajectories in the window sur-
rounding early prediction yielded two clusters (Fig. 
4) (Fig. S2, Supplemental Digital Content 1, http://

links.lww.com/CCX/A647). Patient risk trajectories 
are indistinguishable before time of early prediction. 
Risk scores increase abruptly at the time of threshold 
crossing for all patients, and clusters diverge subse-
quently. Separation between the two clusters is quanti-
fied by Kullback-Leibler (KL) divergence (31) in each 
time window (Fig. S3, Supplemental Digital Content 
1, http://links.lww.com/CCX/A647). KL divergence 
quantifies the separation between two probability dis-
tributions: two identical (and thus indistinguishable) 
distributions will have a KL divergence of 0, and a pair 
of distributions which have a greater degree of overlap 
will have a lower KL divergence than a pair of distri-
butions with less overlap. The evolution of lactate and 
Glasgow Coma Scale (GCS) (Fig. S4, Supplemental 
Digital Content 1, http://links.lww.com/CCX/A647), 
two important physiologic features in the risk mod-
els (Table S8, Supplemental Digital Content 1, http://
links.lww.com/CCX/A647), are similar to that of risk 

Figure 3. Performance of early prediction of septic shock in the pediatric intensive care dataset: (A) receiver operating characteristic 
(ROC) curves and 90% CIs, (B) precision-recall curves and 90% CIs, (C) area under the ROC curve (AUC), positive predictive value 
(PPV), sensitivity (sens), and specificity (spec), (D) early warning time (EWT) for generalized linear model (GLM), XGBoost, Cox, and 
Sequential Organ Failure Assessment (SOFA) score with box plots indicating minimum, maximum, median, and first and third quartiles.
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score, with increasing divergence between risk clusters 
following threshold crossing. Clusters stratify by prev-
alence of septic shock, mortality, and the proportion 
of patients who are adequately fluid resuscitated prior 
to time of early warning (Table S10, Supplemental 
Digital Content 1, http://links.lww.com/CCX/A647).

DISCUSSION

Pediatric Sepsis Criteria

The shortcomings of SIRS-based criteria for sepsis 
are well-known. SIRS (Table S2, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647) is not 
specific for infection, and over 90% of adult intensive 
care patients meet the criteria for SIRS (32–34). The 
Sepsis-3 criteria for adults redefined sepsis as infec-
tion resulting in organ dysfunction, determined by 
an increase of at least 2 points in SOFA score (35, 36). 
Consequently, there has been strong interest in rede-
fining pediatric sepsis on the basis of organ dysfunc-
tion. Leclerc et al (10) suggested the use of PELOD-2 
scores in children with suspected infection, and Matics 
et al (9) suggested an age-adjusted SOFA score (Table 
S3, Supplemental Digital Content 1, http://links.lww.
com/CCX/A647). Pediatric Sepsis-3 criteria based on 
age-adjusted SOFA score or PELOD-2 produce labels 
which result in greater performance in early predic-
tion than the SIRS-based Goldstein criteria (Fig. S1, 
Supplemental Digital Content 1, http://links.lww.
com/CCX/A647), indicating that those criteria yield 

clinical states which are more physiologically distinct. 
Furthermore, we corroborate the findings of other 
groups that age-adjusted SOFA and PELOD-2 have 
greater validity in stratifying patients by metrics of di-
sease severity than the SIRS-based Goldstein criteria 
(Fig. S5, Supplemental Digital Content 1, http://links.
lww.com/CCX/A647) (8).

Prediction Method

As in adults, the goal of early prediction in children is to 
provide clinicians with a time window of intervention, en-
abling more timely treatment and possibly preventing de-
velopment of shock. Model performance using XGBoost 
(29) is higher than in our prior study of adult patients and 
is higher than that using GLM (30). XGBoost uses gra-
dient boosting of decision trees and can learn nonlinear 
associations between features and risk. This likely yields 
its improved performance compared with GLM, a find-
ing also consistent with our previous results.

In our previous work, we introduced the notion of 
patient-specific PPV, where patient risk scores are strat-
ified based on the first postthreshold crossing value of 
risk (13). Because this study contains fewer patients 
than MIMIC-III and eICU (6,161 vs 38,418 vs 139,367), 
and the prevalence of sepsis and septic shock is lower 
in children, we stratified positive predictions into quin-
tiles, rather than deciles. However, we demonstrate 
that our method for estimating the reliability of a pos-
itive prediction remains applicable in pediatric sepsis 
patients. Ultimately, we envision the application of this 
methodology in a prospective, real-time setting, where 
clinicians are privy to the predictions generated by the 
model, as well as patient-specific PPVs. This enables cli-
nicians to act only on highly reliable predictions or to 
take different courses of action informed with the likeli-
hood that a patient will develop septic shock. The goal is 
to give clinicians information that is novel, rather than 
merely to confirm what may already be apparent (37). 
Inquiry into how clinicians incorporate information 
from risk scores into clinical decision-making is needed. 
We suspect that if a clinician with a low suspicion of 
septic shock is presented with a low risk score, they may 
be more confident in not administering additional flu-
ids or vasopressors. Conversely, if the risk score is high, 
and the clinician concurs that the patient is at high risk, 
then earlier administration of fluids and vasopressors 
may potentially mitigate sepsis-related morbidity.

Figure 4. Results of spectral clustering applied to risk score 
trajectories that cross the threshold for early prediction (black 
horizontal line). Solid lines indicate mean risk scores within each 
cluster, whereas the shaded areas indicate an interval of 1 sd from 
the mean.
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Stratification of Patients

Previously, we found that entry into preshock was 
marked by a rapid transition from low to high risk. 
Prior to entry, patient physiology was indistinguish-
able between the low- and high-risk clusters (16). 
However, after entry into preshock, risk score trajec-
tories diverged and stratified patients by risk of septic 
shock, mortality, time to septic shock onset, and treat-
ments received. We confirm our past finding that very 
rapid transitions in risk score occur in pediatric as well 
as adult sepsis patients, with changes in physiology re-
flecting changes in risk score (Fig. S4, Supplemental 
Digital Content 1, http://links.lww.com/CCX/A647), 
and that risk score trajectories can stratify pediatric 
sepsis patients by risk of septic shock, mortality, and 
the proportion of patients adequately fluid resuscitated 
at time of threshold crossing.

We found no statistically significant difference 
in EWT or the proportion of patients treated with 
vasopressors prior to entry into preshock (Table S10, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A647). Pediatric patients in our single-center 
study may be more homogenous and receive more uni-
form care than adult patients in the eICU dataset, who 
may be admitted with more confounding conditions 
and may receive different treatments across hundreds of 
different hospitals. Nonetheless, these findings support 
our postulation of the preshock state and that entry into 
septic shock is extremely rapid in both adult and pedi-
atric sepsis patients. The rapid nature of the transition 
further indicates the necessity of automated methods 
for the detection and prediction of septic shock.

Risk score is computed using physiologic variables, 
and thus, the evolution of these variables leads to dy-
namic variations in risk score. However, the discern-
able magnitude of changes in physiologic variables 
upon entry into the preshock state is smaller than in 
risk score itself, as quantified by KL divergence (Fig. 
S3, Supplemental Digital Content 1, http://links.
lww.com/CCX/A647). Entry into the preshock state 
is often reflected by a change in many physiologic 
variables rather than a single variable, and thus, this 
shift in patient state is best captured by risk score. We 
choose spectral clustering (27, 28) in order to cluster 
the time series data. Spectral clustering identifies clus-
ters such that distance between members of the same 
cluster is minimized. This methodology can produce 

clusters with nonlinear decision boundaries and has 
good empirical performance on a variety of data (38).

Model Interpretation

It is possible to determine the importance of fea-
tures in both XGBoost and GLM models (Table S8, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A647). For XGBoost, gain is the normalized av-
erage increase in performance resulting from the addi-
tion of a feature. Coverage is the normalized frequency 
at which decision tree nodes which split on a feature 
are reached. Frequency is the normalized proportion 
of decision trees where features appear. Exponentiated 
GLM coefficients can be interpreted as odds ratios. 
For example, the exponentiated coefficient of lactate 
is 5.80. Therefore, a patient with serum lactate 1 sd 
above the population mean is over five times as likely 
to develop septic shock as a patient with average serum 
lactate.

Both models share their top three features: lactate, 
respiratory SOFA, and GCS. Lactate is the most impor-
tant feature in both models, as was true in our previous 
study. These findings align with literature on sepsis 
pathophysiology. Elevated serum lactate indicates 
reduced tissue perfusion and predicts mortality in 
patients with infections (39, 40). Increased respiratory 
SOFA is associated with respiratory dysfunction (35). 
GCS is associated with neurologic function, known to 
be affected in pediatric sepsis (41, 42).

Limitations

We algorithmically determine clinical labels according 
to proposed pediatric Sepsis-3 definitions. Therefore, 
limitations of these labels are also limitations of the 
study. For example, the Infectious Disease Society of 
America notes that determining septic shock using ad-
equate fluid resuscitation as part of the criteria results 
in ambiguity and disagreement on time of onset (43). 
Deutschman (44) remarks that the Sepsis-3 criteria 
may not encompass the entire pathophysiology of 
sepsis, which may become life-threatening through 
mechanisms other than organ dysfunction. These lim-
itations would persist in our analysis of age-adjusted 
Sepsis-3 in pediatric sepsis patients.

Availability and frequency of EHR data influence 
the accuracy of our labels and predictions. This is par-
ticularly important in the PIC dataset, where median 
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time between observations for most features is 24 hours 
(Tables S10 and S11, Supplemental Digital Content 1,  
http://links.lww.com/CCX/A647). Furthermore, GCS, 
a component of both SOFA and PELOD-2, is una-
vailable in PIC, potentially resulting in cases of neu-
rologic organ dysfunction uncaptured by the labeling 
criteria. Central venous pressure is also unavailable in 
PIC. Sparsity of data is a major cause of degraded per-
formance in the PIC dataset although it is not possible 
to determine whether this is because observations were 
infrequently made or simply because entry of data into 
the EHR occurred infrequently. Practices regarding the 
frequency of tests and data entry vary between different 
centers of care. However, more frequent measurements, 
particularly of features with high predictive value, may 
yield not only improved model performance but also be 
of general clinical value: Vincent et al (45) suggest that 
lactate should be measured once every 1–2 hours, and 
the 2018 SSC update for adults (46) adopts the recom-
mendation of a lactate measurement in the first hour for 
sepsis patients.

Some features are also not measured in many 
patients in both the Johns Hopkins and PIC datasets. 
Lactate, which is the most important feature in both 
the GLM and XGBoost risk models, is only measured 
in 37% of patients (Table S4, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A647). Agniel 
et al (47) showed that the presence and timing of or-
ders for laboratory tests, independent of test results, 
was associated with mortality. This would be a poten-
tial source of bias in measured laboratory values and 
affect our computed relative importance of features.

Last, our dataset is limited to patients from a single 
center of care. Due to manifold deficiencies in the PIC 
dataset, we do not consider that results obtained therein 
meet the standard of external validation. However, 
at present, there are no other publicly available PIC 
datasets that can be used for this purpose. Although 
we corroborate the findings of other research groups 
in other cohorts of patients and achieve moderate per-
formance in an independent cohort, greater validity 
could be achieved via a multicenter analysis encom-
passing a greater number of patients treated within di-
verse settings.
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