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Abstract: Humanity stands at a pivotal moment of technological revolution, with artificial
intelligence (Al) reshaping fields traditionally reliant on human cognitive abilities. This
transition, driven by advancements in artificial neural networks, has transformed data pro-
cessing and evaluation, creating opportunities for addressing complex and time-consuming
tasks with Al solutions. Convolutional networks (CNNs) and the adoption of GPU technol-
ogy have already revolutionized image recognition by enhancing computational efficiency
and accuracy. In radiology, Al applications are particularly valuable for tasks involving pat-
tern detection and classification; for example, Al tools have enhanced diagnostic accuracy
and efficiency in detecting abnormalities across imaging modalities through automated
feature extraction. Our analysis reveals that neuroimaging and chest imaging, as well
as CT and MRI modalities, are the primary focus areas for Al products, reflecting their
high clinical demand and complexity. Al tools are also used to target high-prevalence
diseases, such as lung cancer, stroke, and breast cancer, underscoring Al’s alignment with
impactful diagnostic needs. The regulatory landscape is a critical factor in Al product
development, with the majority of products certified under the Medical Device Directive
(MDD) and Medical Device Regulation (MDR) in Class Ila or Class I categories, indicating
compliance with moderate-risk standards. A rapid increase in Al product development
from 2017 to 2020, peaking in 2020 and followed by recent stabilization and saturation,
was identified. In this work, the authors review the advancements in Al-based imaging
applications, underscoring Al’s transformative potential for enhanced diagnostic support
and focusing on the critical role of CNNs, regulatory challenges, and potential threats to
human labor in the field of diagnostic imaging.

Keywords: radiology; artificial intelligence; regulatory systems; Al applications; job threat

1. Introduction

Humanity currently stands at the threshold of a technological revolution, in which
the application of decision-making systems based on microprocessors represents a trans-
formation on par with the invention of the wheel or the harnessing of fire [1-3]. The
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ability to transfer decision-making processes concerning the interpretation and outcomes
of human-related data—traditionally reserved for the human brain—to artificial neural
network systems marks a profound shift [4-6], representing a significant breakthrough in
data processing and evaluation methods [7].

Decision-making in semiconductor-based neural networks is, to some extent, deter-
mined by humans as the problem-solving approach relies on patterns within the training
data [8,9]. It is worth noting that deeper, multilayered networks have the capacity to
develop autonomous decision pathways, gradually constructed based on their own itera-
tive experiences through exposure to input data [10,11]; this process can be opaque, often
resulting in solutions that surpass human intuition, as illustrated in the notable example
of Al algorithms outperforming humans in the game of Go [12]. Given these capabilities,
Al not only offers solutions to repetitive and time-intensive tasks but also presents novel
approaches to long-standing problems, a potential that explains Al’s extensive applications
in medicine [13].

Al applications are apparent in fields such as materials biology, biochemistry, and
genetics where multidimensional data analysis leads to breakthroughs in creating unique
structures and compounds valuable for biomaterials and pharmaceuticals [14]. Al’s utility
is particularly evident in diagnostic imaging where physicians engage in the detection and
classification of patterns; these tasks are time-consuming for specialized medical profes-
sionals and, due to the repetitive nature of pattern recognition, are prime candidates for
Al-powered decision systems [15,16]. Consequently, developing such systems has become a
priority within the scientific community, as reflected in the increasing number of algorithms
aimed at detecting various anomalies in medical images [17,18]; these algorithms primarily
rely on convolutional neural network architectures trained on specific image patterns [19].

The vast diversity in data encountered in modern imaging diagnostics presents sub-
stantial challenges. Algorithms must be tailored to specific tissues, organs, and imaging
modalities, such as computed tomography, magnetic resonance imaging, mammography,
and X-ray; this diversity is reflected in the wide array of algorithms designed to analyze
various regions of the human body [20,21]. Depending on an algorithm’s validated effec-
tiveness and integration capabilities with radiological systems, it may or may not receive
endorsements from certification bodies [22,23].

In this review, the authors present an overview of existing algorithms and outline
the most critical techniques used in the classification of medical imaging data, subdivided
in this article into the following sections: historical perspective, deep learning solution
overview, human vs. machine interaction consideration, job risk overview, and current
medical solutions review.

We aim to provide a comprehensive analysis of the advancements and challenges
associated with Al applications in radiology, specifically examining the evolution of convo-
lutional neural networks (CNNs) as foundational tools in diagnostic imaging, evaluating
the regulatory frameworks influencing Al integration into clinical workflows, and explor-
ing the potential impacts of these technologies on radiologists’ roles and healthcare delivery.
By synthesizing the current state of Al in radiology in this work, we seek to bridge existing
knowledge gaps, propose directions for future research, and offer actionable insights for
stakeholders in the medical imaging field.

This manuscript is organized as follows: In Section 2, we provide a historical back-
ground, highlighting key milestones in Al development and their impacts on medical
imaging. In Section 3, we delve into contemporary deep learning models, discussing
their architecture, applications, and limitations. In Section 4, we explore the comparative
efficiency of Al and human radiologists, shedding light on their complementary roles in di-
agnostic workflows. In Section 5, we address concerns regarding the potential displacement
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of radiologists and emphasize the importance of balanced human—AlI collaboration. In
Section 6, we examine the critical role of data preparation in enhancing AI model reliability;
then, in Section 7, we introduce the significance of textural analysis in medical imaging. In
Sections 8 and 9, we discuss emerging trends, challenges, and the current market landscape
for Al in radiology. Finally, we conclude the manuscript with a summary of our findings
and recommendations for future research.

2. Historical Background

The success of Al in image recognition is primarily driven by advancements in convo-
lutional neural networks (CNNs), traced back to the application of GPU technology and
modifications to the dropout technique, first implemented in 2012, which helped secure
a win in the ImageNet contest. The ImageNet contest was conceived as a benchmark
for evaluating the most effective approaches to image recognition, initially comprising
over 10 million images across more than 22,000 categories. The breakthrough, in 2012, by
Geoffrey Hinton’s students, Ilya Sutskever and Alex Krizhevsky, marked a pivotal moment
in computer vision and image recognition when these researchers, initially working in
speech recognition, achieved significantly better results than other competitors using two
NVIDIA GTX 580 GPUs (NVIDIA Corporation, Santa Clara, CA, USA), each with 3 GB
memory, to train a model with 60 million parameters over 90 epochs, completing the
process in two days and presenting significantly reduced error rates in comparison to their
competitors [24,25].

The success of the above approach catalyzed the broad adoption of GPUs in deep
learning, a shift that represented a turning point in computer vision, in which GPUs demon-
strated their efficiency in increasing the effectiveness of computer-driven image recognition.
The next significant advancement, inspired by AlexNet, was ResNet, which won the 2015
ImageNet competition [26,27]; ResNet’s incorporation of residual connections (i.e., cal-
culating output-input differences) enhanced network performance, solidifying CNNs as
fundamental architecture in Al-driven image analysis [28]. The developments that followed
highlighted the capabilities of CNNs and the power of GPU technology [29-31]. Building
on these achievements, the first successful radiology-directed applications emerged, such
as deep learning for lung nodule detection in the 2016 LUNA (Lung Nodule Analysis)
challenge [32], which served as an early benchmark for the performance of deep learning
algorithms in identifying lung nodules, thereby demonstrating the potential of Al in radiol-
ogy. The introduction of deep learning models, inspired by AlexNet and encouraged in
such competitions, paved the way for subsequent programs that rely on object detection
within medical imaging, showcasing Al’s potential in advancing radiological diagnostics
and opening new, transformative possibilities for efficient image analysis in radiology,
enabling the recognition of features in radiographs, CT scans, and MRI images; these break-
throughs enabled automated feature extraction and, if broadly used, may substantially
improve the accuracy of image analysis in diagnostic imaging. This progress has led to
the development of Al tools that could support radiologists by providing second opinions,
identifying anomalies, and even predicting disease [33].

3. Deep Learning Models: A Short Introduction to Current Solutions

In radiology, several data analysis aspects should be considered, and some current
deep learning solutions are depicted in Figure 1. First, a visual inspection of the myriad
imagery data generated with equipment allows for insight into the human body structure.
Here, the deep learning models are applied to solve the classification task between healthy
and unhealthy patients, sometimes considering, more precisely, the severity stages of an
illness; on the other hand, such general information might need to be more comprehensive
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as the determination of the region of changes, or simply segmenting the data for further
analysis, is expected, in which case, convolutional neural networks are considered. How-
ever, the problem is so complex in several cases that training only one model is insufficient,
and a pipeline of various models is prepared to achieve the goal.

Classification Report generation

Healthy

i)
)
\

Unhealthy

Deep learning
models \

Figure 1. Deep learning models applicable for radiological data processing.

3.1. Classification

When visually analyzing radiographs (X-ray), computed tomography (CT), magnetic
resonance imaging (MRI), or ultrasonography scans, convolutional neural networks (CNNs)
are considered. ResNet [34] is one such CNN that has gained a lot of popularity; for
instance, the smallest version, ResNet-18, used for histopathological images, CT/MRI
scans, and genomic data, supports prognosis in clear-cell renal cell carcinoma [35], while
the largest version, ResNet-152, was applied to detect pneumonia in chest X-rays [36] and
constituted part of a model dedicated to diagnosing and predicting outcomes of COVID-19
pneumonia [37]. A modified ResNet architecture was exploited for attenuation correction
in pelvic PET/MR images, significantly reducing voxel-based errors and improving the
quantification of bone lesions compared to other existing methods [38]; meanwhile, the
3D version of this architecture helps predict the imaging characteristics, malignancy, and
pathological subtypes of pulmonary nodules detected in CT scans [39]. Of course, other
architectures also find application; for example, Albiol et al. [40] compared the outcomes of
ResNet-50 [34], DenseNet-121 [41], Inception_v3 [42], and Inception-Resnet_v2 [43] against
radiologists” interpretations of chest radiographs for the early detection of COVID-19,
proving that the deep learning approach overcomes the experts, reaching an AUC of 0.85,
compared with 0.71 in the reference group. Additionally, Fink et al. [44] showed that using
Xception architecture for musculoskeletal radiographs through projection and body-side
resulted in an accuracy of 0.97 in classification tasks.

Not all tasks demand large and pre-trained models; some models achieve better re-
sults with small designs but dedicated architectures. Arbabshirani et al. [45] used tailored
network architecture to detect intracranial hemorrhage in head CT scans. Nguyen [46]
deployed a model for accurately measuring 12 spinal alignment parameters from X-ray
images, addressing the manual challenges of spinal misalignment assessment. Solak
et al. [47] designed capsule networks, comprising capsules grouping neurons that collec-
tively represent a visual entity, transforming the visual information into more representative
features (e.g., height, width) and employing it to classify adrenal lesions in MR images with
0.98 accuracy.
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3.2. Segmentation

Beyond the classification of a whole image, it is also possible to determine the detailed
region where an organ or tissue of interest is depicted within an image; such a problem in
computer science is called semantic segmentation, in which a mask is generated for the
whole image, and each pixel is classified as belonging to some data class, consequently
delineating specific regions. The encoder-decoder architecture in the U-Net structure is the
most widely used for this task; for example, Gasulla et al. [48] used this approach to create
a system to assess lung condition severity during the COVID-19 pandemic. Many other
approaches concentrate on the segmentation of abdominal organs or the determination of
body composition, in the context of muscle and fat distribution, as mentioned by Santhanam
et al. [49] in their review. However, such solutions significantly impact medical imaging
analysis as there are still imperfections in Al solutions when compared to human ones, as
reported by Willemink et al. [50] who also claimed that applying transformer networks [51]
should bring about improvements.

Although deep models have proven to be of high quality, more than one model is
required in complex tasks as one usually cannot work well to meet several constraints
simultaneously; therefore, in such cases, the entire process combines applying various mod-
els to achieve a goal. Larson et al. [52] designed a system composed of FastRCNN, based on
ResNet-101, for landmark detection, followed by an EfficientNet-D0 model trained to recog-
nize the presence or absence of hardware within extracted joint image patches; this system
showed 99% correlation with radiologist measurements of leg length. Nurzynska et al. [53]
created a pipeline, composed of two Inception_v3 networks, to determine whether the data
were positive or negative for acid-fast (AF) mycobacteria; the first network removed the
background, while the second network created a heatmap corresponding to the probability
of AF presence. A sequence of three models was applied by Haji Maghsoudi [54] to discrim-
inate breast cancer, in which the first model was responsible for removing the background,
the second for finding and removing the pectoralis muscle—with both models based on
U-Net [55] architecture—while the last one segmented dense tissue and classified it with
the ResNet encoder.

As one can see, a combination of models is necessary when the determination of the
main objectives requires the need to learn a system of changes or analyses; thus, usually, the
first stages are responsible for removing unnecessary information, allowing the following
models to concentrate more effectively on the main task.

Although the model architecture proves the solution’s success, it is not the only
possibility, nor always the most optimal solution. The training algorithm chosen, especially
when labeled data are absent or insufficient [53], as well as the optimization algorithm used
while training the network, may influence the final outcome [56].

3.3. Report Generation

The application of large language models (LLM) has recently found its place in the au-
tomation of radiologist imagery description analysis. Additionally, Al technology is mature
enough, and the amount of gathered data is sufficient to prepare models that automatically
generate radiological image descriptions, but this does not place radiologists out of work
as Al systems cannot provide a diagnosis. Al should, however, facilitate radiologists” work
with automatically generated image descriptions that they should verify and improve in
detail; such an approach may improve early diagnosis and limit the radiologist’s work-
load [57]. For example, Zhang et al. [58] developed a generative model to automate the
generation of radiological reports from chest X-rays. Blind assessments by radiologists
indicated that the generated reports were comparable in quality to those produced by
human experts. Another approach was presented by PRAS Bassi et al. [59] who introduced
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RadGPT, an anatomy-aware vision-language Al agent designed to generate detailed reports
from CT scans. RadGPT segments tumors, including benign cysts and malignant growths,
along with surrounding anatomical structures, transforming this information into both
structured and narrative reports. These reports provide comprehensive details on tumor
size, shape, location, attenuation, volume, and interactions with adjacent blood vessels
and organs.

Conversely, Sun et al. [60] evaluated GPT-4’s ability to generate the “Impressions”
section of radiology reports from the “Findings” section, comparing its outputs to those of
human radiologists. Radiologists rated human-generated impressions higher in coherence,
comprehensiveness, and factual consistency and concluded that, despite GPT-4’s potential
to assist in report generation, its outputs currently do not match the quality of human
radiologists” work.

3.4. Language Analysis

The functionality of LLMs in radiology is not restricted to generating reports but
includes broader applications across the field. For instance, LLMs have shown potential
in accurately identifying and classifying true and false laterality errors in radiology re-
ports [61]. Enhancing patient understanding of their condition is crucial for improved
outcomes, making the creation of more patient-friendly imaging reports an essential area
for LLM implementation. As Butler et al. [62] demonstrated in the context of orthopedic
radiology, AI-LLM may improve the readability of radiological reports across multiple
imaging modalities. Moreover, LLMs can serve as effective tools for post hoc structured
reporting in radiology, enabling significant time savings by automating the organization
and structuring of radiological data for improved efficiency and accessibility [63]. LLMs
have also been employed to classify unstructured radiology reports into standardized
categories. For example, a feasibility study by Matute-Gonzélez et al. developed LiverAl, a
specialized large language model designed to automatically annotate free-text MRI reports
with LI-RADS v2018 categories. The findings revealed that incorporating LiverAl into
clinical processes could streamline workflows by reducing the radiologists’ workload by
45% while maintaining high diagnostic accuracy [64].

These advancements underscore the versatility of LLMs in radiology, highlighting their
capacity to improve diagnostic accuracy, patient communication, and workflow efficiency
across various applications.

4. Are Machines More Efficient than Human Doctors?

Radiology involves the interpretation and classification of medical images based on
characteristic features; a radiologist is trained to distinguish between features considered
pathological and normal, identifying abnormalities and grouping them under specific
diagnostic categories [65,66]. The process of extracting common features from sets of
known images represents a combination of knowledge and expertise, along with the
innate pattern recognition skills of the imaging specialist. This ability to recognize shared
features across random datasets can be described mathematically and is often viewed as a
measure of cognitive intelligence as the capability to achieve specific goals based on these
generalizations is a classic marker of system intelligence [67,68]. Machine learning has
shown promise in replacing aspects of this process as machines can emulate intelligence
by generalizing and identifying similarities across varied models with limited connections
because the ability to find similarities across patterns is understood as a background of
artificial intelligence [69]. Furthermore, human knowledge dissemination is inherently
slow, limited by communication bottlenecks—dictation or writing proceeds at only a few
bits per second, even with templates, which remains considerably slower than machine
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processing [70]. A significant challenge in radiology is the diversity in data, which vary not
only among imaging modalities (e.g., CT, MRI, CR) but also within the same anatomical
structures, which can convey differing information, thus requiring a deep understanding of
imaging processes and extensive training [71]. Additionally, the vast range of pathologies
is challenging to encode in numerical formats that are suitable for machine processing;
however, recent advances show that machines with self-learning capabilities can efficiently
extract and replicate patterns, demonstrating an impressive ability to recognize features
and share learned patterns swiftly [72,73]—progress which has motivated various research
groups to create specialized programs designed to extract specific pathological features.
However, there is no comprehensive program that can accurately detect all pathological
features in any given image (i.e., a generalized Al for pathology detection); currently,
radiology relies on a suite of Al tools, each tailored to address a particular problem.
Familiarity with these tools is essential for radiologists to work effectively, especially as
the gap between available radiology professionals and the volume of medical images
continues to grow. The widespread use of Al tools in radiology could enhance diagnostic
accuracy, reduce error rates, and improve patient outcomes by standardizing processes and
expediting diagnoses.

Starting with connections, radiologists, represented by the human brain, have approx-
imately 80 trillion synaptic links, highlighting their complex neural network that enables
deep adaptability and perceptual sensitivity. In contrast, Al models, with around 3 trillion
parameters, have fewer connections, which points to their efficiency with structured data
but reveals potential limitations in adaptability (Figure 2). Moving to data processing
volume, radiologists handle a moderate amount of data in each session, reflecting their
focus on quality over quantity and their ability to adapt to diverse cases [74].
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Figure 2. Detailed comparison of human radiologists and AI models, emphasizing the unique

strengths each brings to medical imaging tasks.
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However, Al models surpass radiologists in their ability to process large volumes
of data quickly, which is advantageous for tasks requiring speed and consistency, but Al
models may lack the nuanced adaptability seen in human analysis. When it comes to
consistency, radiologists show moderate reliability, as their work is often subject to slight
variability due to factors such as fatigue and cognitive biases; Al models, on the other
hand, demonstrate high consistency, performing uniformly across datasets and maintaining
precision without the effects of fatigue or bias [75].

The high consistency of Al models makes them suitable for tasks that require repetitive
accuracy though they may not capture subtleties as effectively as humans. In terms of
speed of analysis, radiologists typically exhibit a moderate pace, balancing thoroughness
with the need for careful evaluation; their work involves a nuanced approach that can be
time-consuming but essential for accuracy in complex cases. Al models, in contrast, excel
in speed, rapidly processing images in high volumes, which proves useful for scenarios in
which rapid diagnostics are critical though it often requires human validation for complex
findings [76].

The above comparison highlights the complementary nature of radiologists and Al
models: radiologists bring adaptability, perceptual depth, and expertise, while Al models
contribute efficiency, speed, and consistent accuracy. Together, these strengths suggest that
an integrated approach, combining human insight with Al efficiency, might offer the most
comprehensive and effective path forward in medical imaging diagnostics.

5. Is the Job of a Radiologist at Risk?

Machines are often considered superior to humans in solving logical problems; how-
ever, in terms of perception—especially in complex medical image recognition—humans
still outperform machines [77], and this remains true when we consider a radiologist’s
ability to adapt to diverse datasets and detect various pathologies [78-80]. The following
two primary factors determine the performance of both biological and artificial networks:
first, the number and architecture of connections, which dictate the network’s ability to cap-
ture intricate patterns; and second, the volume and quality of data as better data typically
yield better outcomes, a principle often summarized in the phrase “garbage in, garbage
out” [81]. Additionally, there are other factors, unique to artificial networks, which are not
directly comparable to human brain processes but significantly influence artificial network
performance, including training techniques, optimization algorithms, hyperparameter
tuning, model generalization, and transfer learning [82,83]. Biological systems, such as
the human brain, contain an enormous number of connections—up to 80 trillion synaptic
links—whereas large language models typically rely on around 3 trillion parameters [84-86]
(Table 1), revealing a fundamental difference between the two: while humans operate with
many connections and a relatively low data volume, machines possess vast data volumes
but operate with relatively fewer connections. Machine learning models’ information
extraction abilities are proportional to their capacity to identify similarities across datasets,
including visual patterns, which can be measured with data compression tests [69,87]; on
the other hand, foundation models trained on extensive datasets demonstrate high profi-
ciency in detecting pathologies and, when well-trained, can outperform human observers
in terms of accuracy, sensitivity, consistency, and speed [88], without suffering from fatigue
or biases that commonly limit humans [89-91]. Currently, radiologists, equipped with
broad and adaptable knowledge, remain the most proficient operators of relevant tools,
which addresses the pressing question regarding the future of radiology [77,92,93]; the
unique insights and adaptability of radiologists suggest that their expertise will remain
vital in integrating Al tools into medical practice [94].
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Table 1. Detailed comparison of human radiologists vs. Al models [78-87].

Factor Radiologists AI Models
Data Processing Volume Moderate High
Connections (Trillions) 80 3
Adaptability High Low
Perception of Patterns High Moderate
Consistency Moderate High
Speed of Analysis Moderate High
Fatigue Resistance No Yes
Bias Resistance No Yes
Training Techniques Required No Yes

6. Importance of Data Preparation for Processing with Al

Preparing medical imaging data for machine learning (ML) requires a systematic
approach to ensure model reliability, accuracy, and generalizability (Figure 3). First, clear
project goals guide data preparation as classification, segmentation, and detection tasks
each have unique requirements [95]. Standardization is essential, including converting im-
ages to a consistent format (e.g., DICOM or NIfTI) and normalizing resolution and intensity
to account for differences across modalities such as X-ray, MRI, or CT [96]. Data cleaning
addresses artifacts (e.g., motion blur) and ensures label accuracy, while quality assurance
(QA) checks verify noise levels, contrast, and anatomical coverage. Accurate annotation
by experienced radiologists is critical, with guidelines established to maintain consis-
tency, especially for complex tasks such as segmentation. Data augmentation techniques
(e.g., rotations, flips, contrast adjustments) expand limited datasets, increasing robustness.
For data augmentation, techniques that are appropriate to the problem and logical should
be used. It is crucial that data augmentation techniques align with the clinical context
to avoid introducing unrealistic transformations. For example, while minor rotations (a
few degrees left or right) can enhance the robustness of models, extreme rotations such as
90 degrees are inappropriate for X-ray imaging as they do not reflect how such images are
typically analyzed by clinicians. After preparation, datasets should be split into training,
validation, and test sets while preventing leakage by keeping patient images in only one
subset. Balanced datasets are ideal, but, in smaller datasets, k-fold cross-validation can be
helpful to maximize data use. Metadata management and privacy safeguards are essential,
and patient information should be de-identified to comply with regulations (e.g., HIPAA or
GDPR). Finally, pre-training checks, including basic statistical analysis and baseline model
evaluation, help identify potential issues before training [97].

| Project goal definition ‘

&

\ Image format standarization (DICOM/NIFTI) |

| Ensure data Privacy and Compliance ‘

&

‘ Resolution and Intensity normalization ‘

@

| Data cleaning - artifact removal ‘

e

| Expert annotations ‘

&

| splitdata[Train, Validate, Test] |

"

| Data augmentation - rotation, flip, contrast [Train, Validate] ‘

Figure 3. Necessary steps in medical imaging data preparation for processing with AL
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7. The Role of Textural Analysis in Image Preprocessing

Image texture is a crucial component of various image types, including medical images,
as medical imaging modalities visualize the properties of internal organs and tissues
through textural representation; for instance, the textures observed in tomographic cross-
sections provide valuable diagnostic insights. Textural parameters are part of radiomics [98]
and reflect the physiological characteristics of tissues, enabling applications such as organ
segmentation, lesion detection, and the assessment of pathological changes. The importance
of textural analysis in diagnostic imaging has been established across various modalities,
including computed tomography (CT) [99], magnetic resonance imaging (MRI) [100], and
ultrasound [101].

Furthermore, variations in acquisition parameters across different patient images
often affect brightness and contrast in regions of interest (ROlIs); these variations can occur
between consecutive images, causing some textural features to depend not only on texture
but also on factors such as average brightness and contrast. Consequently, features intended
to describe tissue structure may inadvertently reflect scanner sensitivity inconsistencies
within the analyzed region [102], potentially leading to inaccurate tissue characterization
or misclassification.

In order to mitigate these issues, the normalization of ROIs is commonly applied,
typically serving as an initial step and expanding the image histogram within the ROI to
cover the entire available intensity range, a process that enhances the contrast between
bright and dark structural elements within the texture and reduces the influence of local
mean intensity, thereby improving the quality of extracted features. Different methods
for ROI normalization, as well as their influence to the overall image analysis results, are
presented in reference [103].

Texture feature maps also play important roles in the analysis of biomedical images.
A feature map is an image of the distribution of values of a given textural parameter,
determined for the entire image or its fragment; the value of a feature is determined for
each image point in its neighborhood large enough to enable the correct characterization
of the texture. A feature map allows us to observe how well a given feature distinguishes
the analyzed textures; in the case of a properly selected parameter, a map of the feature
transforms the textured areas into relatively uniform fragments differing in brightness
(thereby encoding the values of the selected parameter).

The map—or, more often, maps—of features selected during the selection process
are used as input data for the segmentation stage. An example feature map for an image
of a brain cross-section, containing a fragment of a subarachnoid hemorrhage, is shown
in Figure 4 where the map of the AngularSecondMoment feature (calculated based on
the Gray Level Cooccurrence Matrix, GLCM) [104] contains the stroke area, which has a
significantly different value than the rest of the brain; therefore, the image of this map
allows us to isolate the stroke area using simple brightness thresholding.

Another example of using such maps for image segmentation is shown in Figure 5,
determined for the SumAverage parameter from GLCM for a 15 x 15-pixel sliding window
across the TIW MR image of a foot cross-section; bone regions are shown on this map as
smooth areas with a small range of brightness levels, which allows them to be relatively
easily distinguished from other regions. Texture feature maps can also be used for edge
detection. Figure 5C,D shows such maps, obtained for the SumOfSquares (GLM) and
Sigma (autoregressive model) features, respectively, in which the edges shown define bone
tissue regions. An example of a texture map application combined with an active contour
model for biomedical image segmentation is discussed in reference [105].
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Figure 4. CT image of a brain cross-section with a marked stroke area (A); AngularSecondMoment
feature map calculated for this image, in which a 15 x 15-pixel window was used (B).

Figure 5. TIW MR image of the foot bone (A); feature maps calculated for this image: SumAverage
(B); SumOfSquares (C); and Sigma (D).

8. Al Is Supportive but Must Be Used with Caution

Although Al-based solutions have numerous applications in radiology, e.g., they
represent state-of-the-art technology used for image segmentation [106,107], there are
several applications for which they are suboptimal or should be used with caution.

Firstly, deep learning-based contributions to medical image registration are still less
accurate than methods based on classical numerical optimization [108-112]. In an experi-
ment classifying the patient sex using automated analysis of computed tomography scans
of vertebrae, standard machine learning, used for the classification of textural features
(classical approach), achieved an accuracy of 69%, while deep convolutional networks for
this task yielded a slightly lower accuracy of 59% [113]. Al-based algorithms tend to have
problems with generalizability to previously unseen cases, requiring further instance-level
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optimization in order to achieve optimal results; for example, in the large-scale Learn2Reg
benchmark, all of the best-performing methods used classical optimization to further im-
prove the learning-based results for both the brain MRI and abdominal CT tasks [108].
The same observations apply to the BraTS-Reg challenge [109], which was dedicated to
comparing different algorithms against pre-operative and post-surgery registration of brain
MRIs; all of the best-performing solutions used traditional numerical optimization and
outperformed the Al-based contributions. Moreover, classical numerical optimization
methods, such as PDE-constrained optimization, have been shown to be highly effective
in medical image analysis, providing reliable and high-fidelity results compared to deep
learning-based solutions, especially in applications requiring precise alignment, such as
neuroimaging and cardiovascular imaging [114]. Therefore, while deep learning-based
methods show promise, they still lag behind classical numerical optimization techniques in
terms of accuracy and generalizability. Further research is needed to enhance the perfor-
mance of Al-based algorithms and address their limitations [115].

Another area in which AI methods should be used with caution is image generation
and reconstruction; nowadays, people attempt to use Al to generate new synthetic volumes
for image augmentation [116] to transfer one modality to another (e.g., to generate synthetic
CT from MR to avoid irradiation) [117], to directly create synthetic volumes using textual
prompts [118], or to accelerate image reconstruction [119]. Although these applications
are becoming increasingly successful, people should use these methods with special care
because they often tend to generate non-existing structures that may misguide medical
experts [120]. Deep learning models used for MR-to-CT synthesis have demonstrated
impressive results, but careful validation is necessary in order to ensure clinical reliabil-
ity [121]; reconstructed images should be compared with standard sequences to ensure no
degradation or unintended alternations in image quality and anatomy have occurred [122].

Al-based contributions are often incorrectly evaluated [123], leading to incorrect con-
clusions; for example, most of the contributions in automatic image segmentation evaluate
accuracy using annotations from just a single annotator rather than reporting confidence
intervals [124,125]. However, if the ground truth is based on annotations from human
experts, then any evaluation should be always performed using ground truths annotated
by several radiologists and inter-variability should be evaluated. Moreover, deep learning
methods inherently suffer from problems with standardization and explainability [126],
making it difficult to compare results across different studies and ensure consistency in
performance metrics [127]. Even though there are significant attempts to improve the
interpretability and explainability of deep learning methods, we are still far from clear
interpretations of their performed decisions and recommendations [128].

Lastly, one should remember the vulnerability of CNN-based architectures to adver-
sarial attacks, a significant concern in the field of deep learning, as they involve making
small, often imperceptible, changes to input images that can cause a CNN to make incorrect
predictions. Even a single pixel modification or added learned adversarial pattern to the
input may completely fool a deep network [129], a situation that may be dangerous because
external modifications to the input volumes, completely invisible to radiologists, may
completely change the neural network recommendations. Even though there are methods
with which to detect adversarial attacks using feature response maps, the users of CNNss
should be aware of the risk [130]; more recent architectures, based on vision transformers
(ViTs), are more resistant to certain types of adversarial attacks compared to CNNs [131],
but it is important to note that no model is entirely immune to such abuse [132].
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9. Review of Al Products Used in Radiology: Status in 2024

The review of Al products used in radiology in 2024 was conducted utilizing the two
following key databases: the Health AI Register [133] and Al Central [134]. The Health AI
Register lists Al products available in the European market, all of which are CE-marked,
indicating compliance with European regulatory standards; conversely, Al Central focuses
on Al tools cleared by the FDA and commercially available in the United States. Our dual-
database approach ensured comprehensive coverage of the radiology Al landscape, and
the review process involved counting and cataloging available products, analyzing their
distribution across radiological subspecialties, imaging modalities, and targeted diseases.
Regulatory certifications (CE marking and FDA clearance) were systematically reviewed,
alongside data on the year of market entry and FDA clearance. This review was conducted
in October 2024 to capture the most current state of the field.

The current status of Al applications used in Europe was reviewed on the basis of
the Health AI Register [133], which provides the names of applications along with their
subspeciality modality and type of certification approved in the EU market. The same
system was used for a similar analysis by Van Leuven in 2021 [20]; however, the landscape
of the Al market has since significantly changed, and our analysis reflects the rate of
development for Al solutions in the healthcare sector, revealing that, as of October 2024,
there are 222 commercial Al-based products, representing an increase of 122%—among
these, 213 products are reported to be certified, marking a 150% increase compared to the
85 certified products reported in 2021 (Figure 6).

Growth in Al Commercial Products and Certified Products (2021 vs 2024)

250 1 . 2021

222 2024

+122% 213
+150%

200 A
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Count

100 A

50

Commercial Products Certified Products

Figure 6. A bar graph illustrating the growth in the number of working Al algorithms and certified
products between 2021 and October 2024. The annotations highlight the counts for both years and
the percentage increases, emphasizing the rapid expansion of Al solutions in healthcare.

The focus on neuroimaging and chest imaging, with 73 and 71 Al products, respec-
tively, suggests a strong emphasis on developing Al applications in these areas, which may
be attributed to high clinical demand and the complexity of interpreting neuroimaging and
chest images, making these subspecialties ideal for Al innovation [135,136]. Areas such as
musculoskeletal (MSK), abdominal, cardiac, and breast imaging also show considerable
development, with product counts between 20 and 28, indicating significant interest and
activity; in contrast, subspecialties including vascular, head /neck, spine, thyroid, and FDG
PET-CT imaging have relatively few Al products (between 1 and 2), possibly reflecting
lower demand, limited dataset availability, or less complex imaging challenges [137-139].
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The above distributions highlight the concentrated development of Al tools in high-demand
areas of medical imaging, with the potential for further growth as new needs and opportu-
nities emerge across other subspecialties (Figure 7).

Subspecialties Distribution

Number of Products
3 8 8 8 3 3

=
1

o

Subspecialty

Figure 7. A bar chart illustrating the distribution of Al-based products across various medical
subspecialties. The x-axis lists the different subspecialties, while the y-axis indicates the number of Al
products available in each area.

In terms of imaging modalities, CT and MR stand out, with the highest numbers of
Al products—89 and 66, respectively—likely due to the extensive use and high diagnostic
value of these modalities, as well as the complexity of their data, which makes them
particularly well-suited for Al applications [140]. X-ray imaging follows, with 46 products,
emphasizing a strong focus on Al in this widely utilized modality [141]; meanwhile,
mammography and ultrasound, with 16 and 10 products, respectively, exhibit moderate
levels of Al development, likely due to the specialized nature of mammography and
the inherent variability of ultrasound imaging, which present unique challenges for Al
algorithms. PET and SPECT, with only 3 and 1 products, respectively, represent the lowest
levels of Al development among the imaging modalities, possibly due to their lower usage
rates and specialized applications in nuclear medicine [142]. Overall, this distribution
reflects the alignment of Al product development with high-demand, complex imaging
modalities within the healthcare sector (Figure 8).

Modalities Distribution
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Figure 8. A bar chart illustrating the distribution of Al-based products across various imaging
modalities. The x-axis represents different imaging modalities—CT, MR, X-ray, mammography,
ultrasound, PET, and SPECT—while the y-axis shows the number of Al products available for
each modality.
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Regarding targeted diseases, lung cancer, stroke, and breast cancer lead, with 28, 24,
and 19 Al products, respectively, underscoring the prevalence and clinical importance
of these conditions [143] and suggesting that the complexity of diagnosis and the high
clinical impacts of these diseases make them attractive areas for Al applications. Other
notable areas of Al development include pneumothorax, with 16 products, and dementia,
with 12 products, indicating growing interest in respiratory and neurodegenerative condi-
tions. Moderate levels of Al product development are seen in diseases such as multiple
sclerosis (11 products), emphysema (9 products), prostate cancer (9 products), pleural
effusion (9 products), and tuberculosis (9 products), indicating valuable opportunities
for Al applications in these areas as well. Diseases including pulmonary embolism and
consolidation, pneumonia, COPD, COVID-19, and intracranial hemorrhage, with product
counts ranging from 5 to 7, represent the least targeted conditions, potentially reflecting
emerging areas in which Al applications are still in the early stages. Targeted disease
distribution indicates a strong focus on high-impact, high-prevalence diseases [144,145]
while also highlighting the potential for continued growth in Al-driven solutions for a
broader range of diseases [146-151] (Figure 9).
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Figure 9. A bar chart illustrating the distribution of Al products with regard to their top 16 targeted
diseases. The x-axis lists the targeted diseases, while the y-axis represents the number of AI products
developed for each condition.

A majority of Al products are certified as Class Ila under the Medical Device Directive
(MDD), totaling 66 products, followed by Class I under the MDD, with 58 products, and
Class Ila under the Medical Device Regulation (MDR), with 49 products; these categories
represent the bulk of certified Al products, indicating a high level of compliance with
established regulatory standards. Class IIb under the MDR comprises 30 products, showing
a significant but smaller representation, while there are 9 products that are not yet certified
or have no certification, suggesting that they may be in development or awaiting regulatory
approval. Smaller categories include “Certified, Class unknown” (8 products), “Certified,
Class I, MDR” (1 product), and “Certified, Class IIb, MDD” (1 product). The concentration
of Al products in Class Ila and I certifications under both the MDD and MDR reflects
a strong effort to comply with regulatory frameworks, especially for products targeting
moderate-risk classifications; this distribution underscores the critical role of regulatory
certification in the development and deployment of Al products in healthcare (Figure 10).
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Distribution of Product CE Certifications
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Figure 10. A bar chart displaying the distribution of CE certifications across various Al products. The
x-axis represents different certification categories, while the y-axis shows the number of products in
each category.

In terms of the market entry year, Al product releases before 2014 represent a notable
group, with 18 entries, reflecting early Al market activity; from 2014 to 2016, there was a
gradual increase in market entries, though still with small numbers each year; however,
beginning in 2017, a steady rise occurred, with 15 products in 2017 and 21 in 2018, an
upward trend that reached a peak in 2020, with 50 products, indicating a surge in Al
adoption, likely driven by technological advancements and growing market demand [152].
Although 2021 saw a slight decline, to 31 products, it still represented high market activity;
from 2022 to 2024, the number of entries continued to decrease, with 8, 13, and 3 products,
respectively, possibly reflecting a maturing market, saturation in product development,
or a shift in focus toward other healthcare areas—a trend which demonstrates the rapid
expansion and growth of the Al market in healthcare, with a potential move toward
saturation in recent years [153-157]. The peak in Al radiology product approvals in 2020
can be attributed to several key factors: during this period, a wealth of COVID-19 imaging
datasets became publicly available, offering researchers the crucial data needed to train and
validate Al models effectively; additionally, significant increases in funding and grants were
directed toward Al research, particularly in response to the pandemic [158] (Figure 11).

Market Entry Year Distribution
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Figure 11. A bar chart illustrating the distribution of Al products by the market entry year. The x-axis
represents the market entry years, ranging from “Before 2014” to 2024, while the y-axis shows the
number of products that entered the market in each year.
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The chart in Figure 11 depicts the market entry year distribution for Al products, while
that in Figure 12 presents the annual number of Al products cleared for use in radiology
from 2008 to 2024. A comparison of these data provides insights into the dynamics of Al
adoption in radiology as we can observe a significant growth phase starting around 2017,
with surges in product entries and clearances. The peak in market entries occurred in 2020,
with 50 new products entering the market, while product clearances peaked slightly later,
in 2023—a lag that suggests that products entering the market require time for regulatory
approval [159,160].

FDA-Cleared Year Distribution
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Figure 12. A bar chart illustrating the annual number of Al products cleared for use in radiology
between 2008 and 2024. The trend reached its peak in 2023, with over 80 products cleared that year,
reflecting the rapid growth and adoption of Al technologies in healthcare during this period. The
year 2024 shows a slight decline, potentially signaling market stabilization or shifts in regulatory
processes. The progression depicted here highlights the increasing integration of Al solutions into
clinical practice, particularly in medical imaging.

After 2020, the number of new product entries declined steadily, with only three
entries recorded in 2024; this trend reflects a possible stabilization or maturation of the
Al radiology market in which fewer groundbreaking entries were being introduced. The
slight decline in product clearances in 2024, following a peak in 2023, suggests market
saturation. The regulatory landscape may be stabilizing and the focus might be shifting,
from introducing new products to refining and deploying existing solutions [161].

The initial growth phase and subsequent stabilization observed in Figures 11 and 12
highlight the natural lifecycle of an emerging technology market, in which the early years
are marked by innovation and rapid expansion, leading to a peak, followed by market
consolidation and saturation as competition and regulatory frameworks mature [162,163].

In this work, we emphasize the rapid development in the Al medical market in
recent years. Three years ago, Van Leeuwen et al. [20] described the landscape of ar-
tificial intelligence (Al) products in radiology, identifying 100 commercially available
CE-marked solutions in the European market. In the current work, on the basis of the
same vendor-supplied noncommercial database, we were able to distinguish over 220
products (www.radiology.healthairegister.com (accessed on 28 August 2024)), a result that
is unlikely to reflect all available products, which becomes evident when different databases
are compared, for instance, Al and radiology databases (https://aiandradiology.com (ac-
cessed on 30.08.2024)), used to collect and review products present in the domestic Polish
market. The Health Al Register database is the largest and most reflective as it is the most
comprehensive database, including the process of certification. Three years ago, 85 out of
100 reported products were validated, while, currently, 213 out of 222 registered products
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to date are certified among the different classes (CE I-1II), representing an important shift
toward their acceptance by medical boards and easing their implementation into different
medical institutions (Figure 3). Wu [164] investigated the adoption and usage of over
500 FDA-approved Al medical devices in the U.S. in 2023, focusing on 16 specific pro-
cedures that are billable through Al-specific CPT codes, spanning a variety of medical
domains, including cardiology, ophthalmology, radiology, and liver health, with the most
prevalent applications being coronary artery disease and diabetic retinopathy. Recently, in
the U.S., 700 cleared Al algorithms were reported by Fornell, with 76% present in radiology
but covering various specialties (radiology: 527; cardiology: 71; neurology: 16; hematology:
14; gastroenterology and urology: 10; clinical chemistry: 7; ophthalmic: 7; general and
plastic surgery: 5; anesthesiology: 5; pathology: 4; microbiology: 4; general hospital: 3;
orthopedic: 3; ear, nose, and throat: 2; and dental: 1). The above comparison illustrates
the differences between the European and U.S. markets and reflects adoption obstacles
within the European market, indicating a significantly larger size of the U.S. market and
forecasting rapid development in the future [165,166].

Varghese [167] described several key challenges in the clinical adoption of artificial
intelligence in medicine, organizing them under the RISE framework. Regulatory approval
and sufficient evidence remain significant hurdles as many Al systems lack the rigorous
prospective and multicenter clinical trials necessary for validation [22,168,169]; addition-
ally, the majority of studies focus on retrospective or theoretical aspects, delaying their
translation into clinical practice. Interpretability also poses a barrier as high-performing Al
models, particularly those utilizing deep learning architectures, often lack transparency in
their decision-making processes although clinicians are more likely to adopt Al systems
that provide human-understandable explanations for their outputs. Additionally, interop-
erability challenges hinder the integration of Al systems into clinical workflows as effective
communication between diverse hospital information systems, while preserving the mean-
ing and context of medical data, is required. Finally, Al systems depend on high-quality
and structured data, which are often limited, and reliance on unstructured sources, such
as free-text medical records, introduces ambiguity and inaccuracies. The need to address
these challenges through robust validation processes explains why Al adoption, despite
a need for efficient automated systems in healthcare, is still limited. The development
of integrating platforms and the formation of universal algorithms will, therefore, boost
further Al implementation into medical practice.

10. Examples of Practical Implementation of AI Models

The safe, effective, and high-quality deployment of Al technologies is critical for
advancing medical practice. Several medical environments provide exemplary use cases of
robust Al models in detecting various pathologies and improving diagnostic workflows.
In 2020, a multihospital experiment in Moscow [170] tested Al solutions for chest X-ray
analysis across 178 state healthcare centers. Al frameworks analyzed redirected X-rays to
detect abnormalities without prior training data. A top-performing framework employed
advanced techniques such as EfficientNets and DenseNet, analyzing 17,888 cases over
one month with an overall AUC of 0.77, ranging from 0.55 for herniation to 0.90 for
pneumothorax. Robert et al. [171] evaluated the impact of Al as a second reader in detecting
and localizing lung nodules on chest radiographs (CXRs) from 40 hospitals across the U.S.
The study showed that Al assistance significantly improved diagnostic performance, with
the mean AFROC increasing from 0.73 to 0.81 and AUROC from 0.77 to 0.84, along with a
sensitivity improvement from 72.8% to 83.5%.

These results highlight AI’s potential as a tool to enhance diagnostic accuracy without
increasing false positives. Sacha et al. [172] assessed an Al system for detecting clinically
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significant prostate cancer on MRI using a retrospective cohort of 10,207 MRI examinations
and a multi-reader study with 62 radiologists. The Al system demonstrated superior perfor-
mance compared to radiologists (AUROC: 0.91 vs. 0.86) and detected 6.8% more significant
cancers at the same specificity, emphasizing its potential as a diagnostic support tool. In a
meta-analysis by Wang [173], the effectiveness of deep learning algorithms for detecting
and segmenting brain metastases on MRI was evaluated. The study identified 42 relevant
studies and assessed them using QUADAS-2 and CLAIM tools. The results showed a
pooled lesion-wise dice score of 79% and sensitivities of 86% (patient-wise) and 87% (lesion-
wise). U-Net models performed best, with accuracy influenced by MRI hardware diversity
and slice thickness. These findings underscore deep learning’s promise in brain metastasis
diagnostics. Lu et al. [174] conducted a randomized, multi-reader, multi-case study to
assess Al-assisted auto-contouring for brain tumor stereotactic radiosurgery (SRS). Nine
professionals contoured brain tumors in assisted and unassisted modes. Al significantly
improved inter-reader agreement (DSC from 0.86 to 0.90, p < 0.001) and lesion detection
sensitivity (91.3% vs. 82.6%, p = 0.030). Additionally, Al assistance enhanced contouring
accuracy and reduced time spent by 30.8%, particularly benefiting less-experienced clin-
icians. Salehi et al. [175] performed a meta-analysis on Al algorithms detecting primary
bone tumors, comparing their diagnostic performance to clinicians. Internal validation
showed Al sensitivity and specificity at 84% and 86%, respectively, compared to clinicians’
76% and 64%. In external validation, Al achieved 84% sensitivity and 91% specificity,
while clinicians reached 85% and 94%. With Al assistance, clinicians improved sensitivity
to 95% but experienced reduced specificity (57%). This study highlights Al’s potential
and emphasizes the need for further optimization. Bachmann et al. [176] evaluated the
impact of an Al tool on nonspecialist readers detecting traumatic fractures in appendicular
skeleton radiographs. Using a multi-reader, multi-case design with 340 radiographic exams,
sensitivity increased from 72% to 80% and specificity from 81% to 85% with Al assistance
(p < 0.05). Missed fractures decreased by 29%, and false positives by 21%, without af-
fecting reading time. The greatest improvement was in detecting nonobvious fractures,
demonstrating Al’s potential to enhance diagnostic performance efficiently. Jalal et al. [177]
highlighted Al’s role in emergency radiology, emphasizing its ability to enhance imaging
analysis, workflow efficiency, and patient care quality, and mitigate radiologist burnout.
Ketola et al. [178] proposed a structured evaluation process for Al applications in radiology,
including pre-evaluation, retrospective testing, and prospective clinical integration, to
ensure safety, effectiveness, and compatibility with clinical standards.

11. Summary

Artificial intelligence has shown transformative potential in the field of radiology,
revolutionizing how medical imaging is interpreted and utilized in clinical practice as Al
technologies have demonstrated the ability to automate a wide range of tasks, thereby
significantly enhancing efficiency and diagnostic accuracy. Tasks ranging from image
segmentation, abnormality detection, and classification of imaging data to more advanced
processes, such as report analysis and automated case triaging, are reshaping traditional
radiological workflows, thus allowing radiologists to focus on complex cases and critical
decision-making, while routine processes are efficiently handled using AL

In recent years, the field of radiology has experienced an explosion of innovative
Al applications as the research has introduced numerous methodologies that leverage
deep learning, machine learning, and other Al techniques to address specific challenges
in medical imaging; concurrently, the market has witnessed the emergence of many com-
mercial Al products, some of which have obtained regulatory certifications, indicating
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their readiness for clinical deployment and underscoring the growing roles of Al in both
research and practice.

Despite the potential of Al, it is imperative to recognize the ongoing importance of
standard image analysis techniques, such as textural analysis and radiomics; these methods,
which are rooted in well-established statistical and geometric principles, remain valuable
tools for extracting meaningful features from medical images. The advantage of these
features is their partial medical interpretability, which is not represented in deep learning
models [113]; combining these standard approaches with Al techniques has the potential
to create hybrid systems that leverage the strengths of both methods, thus yielding robust,
interpretable, and clinically useful outcomes.

Moreover, ethical considerations and adherence to regulatory standards are critical for
the successful integration of Al into radiology as protecting patient privacy and ensuring
data security must remain fundamental priorities. Al developers and healthcare institutions
must comply with the stringent regulations governing the use of medical data in order
to maintain trust and integrity in healthcare systems. Additionally, transparency in Al
development, from dataset selection to model validation, is vital for addressing potential
biases and ensuring equitable outcomes.

In conclusion, while Al offers unprecedented opportunities to advance radiology, its
integration requires a balanced approach; acknowledging the continued relevance of stan-
dard methods, addressing ethical and regulatory challenges, and fostering a collaborative
relationship between radiologists and Al are essential for realizing its full potential. By
combining the strengths of Al and traditional methodologies, radiology has the opportunity
to achieve new levels of precision, efficiency, and impact in medical imaging.

The combined insights from the data reviewed in this manuscript suggest that the
Al radiology market has transitioned from a phase of rapid growth to one of stabilization
and potential saturation, a trend that reflects the increasing maturity of the field, in which
regulatory processes and product deployment are catching up with the initial surge in
innovation. Future efforts may focus more on optimizing existing solutions, rather than
introducing entirely new products.
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