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Abstract: Activation of CX3CR1 in microglia plays an important role in the development of neuropathic
pain. Here, we investigated whether neuropathic pain could be attenuated in spinal nerve ligation
(SNL)-induced rats by reducing microglial activation through the use of poly(D,L-lactic-co-glycolic acid)
(PLGA)-encapsulated CX3CR1 small-interfering RNA (siRNA) nanoparticles. After confirming
the efficacy and specificity of CX3CR1 siRNA, as evidenced by its anti-inflammatory effects in
lipopolysaccharide-stimulated BV2 cells in vitro, PLGA-encapsulated CX3CR1 siRNA nanoparticles were
synthesized by sonication using the conventional double emulsion (W/O/W) method and administered
intrathecally into SNL rats. CX3CR1 siRNA-treated rats exhibited significant reductions in the activation
of microglia in the spinal dorsal horn and a downregulation of proinflammatory mediators, as well as a
significant attenuation of mechanical allodynia. These data indicate that the PLGA-encapsulated CX3CR1
siRNA nanoparticles effectively reduce neuropathic pain in SNL-induced rats by reducing microglial
activity and the expression of proinflammatory mediators. Therefore, we believe that PLGA-encapsulated
CX3CR1 siRNA nanoparticles represent a valuable new treatment option for neuropathic pain.

Keywords: microglia; CX3CR1; Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles; siRNA;
neuropathic pain; spinal nerve ligation

1. Introduction

Neuropathic pain is caused by various lesions or diseases of the somatosensory system [1].
The associated neuropathic symptoms are often influenced by external factors, such as the weather, as
well as the condition of the patient, and may be accompanied by comorbidities such as allodynia and
hyperalgesia that can make daily life difficult. In addition, patients often suffer from a vicious cycle of
depression and insomnia driven by their underlying neuropathic condition. Successful treatment of
neuropathic pain is therefore of critical importance in the area of pain management. A wide variety of
treatments such as nerve blockage and pharmacological remedies may be prescribed for patients with
neuropathic pain, though the efficacy of these treatments is limited due to a lack of understanding of
the mechanisms underlying neuropathic pain maintenance and development [2].
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In general, when a nerve is damaged, neurotransmitters such as glutamate, ATP, and substance P
are released form presynaptic terminals of the primary afferent neurons in the dorsal root ganglia [3].
Release of these neurotransmitters causes nociceptive pain by depolarizing postsynaptic neurons in
the spinal cord [4]. These molecules subsequently bind to the corresponding receptors of the glia and
microglia of the dorsal horn of the spinal cord and activate the microglia [5], leading to the release of
various cytokines and other diffusible molecules in the activated microglia, exacerbating the symptoms
of the disease [6].

The correlation between neuropathic pain and microglia is well established, with strong evidence
of both morphological and pathological mechanisms of disease [7]. In the spinal nerve ligation (SNL)
rat model, the microglia in the dorsal horn of the spinal cord showed significant changes in morphology
and in the number of spots staining with specific microglial markers [8–11].

CX3CL1 is a neurotransmitter with a unique structure belonging to the chemokine family,
with signaling mediated via ligation to its cognate receptor, CX3CR1. Unlike other chemokines,
CX3CL1 is primarily expressed in the kidney, heart, lung, and brain, with no expression seen in
leukocytes [12,13]. Many studies have shown that chemokines play an important role in the progression
of pain [14]. Intrathecal injection of CX3CL1 in naive rats was shown to induce thermal hyperalgesia
and mechanical allodynia, whereas injection of anti-CX3CR1 antibodies reduced the incidence of
allodynia and hyperalgesia [15]. Furthermore, results of the SNL model revealed increased expression
of CX3CL1 in astrocytes and upregulation of CX3CR1 in microglia of the spinal cord. These results
confirm that CX3CL1 and its receptor, CX3CR1, represent promising new targets for the treatment of
neuropathic pain [16].

Recently, gene therapies based on small interfering RNAs (siRNA) that silence disease-related
genes have attracted considerable attention due to their potential to treat genetic disorders and other
intractable conditions [17]. siRNA has been shown to interfere with the expression of specific protein
coding genes through the formation of an RNA-induced silencing complex, resulting in the degradation
of mRNA molecules. siRNAs may therefore be a good option for the treatment of neuropathic pain.
However, a major limitation on the use of siRNA, both in vitro and in vivo, is the potential for
off-target effects mediated by the strong anion charge of naked siRNAs and the high degradation of
nuclease-sensitive siRNA. Thus, the success of siRNA applications depends on the preparation of a
vector suitable for delivering a therapeutic gene to a specific target [18].

Poly(D,L-lactic-co-glycolic acid) (PLGA) is a Food and Drug Administration (FDA)-approved
method for delivering siRNA to specific targets [19]. PLGA has already proven effective as a vehicle
for the treatment of pain and for the delivery of certain drugs [20]. In particular, PLGA has numerous
features that are highly amenable to siRNA delivery. First, they are small enough for efficient tissue
infiltration and cellular uptake. Second, the siRNA is readily encapsulated within the PLGA matrix,
providing physical protection against RNase activity. Third, PLGA particles have highly controllable
and modifiable degradation profiles, enabling targeted drug release depending on the weight of the
target molecule and the structure and composition of the nanoparticles [21].

In this study, we examined the use of PLGA-encapsulated CX3CR1 siRNA nanoparticles for
the treatment of neuropathic pain in an SNL model. To test our hypothesis, we investigated
whether PLGA-encapsulated CX3CR1 siRNA nanoparticles can reduce pain behavior in SNL-induced
neuropathic pain rats.

2. Results

2.1. CX3CR1 siRNA Blocks CX3CR1 Expression in BV2 Cells and Reduces Expression of Pro-Inflammatory
Mediators in Lipopolysaccharide-Stimulated BV2 Cells

Before generating PLGA-encapsulated CX3CR1 siRNA nanoparticles, we confirmed the efficacy
and specificity of CX3CR1 siRNA in microglial cells. First, to evaluate whether CX3CR1 siRNA can
effectively reduce the CX3CR1 protein level in microglial cells, the experimental group was treated
with BV2 cells with CX3CR1 siRNA for two days, while the control group used scrambled (sc) siRNA.
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CX3CR1 protein levels were then detected by Western blot, and the CX3CR1/ACTB ratio was quantified.
The expression of CX3CR1 protein was reduced by approximately 50% in CX3CR1 siRNA-treated rats
compared to the control group (Figure 1A,B).
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Figure 1. CX3CR1 siRNA inhibits CX3CR1 expression in BV2 cells and attenuates expression of
proinflammatory mediators in lipopolysaccharide stimulated BV2 cells. (A,B) After transfection of
BV2 cells with CX3CR1 siRNA or scrambled control siRNA (sc siRNA) for 2 days, the expression of
CX3CR1 protein was detected by Western blot using an anti-CX3CR1 antibody, and the CX3CR1/ACTB
ratio was quantified. Data are presented as the mean ± SEM (t-test ***p < 0.001 versus sc siRNA).
(C) sc siRNA or CX3CR1 siRNA was transfected into BV2 cells for 2 days. mRNA levels of TNF-α,
IL-1β, and COX-2 were compared based on the presence or absence of LPS and quantified by qRT-PCR.
Data are presented as the mean ± SEM (one-way ANOVA with Tukey’s post hoc test, **p < 0.01 versus
sc siRNA + LPS). Cont, control; LPS, lipopolysaccharide.

Lipopolysaccharide (LPS) activates various cell types, including microglial cells, resulting in the
transcription of a wide range of proinflammatory mediators [22]. Based on these observations,
we investigated whether CX3CR1 siRNA treatment of microglial cells activated by LPS could
downregulate mRNA expression of proinflammatory genes such as TNF-α, iNOS, and COX-2.
mRNA expression of proinflammatory-related genes in the scrambled control siRNA (sc siRNA)- and
LPS-treated BV2 cells increased by 5- and 30-fold respectively, compared to sc siRNA-treated BV2
cells (Figure 2C). In contrast, CX3CR1 siRNA treatment significantly reduced gene expression by LPS
compared to both sc siRNA- and LPS-treated BV2 cells (Figure 1C). Together, these results show that
CX3CR1 siRNA significantly reduced protein expression in microglial cells, resulting in a decrease in
proinflammatory mediators in microglial cells activated by LPS.

2.2. Preparation and Characterization of PLGA-Encapsulated CX3CR1 siRNA Nanoparticles

Several factors were considered when selecting a gene delivery system to effectively deliver
CX3CR1 siRNA to microglia in the spinal cord, including efficacy, cost, safety, and convenience.
In this study, we used PLGA, a substance that has already have been proven biodegradable and
biocompatible in humans by the US Food and Drug Administration (FDA) [19]. PLGA nanoparticles
were prepared through sonication using the conventional double emulsion (W/O/W) method, as
reported in our previous papers [23–25], and hydrophilic siRNA was effectively encapsulated in PLGA
nanoparticles (Figure 2A). The uniformity and morphology of the nanoparticles were confirmed by
scanning electron microscopy (SEM) (Figure 2B). In addition, Zetasizer measurements revealed the
formation of monodisperse particles (PDI ≤ 0.2) within the desired size range for siRNA encapsulation.
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The average size and zeta potential of PLGA-encapsulated CX3CR1 siRNA nanoparticles measured
using the Zetasizer ZS90 were 227.8 nm and −34.3 mV, respectively (Figure 2C,D).

2.3. Mechanical Allodynia and Upregulated Microglia Activation in SNL-Induced Rats

To evaluate pain behavior caused by neuropathic pain, we used SNL, a well-established model
for evaluating neuropathic pain in rats [26]. Before SNL surgery, rats were subjected to the von Frey
filament test, and only rats that passed the predefined baseline (≥10 g) were used for subsequent
analyses to avoid affecting the results of the behavior test. Mechanical allodynia in the rats was
evaluated at 3, 5, 7, 10, and 14 days after surgery. For all rats undergoing SNL surgery, the mechanical
threshold for the ipsilateral-side paws began to decrease on day 3, peaked on day 10, and persisted
until day 14 (Figure 3A). In contrast, the sham group did not show mechanical allodynia on the
ipsilateral-side paws (Figure 3B).

After SNL surgery, microglia are activated in the ipsilateral dorsal horn of the spinal cord.
Activation of microglia on the contralateral side was not observed. To assess the activation of microglia,
tissue sections were immuno-stained using an anti-Iba 1 antibody. In the sham group, microglia
were not activated in the dorsal horn on either side of the spinal cord; however, in the SNL group,
the microglia on the ipsilateral side was dramatically activated in the dorsal horn as well as in the
ventral horn compared to the contralateral side at 3 days post-operation (Figure 3C,D).
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Figure 2. Characterization of siRNA-encapsulated Poly(D,L-lactic-co-glycolic acid) (PGLA) nanoparticles.
(A) siRNA-encapsulated PLGA nanoparticles were prepared by sonicating a mixture of PGLA and CX3CR1
siRNA. (B) Nanoparticles were assessed by scanning electron microscope (SEM), and particle size (C)
and zeta potential (D) were examined using a Zetasizer Nano ZS. Scale bar = 300 nm.
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Figure 3. Mechanical allodynia and upregulated microglia activation in spinal nerve ligation-induced rats.
(A) Neuropathic pain in rats was induced by spinal nerve ligation at the L5 vertebra. (B) Afterwards,
the rats were subjected to a pain behavior test using von Frey filaments to evaluate the development of
neuropathic pain. Data are presented as the mean ± SEM (one-way analysis of variance (ANOVA) with
Dunnett’s post hoc test, ***p < 0.001 versus Ipsi), n = 8 per group (C,D) At 3 days post-SNL surgery, L5
spinal sections were made and immuno-stained with anti-Iba-1 antibody (a microglia-specific marker).
Scale bar = 150 µm (top), 100 µm (bottom). Data are presented as the mean ± SEM (t-test ***p < 0.001 versus
Contra), n = 8 per group SNL, spinal nerve ligation; Contra, contralateral; Ipsi, ipsilateral; DH, dorsal horn;
VH, ventral horn.

2.4. Intrathecal Injection of PLGA-Encapsulated CX3CR1 siRNA Nanoparticles Reduces Mechanical Allodynia
in SNL-Induced Rats

To investigate whether PLGA-encapsulated CX3CR1 siRNA nanoparticles can alleviate pain
behavior caused by neuropathic pain, sc siRNA or PLGA-encapsulated CX3CR1 siRNA nanoparticles
were injected into the intervertebral space of SNL-induced rats on the fourth day, when the pain
was stabilized after surgery, using a Hamilton syringe (Figure 4A). The mechanical threshold was
measured using von Frey filaments at 3, 5, 7, 9, 10, 12, and 14 days post-surgery. In the CX3CR1
siRNA-treated group, mechanical allodynia was improved at day 6 after injection, with the most
significant effects seen on day 10 (Figure 4B). In contrast, no change was observed in the group injected
with sc siRNA-encapsulated PLGA nanoparticles.



Int. J. Mol. Sci. 2020, 21, 3469 6 of 12

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 13 

 

To investigate whether PLGA-encapsulated CX3CR1 siRNA nanoparticles can alleviate pain 
behavior caused by neuropathic pain, sc siRNA or PLGA-encapsulated CX3CR1 siRNA 
nanoparticles were injected into the intervertebral space of SNL-induced rats on the fourth day, 
when the pain was stabilized after surgery, using a Hamilton syringe (Figure 4A). The mechanical 
threshold was measured using von Frey filaments at 3, 5, 7, 9, 10, 12, and 14 days post-surgery. In the 
CX3CR1 siRNA-treated group, mechanical allodynia was improved at day 6 after injection, with the 
most significant effects seen on day 10 (Figure 4B). In contrast, no change was observed in the group 
injected with sc siRNA-encapsulated PLGA nanoparticles.  

To confirm whether PLGA-encapsulated CX3CR1 siRNA nanoparticles reduced the expression 
of CX3CR1 in the spinal cord, L5 spinal dorsal horn tissues were collected at 6 days post-intrathecal 
injection that had the best pain relief effect. CX3CR1 siRNA treatment significantly reduced the 
expression of CX3CR1 protein, as determined by Western blot using anti-CX3CR1 antibodies (Figure 
4C, D). Together, these data show that intrathecal injection of PLGA-encapsulated CX3CR1 siRNA 
nanoparticles significantly improved SNL-induced pain behavior.  

 
Figure 4. Intrathecal injection of PLGA-encapsulated CX3CR1 siRNA nanoparticles alleviates 
mechanical allodynia in spinal nerve ligation-induced rats. (A) sc siRNA or CX3CR1 siRNA 
nanoparticles were injected intrathecally at 4 days post-SNL nerve injury. (B) Rats were then 
subjected to pain behavior testing using von Frey filaments to evaluate the effect of CX3CR1 siRNA 
on neuropathic pain. Data are presented as the mean ± SEM (one-way ANOVA with Dunnett’s post 
hoc test, **p < 0.01 versus sc NPs-Ipsi), n = 7 per group. (C) At 6 days post-intrathecal injection, L5 

Figure 4. Intrathecal injection of PLGA-encapsulated CX3CR1 siRNA nanoparticles alleviates
mechanical allodynia in spinal nerve ligation-induced rats. (A) sc siRNA or CX3CR1 siRNA
nanoparticles were injected intrathecally at 4 days post-SNL nerve injury. (B) Rats were then subjected
to pain behavior testing using von Frey filaments to evaluate the effect of CX3CR1 siRNA on neuropathic
pain. Data are presented as the mean ± SEM (one-way ANOVA with Dunnett’s post hoc test, **p < 0.01
versus sc NPs-Ipsi), n = 7 per group. (C) At 6 days post-intrathecal injection, L5 spinal sections were
made, and expression of CX3CR1 protein was detected by Western blot using an anti-CX3CR1 antibody,
and the CX3CR1/ACTB ratio was quantified. (D) Data are presented as the mean ± SEM (t-test,
one-way ANOVA, **p < 0.01 versus sc siRNA NPs), n = 7 per group NPs, nanoparticles; i.t, intrathecal;
sc, scrambled; Ipsi, ipsilateral.

To confirm whether PLGA-encapsulated CX3CR1 siRNA nanoparticles reduced the expression of
CX3CR1 in the spinal cord, L5 spinal dorsal horn tissues were collected at 6 days post-intrathecal injection
that had the best pain relief effect. CX3CR1 siRNA treatment significantly reduced the expression of
CX3CR1 protein, as determined by Western blot using anti-CX3CR1 antibodies (Figure 4C,D). Together,
these data show that intrathecal injection of PLGA-encapsulated CX3CR1 siRNA nanoparticles
significantly improved SNL-induced pain behavior.

2.5. PLGA-Encapsulated CX3CR1 siRNA Nanoparticles Reduce Microglial Activation and Downregulate the
Expression of Neuropathic Pain-Related Genes in the Spinal Dorsal Horn of the SNL-Induced Rat Spinal Cord

Increased expression of CX3CR1 in microglia plays an important role in neuropathic pain. Thus,
we hypothesized that inhibiting the expression of CX3CR1 using PLGA-encapsulated CX3CR1 siRNA
nanoparticles could reduce microglia activation and alleviate neuropathic pain. As expected, microglial
activation was significantly reduced, in terms of both the absolute number and cell density, in the
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ipsilateral dorsal horn on day 3 post-injection in the CX3CR1 siRNA group compared to the sc siRNA
group (Figure 5A,B).

Next, we examined changes in neuropathic pain-related inflammatory genes’ expression. Spinal
dorsal horn tissues on the ipsilateral side were collected separately on day 3 post-injection, and the
mRNA levels of proinflammatory genes including TNF-α, IL-1β, IL-6, and COX-2 were measured by
qRT-PCR. mRNA levels of these proinflammatory genes were significantly decreased in the group
injected with PLGA-encapsulated CX3CR1 siRNA nanoparticles compared to the group injected with
sc siRNA-encapsulated PLGA nanoparticles (Figure 4E).

Together, these data indicate that PLGA-encapsulated CX3CR1 siRNA nanoparticles inhibit the
expression of CX3CR1, thereby inhibiting microglial activation and the expression of proinflammatory
genes and alleviating neuropathic pain in SNL-induced rats.
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Figure 5. PLGA-encapsulated CX3CR1 siRNA nanoparticles attenuate expression of proinflammatory
mediators in SNL rats. (A,B) At 6 days post-intrathecal injection, L5 spinal sections were made and
incubated with anti-Iba-1 and anti-CX3CR1 antibodies. Data are presented as the mean ± SEM (t-test,
**p < 0.01 versus sc siRNA NPs), n = 7 per group. Scale bar = 50 µm (C) On day 6 post-injection, total
mRNA was extracted from the ipsilateral spinal dorsal horn at L4–5 (0.7 cm) and utilized for cDNA
synthesis. mRNA levels of TNF-α, IL-1β, and cyclooxygenase (COX) 2 were then measured using
qRT-PCR. Data are presented as mean ± SEM (one-way ANOVA with Tukey’s post hoc test, **p < 0.01
versus sc siRNA NPs), n = 7 per group. sc, scrambled; NPs, nanoparticles.

3. Discussion

Neuropathic pain is a chronic condition that can be difficult to treat. Various methods have been
developed to treat neuropathic pain, including drug therapies, such as analgesics, antiepileptic drugs,
tricyclic antidepressants (TCA), serotonin-norepinephrine reuptake inhibitors (SNRIs), and opioids,
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as well as mechanical interventions such as nerve blockage, spinal cord stimulation, and intrathecal
pumps; however, the effectiveness of these treatments remains unclear [27]. The development of new
methods for the treatment of neuropathic pain are therefore necessary. Here, we investigated the use
of siRNA-encapsulated nanoparticles targeting microglial-specific genes to reduce microglia activation
in neuropathic pain.

Activated microglia in the spinal cord play an important role in the development of neuropathic
pain. Activated microglia have been shown to induce and sustain neuropathic pain by stimulating
secretion of various proinflammatory factors, such as TNF-α, IL-1β, and IL-6. Therefore, reduction of
microglial activation represents a promising therapeutic target for the reduction of neuropathic pain.
Drugs that reduce the activity of microglia include minocycline and pentoxifylline. While effective,
these drugs have the potential to generate cytotoxicity when used at high doses [28] and have limited
use due to their short half-life [29]. Accordingly, gene therapies that can reduce the activation of
microglia and can be used for longer durations are of particular interest.

CX3CR1 is upregulated in spinal microglia upon nerve injury and is involved in the development
and maintenance of neuropathic pain [30]. In addition, upregulation of CX3CR1 is essential for
activation of the p38 MARK pathway, which contributes to the development of neuropathic pain [2].
Therefore, we attempted to reduce neuropathic pain in rats with SNL-induced neuropathic pain
by reducing the activation of microglia through silencing of the CX3CR1 gene expression in the
spinal microglia. First, the anti-inflammatory effect of CX3CR1 siRNA on LPS-stimulated BV2 cells
in microglial cells was confirmed. Subsequently, synthesized PLGA-encapsulated CX3CR1 siRNA
nanoparticles were injected intrathecally to evaluate the effect on neuropathic pain via intrathecal
injection of PLGA-encapsulated CX3CR1 siRNA nanoparticles. As a result, pain behavior was clearly
alleviated, and microglia activation was significantly suppressed in SNL-induced neuropathic pain
rats injected with PLGA-encapsulated CX3CR1 siRNA nanoparticles. Moreover, the synthesis of
proinflammatory mediators such as TNF-α, IL-1β, and COX2 was inhibited by PLGA-encapsulated
CX3CR1 siRNA nanoparticles. These results suggest that the silence of the CX3CR1 gene inhibits
the activation of microglia, thereby alleviating neuropathic pain. However, even on day 7 after the
intrathecal injection, which showed a greater effect, these rats continued to show lower mechanical
thresholds than did sham rats and contralateral controls. Thus, it is not possible to control all
neuropathic pain by regulating only the activity of microglia, though significant symptom relief can
be expected.

In this study, nanoparticles were used to effectively deliver CX3CR1 siRNA. Nanoparticles are a
suitable system for most drug administration routes. Various natural and synthetic polymers have been
studied for several years to improve the biocompatibility and biodegradability of nanoparticles. Among
them, PLGA used in this study is the most commonly used polymer because of its biocompatibility and
resorption through natural pathways. As such, research on nanoparticles’ manufacturing continues.
As a result, nanoparticles are attractive mediators for gene silencing and are an effective means of
treating neuropathic pain due to their various advantages, including efficient cell uptake, sustained
intracellular drug release, favorable safety profiles, low cost, and ease of manufacture. However,
the disadvantage of PLGA nanoparticles is that siRNA encapsulation efficiency and delivery power
are lower than that of recombinant viruses. Therefore, further research will be needed.

4. Materials and Methods

4.1. Animals and Materials

Sprague-Dawley rats (6-week-old males, 150~200 g) were purchased form Daehan Bio Link (DBL,
Chung-buk, Republic of Korea) and placed in the study habitat 1 week before the experiment to allow
for adaptation to the environment. Rats were housed three per cage in a controlled environment with
a 12 h light/dark cycle and free access to food and water. This study was approved by the Animal
Care and Use Committee at the Chungnam National University (CNUH-019-A0040) and followed the
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ethical guidelines of the National Institutes of Health and the International Association for the Study
of Pain [31]. The number of animals used in the experiment was 29 per each group, and only rats
that passed the basic baseline were used. siRNAs in this study were purchased from Thermo Fisher
Scientific (MO, USA) unless otherwise noted. Scrambled siRNA (cat 12935400) and CX3CR1 siRNA
(cat 1330001) for the preparation of PLGA nanoparticles were obtained from Thermo Fisher Scientific.

4.2. siRNA Transfection into BV2 Cells

BV2 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine
serum (FBS). All cultures were kept at 37 ◦C in a 5% CO2 humidified incubator. Scrambled siRNA
or CX3CR1 siRNA was introduced into BV2 cells using the Lipofectamine 2000 transfection reagent
(Thermo Fisher Scientific).

4.3. Western Blot and Immunohistochemistry

Spinal cords collected for the purpose of immunostaining were cryopreserved at –80 ◦C after
fixing in 4% PFA and cryoprotected in 30% sucrose for 2–3 days. Thereafter, spinal cords were
sectioned coronally at 35 µm using a freezing microtome, and sections were stored in PBS. Nuclei were
counterstained with Hoechst 33342 and visualized with a confocal microscope. The immune densities
in the graphs were quantified using Image J software.

4.4. Quantitative RT-PCR

Total RNA from BV2 cells was isolated using TRIzol reagent according to the manufacturer’s
protocol (Gene All, RoboExTM). RNA concentrations were quantified using a Nanodrop spectrometer
(Thermo scientific). cDNA was prepared from total RNA using a commercially available kit
(Enzynomics, B201). Quantitative polymerase chain reaction (qPCR) was performed using the
AriaMax Real-time PCR system (Agilent Technologies) with the TOPreal qPCR 2X premix (SYBR
Green with low ROX). The primers used for rat TNF-α, IL-1β, and COX2 were as follows: TNF-α
5′-AGATGTGGAACTGGCAGAGG-3′, and antisense 5′-CCCATTTGGGAACTTCTCCT-3′; IL-1β,
5′-CAGCAGCATCTCGACAAGAG-3′, and antisense 5′-CATCATCCCACGAGTCACAG-3′ COX2,
5′-CAGTATCAGAACCGCATTGCC-3′, and antisense 5′-GAGCAAGTCCGTGTTCAAGGA-3′.

4.5. PLGA Nanoparticle Preparation

PLGA nanoparticles from the Nanoglia Company (Daejeon, Republic of Korea) were prepared as
reported previously, with minor modifications [23]. Briefly, 200 µL of 20 µM siRNA in DEPC water
(Enzynomics) was added on a drop-by-drop basis to 800µL of dichloromethane (DCM) containing 25 mg
of PLGA (Corbion, Amsterdam, The Netherlands), emulsified by sonication (10%, 30 s; Vibra-CellTM
VCX 130; Sonics, Newtown, CT, USA) into a primary W1/O emulsion, and then further emulsified by
sonication to form a W1/O/W2 double emulsion. The resulting product was then diluted with 5 mL
of 1% PVA1500 and incubated on a magnetic stir plate for 3 h at room temperature to evaporate the
DCM. The PLGA nanoparticles were collected by ultracentrifugation (Optima Max Ultracentrifuge,
Beckman Coulter, CA, USA) at 38,000 g for 10 min at 4 ◦C, washed once with deionized RNAase-free
water, resuspended in water, and freeze-dried. The physical characteristics were then analyzed with
the Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) and electron microscopy.

4.6. Induction of Neuropathic Pain by L5 SNL

Neuropathic pain in rats was achieved through the widely used L5 nerve root spinal nerve ligation
(SNL) method [4,26]. Rats were anesthetized in a prone position by intramuscular injection of 8 mg of
Alfaxan (Jurox Animal Health, North Kansas City, USA) into the right hind limb. After applying the
potadine ball on the lower back, the paraspinal muscle on the left side was separated using a 2 cm skin
incision. The L5 transverse process was then removed to expose the L4 and L5 vertebrae, and the L5



Int. J. Mol. Sci. 2020, 21, 3469 10 of 12

nerve was carefully isolated from the L4 nerve without damage. The isolated L5 nerve was ligated
three times using 3-0 silk thread (Ethicon, Diegem, Belgium). The wound was sutured after confirming
complete hemostasis. In the sham group, the L5 vertebrae was exposed in the same way as in the SNL
group, but the L5 nerve ligation was not performed.

4.7. Pain Behavior Test with Von Frey Filaments

The pain behavior test was evaluated using manual von Frey filaments (NC12775-99, North Coast
Medical and Rehabilitation Products, CA, USA), as described previously [31–33]. Rats were placed in
an acrylic box placed on a 2 × 2 mm wire mesh test table and allowed to acclimate for at least 10 min.
A monofilament was applied perpendicularly to the plantar surface of the affected paw for 3–5 s, which
was performed 10 times for each monofilament. A response is considered positive if rats exhibits
any behavior, such as licking or evasive reaction, more than 6 times. If it shows positive, it proceeds
stimulating with the next smaller sized filament, and the smallest size that shows positive is set as a
threshold. Each group was randomly mixed and only one experimenter performed the test, and the
results were recorded by another experimenter.

4.8. Intrathecal Injection

Intrathecal injection was performed as follows [34]. Rats were placed in a prone position after
anesthesia via Alfaxan. Then, 20 µL of solution (scrambled siRNA or PLGA-encapsulated CX3CR1
siRNA nanoparticles) was injected intrathecally through the intervertebral space between L5 and L6
using a Hamilton syringe (100 µL; Reno, NV, USA) mounted with a 26 gauge needle. Upon successful
injection, obvious tail movement was observed.

4.9. Statistical Analysis

The data are expressed as the mean ± standard error of the mean (SEM). Statistical significance in
comparisons of multiple groups was assessed by t-test and one-way analysis of variance (ANOVA),
followed by an appropriate multiple comparison test. p-values ≤ 0.05 were considered statistically
significant. *p-values < 0.05 and the data were analyzed by the Shapiro–Wilk test for normality.
All statistical analyses were performed using GraphPad Prism 6 (GraphPad Software Inc., CA, USA).

5. Conclusions

Our data indicate that PLGA-encapsulated CX3CR1 siRNA nanoparticles effectively reduce
neuropathic pain in SNL-induced rats by reducing microglial activity and expression of proinflammatory
mediators. Therefore, we believe that PLGA-encapsulated CX3CR1 siRNA nanoparticles are valuable
as a new treatment for neuropathic pain.
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