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Abstract

Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the
gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of
this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients. Whole
genome expression profiling of breast cancers from 185 patients in Taiwan from 1995 to 2008 was performed, and the
results were compared to the previously published literature to detect differences between Asian and Western patients.
Pathway analysis and Cox proportional hazard models were applied to construct a prediction model for the recurrence of
triple negative breast cancer. Hierarchical cluster analysis showed that triple negative breast cancers from different races
were in separate sub-clusters but grouped in a bigger cluster. Two pathways, cAMP-mediated signaling and ephrin receptor
signaling, were significantly associated with the recurrence of triple negative breast cancer. After using stepwise model
selection from the combination of the initial filtered genes, we developed a prediction model based on the genes SLC22A23,
PRKAG3, DPEP3, MORC2, GRB7, and FAM43A. The model had 91.7% accuracy, 81.8% sensitivity, and 94.6% specificity under
leave-one-out support vector regression. In this study, we identified pathways related to triple negative breast cancer and
developed a model to predict its recurrence. These results could be used for assisting with clinical prognosis and warrant
further investigation into the possibility of targeted therapy of triple negative breast cancer in Taiwanese patients.
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Introduction

Breast cancer is the most common female solid tumor, and is

among the top five leading causes of cancer-related death among

Taiwanese women [1]. It is a heterogeneous disease that

encompasses a spectrum of distinct phenotypes with disparate

histopathological, clinical and molecular features. It can be

classified into different subtypes on the basis of cellular

morphology and the presence of several receptors, i.e., estrogen

receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (ERBB2/HER2). Understanding its

pathophysiology has led to the development of targeted therapies

and improvement in clinical outcomes for patients. For example,

for hormone receptor-positive breast cancer patients, hormone

therapy has been approved as an adjuvant therapy, while for

HER2-positive breast cancer, targeted therapy can be effective.

However, one type of breast cancer, triple-negative breast cancer

(TNBC), does not express ER, PR, and HER2. The signaling

pathways and genes involved in TNBC have been studied for

years, but there has been no significant progress toward adjuvant

therapy. The prognosis of breast cancer is highly correlated with

its subtype, and without adjuvant therapy, TNBC has the worst

prognosis and of any breast cancer subtype [2–4]. The treatment

of TNBC, therefore, remains a difficult challenge in clinical

practice.

TNBC comprises approximately 10–16% of breast cancer cases

[2,5]. The main characteristic of TNBC is that it frequently affects

younger patients, occurring predominantly in premenopausal

women [6,7]. The molecular mechanisms of TNBC still remain

unclear, although their association with poor prognosis is thought

to be due to aggressive biology and resistance to presently available

endocrine therapies, agents targeting HER2 pathways, and

standard cytotoxic chemotherapies.

Recent evidence supports the idea that the epidemiology and

prognosis of breast cancer differs between races, most likely due to

different genetic compositions [5,8,9]. Discrepancies in the
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prognosis of TNBC between Western and Asian populations in

Taiwan were specifically noted [2]. However, few studies have

investigated the genetic differences between breast cancers from

Caucasian and Asian populations, let alone lower incidence of

TNBC than other subtypes.

Since the advent of microarray chips, the mechanisms of breast

cancer have been studied intensively, such that the subtype of

breast cancer can be identified by its gene expression profile [10].

Breast cancer gene expression profiles have been identified across

different microarray platforms by different research groups [11].

Several prediction models have been proposed, such as the 70-

gene profile, two-gene ratio, or singular value decomposition, to

predict lymph node metastasis [12–18]. The 70-gene profile for

disease outcome prediction was a pioneering study, and has since

been verified in several other studies [13]. It not only predicts

outcomes effectively, but also outperforms other methods based on

clinical parameters. Other studies using microarray gene expres-

sion profiles for clinical outcome prediction also provide

satisfactory results [12,14–17]. The use of microarray chips has

proven to be a useful strategy to detect candidate genes and

pathways involved in tumor progression.

The aforementioned success, however, has not been observed

for TNBC patients, especially in the prediction of recurrence.

Difficulties have arisen because of its relatively complex etiology,

and because of the deficiency of TNBC samples. Yet, knowledge

of the genes associated with recurrence of TNBC is desperately

needed for designing prediction models and treatment strategies,

possibly including targeted therapy.

This study used a Cox proportional hazards model to predict

TNBC recurrence in a Taiwanese population. We compared the

expression profiles of breast cancers from 185 Taiwanese patients

to profiles from a Caucasian population [16]. The microarray

results revealed differences in TNBC gene expression profiles in

different ethnic groups. Pathway analysis showed that several

canonical pathways, such as cAMP-mediated signaling and ephrin

receptor signaling, are activated in association with recurrence in

TNBC. Furthermore, six prognostic genes were identified for

predicting the risk of recurrence of TNBC in Taiwanese patients.

Materials and Methods

Ethnic Statement
Written informed consent was acquired from all patients and/or

guardians for the use of their tissue samples. This study was

reviewed and approved by Research Ethics Committee of

National Taiwan University Hospital.

Sample collection
One hundred and eighty-five female breast cancer samples were

collected at the National Taiwan University Hospital between

1995 and 2008. Breast tissue specimens were immediately snap-

frozen in liquid N2 and stored at 280uC for RNA extraction.

Similar numbers of samples in each subtype were included in this

study; therefore the percentage of each subtype was not

compatible with its prevalence.

Isolation and amplification of total RNA for gene
expression profiling

Total RNAs from the tissue specimens were extracted by

TRIzolH reagent (Invitrogen, Carlsbad, CA) and subsequently

purified with RNeasyH Mini Kits (Qiagen) according to the

manufacturer’s instructions. The integrity of RNA was determined

using a 2100 BioAnalyzer (Agilent Technologies). RNA that had

an RNA Integrity Number (RIN) .7.0 was used for microarray

analysis. Total RNA (500 ng) was first reverse transcribed into

cDNA by incorporating a T7 oligo-dT promoter primer prior to

the generation of fluorescent Cy5-labeled cRNA using an Agilent

Quick Amp Labeling Kit (Agilent Technologies). The labeled

cRNA was purified using an RNeasy Mini Kit (Qiagen) and

quantified using a NanoDrop ND-1000 instrument (Thermo

Fisher Scientific). The common reference design was used where

Universal Human Reference RNA (Stratagene, La Jolla, CA) was

hybridized to every sample. Cy3- (reference) and Cy5-labeled

(sample) cRNAs were co-hybridized to the Agilent Human 1Av2

oligo microarray using a Gene Expression Hybridization Kit

(Agilent Technologies). All procedures were performed based on

the manufacturer’s protocols. The glass slides were scanned using

an Agilent G2565BA microarray scanner. Raw data were

collected using the Feature Extraction software (Agilent Technol-

ogies) and normalized by applying the rank consistency LOWESS

normalization. Microarray data of this study are MIAME

compliant, and have been submitted to the MIAME compliant

GEO (Gene Expression Omnibus) database (accession number

GSE33095).

Data mining and statistical analysis
In order to investigate whether discrepancies exist in gene

expression profiles of breast cancer between Caucasian and Asian

populations, our data were combined with another microarray

data with the same platform and analyzed together [16]. In order

to make these two datasets comparable, the microarray data were

processed as follows. First, due to the difference in versions of

Agilent chips, only 8843 genes existing in both datasets were used

for further analysis. Secondly, because the reference sample of van

de Vijver’s data was mixed samples of all breast cancer, not

Universal Human Reference RNA, the expression value of each

gene in our dataset was further normalized by its corresponding

mean. Thirdly, differentially expressed genes were selected if they

had a §4-fold change as compared to the median based on at

least 15 samples. Fourthly, because the HER2 and PR staining

status were not available, the expression levels of ERBB2 and PGR

were used for representing HER2 and PR status. After the HER2

and PR status was determined, the similarity of gene expression

profiles between samples was assessed by average-linkage hierar-

chical clustering using Euclidean distance. The Database for

Annotation, Visualization and Integrated Discovery (DAVID) was

applied for significant genes differentiated by two-way ANOVA

[19,20]. Lastly, in order to examine their expression patterns in

Asian populations, a list of basal-like characteristic genes in

Caucasians was collected from the published literature

[10,11,21,22].

Construction of the recurrence model for TNBC and
pathway analysis

Among the 185 Taiwanese breast cancer patients, 51 were

diagnosed with TNBC. After excluding those with distant

metastasis upon diagnosis (n = 3), 48 patients with non-terminal

stage TNBC were included for constructing the recurrence model.

The time interval of recurrence was defined as the period between

the surgery date and the date when recurrence was detected. In

order to investigate the risk of recurrence among TNBC subjects, a

Cox proportional hazards ratio model was applied to each gene.

The coefficients in a Cox regression related to hazard. A positive

coefficient in a Cox regression model indicated high risk of

recurrence as expression level of gene increases; whereas a

negative coefficient indicated low risk of recurrence as expression

level of gene increases. Genes whose expression levels were

associated with the time to recurrence of TNBC were selected at

Genes for Predicting Recurrent Risk in TNBC
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the significance level of 0.005 using Ingenuity Pathway Analysis

(IPA; Ingenuity Systems Inc., Redwood City, USA). Furthermore,

in order to select the most appropriate model for recurrence

prediction, the Akaike information criterion (AIC) and Bayesian

information criterion (BIC), measures of the goodness of fit of an

estimated statistical model, were applied. Lastly, we chose the

predictive model with the best score of model selection, and

examined whether the model contained genes related to breast

cancer.

Cross-validation of the recurrence model by leave-one-
out support vector regression

The support vector machine, a well-developed machine

learning method, was used to train the recurrence model and

cross-validate the results by leave-one-out. Briefly, support vector

regression was done at two steps: first, training the recurrence

model with current data; second, applying on a new dataset to

predict the outcomes. The outcomes were cross-validated by using

a single observation from the original sample as the validation

data, and the remaining observations as the training data. This

was repeated such that each observation in the sample was used

once as the validation data.

Results

Clinical characteristics of samples
The clinical characteristics of samples used in this study are

summarized in Table 1. Based on the result of immunohisto-

chemistry (IHC) stains of ER, PR and HER2, there were 49

luminal A, 31 luminal B, 35 HER2, 51 triple negative, and 19

other types. All these patients received surgery, adequate

chemotherapy and adjuvant therapy. Twenty-four of them were

grade 1, 77 grade 2, and 71 grade 3. Among these patients, 33

were diagnosed as stage I, 84 as stage II, 58 as stage III, and 10 as

stage IV. The median follow-up time was 4.15 years; 40 patients

relapsed after their first surgery, and the rest (145 patients) did not

experience recurrence by the end of this study.

Classification of tumor subtypes by gene expression
profiling

In order to investigate the differences in the expression profiles

of breast cancers from Caucasian and Asian populations, we

compared our microarray data with that of van de Vijver et al.

[16]. To make these two datasets comparable, the data were

processed as described in Materials and Methods. There were 506

differentially expressed genes, defined as a §4-fold change as

compared to the median of at least 15 samples. Average-linkage

hierarchical clustering using Euclidean distance was applied to the

normalized expression values to evaluate the similarity of gene

expression profiles between Caucasian and Asian populations. As

shown in Figure 1A, TNBC samples in van de Vijver’s study (blue

bars) and those in this study (yellow bars) are in separate

subclusters, but most of the TNBC samples were grouped in the

bigger cluster (pink line). Although 29.8% of TNBC samples were

scattered outside of the major group, these results still indicated

that the characteristics of gene expression cannot only be used to

distinguish TNBC from other cancer types, but also that

differences in the expression profile of TNBC do exist between

different ethnic groups. To emphasize the differences between the

two ethnic groups, the dendrogram and heatmap were expanded

Table 1. Summary statistics for patient profile (n = 185).

Clinical characteristics Sample size (n) Percentage Sample size of TNBC (n) Percentage of TNBC

Histological Types

Luminal A 49 26%

Luminal B 31 17%

HER2 35 19%

Triple negative 51 28%

Others 19 10%

Grade

Grade 1 24 13% 0 0%

Grade 2 77 42% 15 29%

Grade 3 71 38% 32 63%

Missing data 13 7% 4 8%

Stage

Stage I 33 18% 12 24%

Stage IIA 42 23% 18 35%

Stage IIB 42 23% 7 14%

Stage IIIA 29 16% 4 8%

Stage IIIB 3 2% 1 2%

Stage IIIC 26 14% 6 12%

Stage IV 10 5% 3 6%

Recurrence

Yes 40 22% 14 27%

No 145 78% 37 73%

doi:10.1371/journal.pone.0028222.t001
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by average-linkage clustering to show only the profiles of TNBC

samples (Figure 1B). Similar procedures applied on another

dataset GSE18229 (Figure S1), both results showed apparent

differences between different races.

Next, statistical analysis using two-way ANOVA revealed that

66 genes had differential expression between the different races,

but not across cancer subtypes. Pathway analysis using DAVID

also revealed that these genes were involved in drug metabolism of

fluorouracil and retinol metabolism, indicating that these path-

ways could account for the differences in ethnic groups but not in

breast cancer subtypes (Table S1) [19,20]. Furthermore, we

collected 62 reported basal-like genes (Table S2) from Western

populations, and examined their expression patterns in our

samples [10,11,21,22]. As shown in Figure 1C, no obvious up-

regulation of these basal-like genes was observed in our TN

samples, but they were all up-regulated in the samples from

Western populations [10,11,21,22]. These results showed that the

expression profiles of TNBC are different in Caucasians and

Asians.

Pathway analysis and prediction model for recurrence
Since we knew that differences exist between Western and

Eastern populations, we then focused on identifying genes

associated with recurrence in our TNBC samples. There were

51 TNBC samples, and 48 of them were used for constructing a

recurrence model because 3 TNBC patients had distant metastasis

upon diagnosis. The time interval of recurrence was defined as the

period between the surgery date and the date when recurrence was

detected. In order to investigate the hazard of recurrence among

TNBC subjects, a Cox proportional hazards model was construct-

ed for each gene. There were 391 genes whose expression levels

were significantly (P,0.005) associated with recurrence time in

TNBC.

To further investigate which pathways were active in genes

associated with recurrence of TNBC, Ingenuity Pathway Analysis

was performed. Table 2 lists the canonical pathways in which

genes associated with recurrence of TNBC were significantly

enriched. The top two pathways were cAMP-mediated signaling

and ephrin receptor signaling.

Next, in order to establish an appropriate model to predict the

probability of recurrence of TNBC, Cox proportional hazards

models using different combinations of genes were applied.

Considering that the total number of genes at P,0.005 level

was enormous, genes at P,0.0005 level were used for establishing

the prediction model. There were 35 genes with P values,0.0005

(Table 3).

The recurrence hazards of all possible combinations of 35 genes

(34.3 billion combinations) were calculated using Cox proportional

hazards models. The Akaike information criterion (AIC) was used

to select the most appropriate model for recurrence prediction.

The model with the smallest AIC was considered the best of 34.3

billion combinations. The top 10 best-fitted models are listed in

Table 4. The first model, which contains SLC22A23, PRKAG3,

DPEP3, MORC2, GRB7, and FAM43A, has not only the smallest

AIC but also the smallest Bayesian information criterion (BIC).

This model was further cross-validated by leave-one-out support

vector regression, during which 91.7% accuracy with 81.8%

sensitivity and 94.6% specificity was achieved. These results

suggest that the six-gene model presented can be used to predict

the recurrence of TNBC in Taiwanese patients.

Table 2. Canonical pathways in which genes were associated with recurrence of TNBC.

Ingenuity Canonical Pathways 2log(P-value) Gene No. (%*) Genes#

cAMP-mediated Signaling 3.70 11 (6.83%) AKAP12, GNAI2, AKAP13, ADCY5, MAPK3, PDE1B, PRKAR1B, DUSP4,
RAPGEF3, AKAP1, ATF2

Ephrin Receptor Signaling 3.33 11 (5.61%) GNAI2, GRIN1, EPHA8, MAPK3, GRIN2D, ABL1, HRAS, ITGA3, PGF,
EFNA1, ATF2

Pancreatic Adenocarcinoma Signaling 3.09 8 (6.90%) TGFB1, MAPK3, ABL1, HBEGF, CDKN1B, E2F3, PGF, BCL2

Amyotrophic Lateral Sclerosis Signaling 2.71 7 (6.25%) GRIN1, CACNA1E, GRIN2D, RAB5C, CAPN7, PGF, BCL2

Cardiac b-adrenergic Signaling 2.66 8 (5.63%) AKAP12, AKAP13, CACNA1E, ADCY5, ADRBK2, PDE1B, PRKAR1B,
AKAP1

Chronic Myeloid Leukemia Signaling 2.66 7 (6.67%) TGFB1, MAPK3, HDAC7, ABL1, HRAS, CDKN1B, E2F3

Circadian Rhythm Signaling 2.56 4 (1.14%) PER1, GRIN1, GRIN2D, ATF2

Synaptic Long Term Potentiation 2.44 7 (6.19%) GRIN1, MAPK3, GRIN2D, PRKAR1B, HRAS, RAPGEF3, ATF2

Cell Cycle: G1/S Checkpoint Regulation 2.37 5 (8.47%) TGFB1, HDAC7, ABL1, CDKN1B, E2F3

Prostate Cancer Signaling 2.36 6 (6.25%) MAPK3, ABL1, HRAS, CDKN1B, BCL2, ATF2

*Percentage of the number of differentially expressed genes in each canonical pathway.
#Differentially expressed genes in each canonical pathway.
doi:10.1371/journal.pone.0028222.t002

Figure 1. Gene expression profiles of Triple negative breast cancer differ between Caucasian and Asian populations in Taiwan. A.
Hierarchical clustering of breast cancer samples from van de Vijver’s study (n = 295) and this study (n = 185). Basal-like breast cancer samples in van de
Vijver’s study are marked with blue bars and those in this study are marked with yellow bars. The criterion of differentially expressed genes (n = 506)
was that, among at least 15 samples, the gene had a §4-fold change as compared to the median. Expression values of genes were normalized by
their respective means. Red indicates that the expression values were higher than average; green represents that the values were lower than average.
B. Hierarchical clustering of basal-like breast cancer samples from van de Vijver’s study (n = 49; blue) and this study (n = 64; yellow). C. The expression
patterns of well-known basal-like genes in this study. The basal-like genes (n = 62) were obtained from previous studies [10,11,21,22]. The triple
negative (TN) samples are indicated with a yellow bar and the non-TN samples are indicated with a gray bar.
doi:10.1371/journal.pone.0028222.g001
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Discussion

In this study we have shown that genetic profiling can be used

not only to distinguish TNBC from other breast cancer types, but

also to differentiate TNBCs derived from different ethnic groups.

Using Cox proportional hazards models, genes and pathways that

were associated with the recurrence of TNBC were identified.

Moreover, we identified 6 genes (SLC22A23, PRKAG3, DPEP3,

MORC2, GRB7, and FAM43A) which could be used to predict the

recurrence of TNBC with 91.7% accuracy. These results could be

used for assisting clinical prognosis and further investigation into

targeted therapy of TNBC in Taiwanese.

The epidemiology and prognosis of breast cancer between

different races were reported to be different [5,8,9]. Our results are

the first to show the differences in genetic profiles of TNBC

samples between Western and Asian populations in Taiwan.

Furthermore, some of the most well-known genes for basal-like

breast cancer, such as keratin 5 and keratin 17, were not even

significantly different between our TN and non-TN samples [23].

These results indicate that biomarkers cannot be blindly used in

different ethnic groups, and emphasize the importance of

establishing biomarkers for TNBC in Asian populations.

Also, pathway analysis showed that 66 genes with differential

expression patterns between races were involved in drug

metabolism of fluorouracil and retinol metabolism. This finding

may explain why some chemotherapy drugs have different effects

on different ethnic groups. For example, several studies of

Capecitabine, a prodrug of fluorouracil used for treating colorectal

cancers, have shown different effects in different ethnic

groups[24,25]. One study demonstrated that thymidylate syn-

thase, an important target for fluorouracil, may be expressed

differently between Asian and Caucasian patients [24]. In

addition, the hand-and-foot syndrome resulting from Capecita-

bine-associated toxicity may also display various patterns with

different ethnic populations [25]. The other pathway that these

genes were involved in was retinol metabolism. Since retinoic acid

and retinol can enhance pigmentation of skin [26], it is not

surprising that there is significantly different expression profiling

between Asian and Caucasian populations, because the skin colors

are different.

In our pilot study, we found that lymphovascular invasion,

lymph node status, grade, nuclear pleomorphism, and tumor size

were not associated with recurrence, but that age was mildly

significantly associated (P = 0.0436) with recurrence. Therefore,

we turned to gene expression to predict the recurrence of TNBC.

Using Cox proportional hazards models, we identified 391 genes

whose expression levels were significantly (P,0.005) associated

with the recurrence time in TNBC. These genes were enriched in

several pathways including cAMP-mediated signaling and ephrin

receptor signaling. The ephrin receptor signaling pathway has

been recognized in many studies of its tumor suppression in breast

cancer[27,28]. Our study confirmed the previous results and

Table 4. The top 10 prediction models for the recurrence of TNBC.

No. Genes used in the Model AIC* BIC1

1 SLC22A23(219.98)#,PRKAG3(51.51),DPEP3(21.89), MORC2(2143.12),GRB7(141.32),FAM43A(167.24) 16.26 32.70

2 SLC22A23(212.24),PRKAG3(33.01),MORC2(288.76), GRB7(87.67),FAM43A(105.93),BCAM(0.52) 16.33 32.77

3 PRKAG3(33.07),MORC2(266.15),SP2(232.70), GRB7(48.66),FAM43A(57.79),BCAM(5.98) 17.09 33.54

4 MKRN2(2128.88),GRB7(47.29),LACRT(29.45), SPRR1A(62.98),BCAM(2110.68),TNFRSF4(41.51) 17.26 33.70

5 FFAR2(4.97),PRKAG3(10.68),PGF(212.70), MORC2(224.72),GRB7(18.91),FAM43A(26.48) 17.71 34.15

6 PRKAG3(24.00),MORC2(252.48),SP2(27.81), GRB7(47.24),FAM43A(49.48),LCE1D(20.97) 17.74 34.18

7 MKRN2(274.83),PRKAG3(52.61),GRB7(39.25), MAFK(261.19),SPRR1A(8.38),MRPS9(239.45) 17.77 34.21

8 MKRN2(283.22),MRPS5(235.24),PRKAG3(49.02), DPEP3(33.94),CCDC33(253.64),SPRR1A(24.23) 17.89 34.33

9 MKRN2(228.21),MORC2(215.71),GRB7(20.86), LACRT(8.55),SPRR1A(20.30),BCAM(225.95) 17.89 34.34

10 MKRN2(11.67),PRKAG3(46.49),PGF(210.40), MORC2(2120.16),GRB7(114.51),FAM43A(125.69) 18.12 34.57

#The coefficient of each gene in Cox proportional hazard regression is shown in parentheses. A positive coefficient in a Cox regression model indicated high risk of
recurrence as expression level of gene increases; whereas a negative coefficient indicated low risk of recurrence as expression level of gene increases.
*AIC: Akaike information criterion.
1BIC: Bayesian information criterion.
doi:10.1371/journal.pone.0028222.t004

Table 3. Genes whose expression levels were associated with
the time to recurrence of TNBC using Cox proportional
hazards regression.

Gene Hazard* P-value Gene Hazard P-value

FFAR2 2.78 7.0861026 LACRT 2.00 3.2061024

MKRN2 0.17 1.9761025 CCDC33 3.23 3.3661024

GPX3 2.47 7.8461025 SPRR1A 2.49 3.4861024

SCL22A23 2.84 1.2261024 MGC16385 0.24 3.5561024

INSM2 2.60 1.3161024 YPEL3 3.43 3.5961024

MRPS5 0.38 1.3361024 EPHA8 2.08 3.7561024

UFC1 0.23 1.4361024 HAS3 2.89 3.7661024

PRKAG3 2.85 1.8161024 HBEGF 2.47 3.8361024

PGF 4.30 1.8161024 CHST7 3.34 3.8961024

LPIN1 0.19 1.8361024 MRPS9 0.27 3.9961024

JUND 3.40 1.9261024 BCAM 2.17 4.0961024

DPEP3 2.40 2.1161024 GPR157 2.65 4.1961024

MORC2 0.33 2.2761024 ZNF285 0.20 4.2961024

SP2 3.89 2.3961024 MYO3A 1.98 4.4461024

GRB7 2.12 2.4161024 LCE1D 2.30 4.5361024

MAFK 3.02 2.7861024 TNFRSF4 2.52 4.7261024

FAM43A 5.40 2.8761024 C11orf56 3.49 4.8461024

EGFL7 3.58 3.1261024

*Hazard of each gene is the exponent of coefficient in a Cox regression.
doi:10.1371/journal.pone.0028222.t003

Genes for Predicting Recurrent Risk in TNBC

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e28222



further indicated that ephrin receptor signaling is associated with

the recurrence of TNBC. Other pathways could also be associated

with the recurrence of TNBC, but further evaluation and studies

are required. Previous studies have suggested the PARP1 inhibitor

pathway for targeting TNBC, but it did not meet the significance

cut-off in our pathway analysis [5]. This might be explained by the

intrinsic differences between different races.

For developing the best model with the fewest genes, the Akaike

information criterion (AIC) was used to evaluate the goodness of fit

of the estimated combinations. After scrutinizing 34.3 billion of

possibilities, the best Cox proportional hazards model for

predicting the recurrence of TNBC contained the following 6

genes: SLC22A23, PRKAG3, DPEP3, MORC2, GRB7, and

FAM43A. Among these 6 genes, the function of SLC22A23 (solute

carrier family 22, member 23), FAM43A (family with sequence

similarity 43, member A), and DPEP3 (dipeptidase 3) remains

unclear. PRKAG3, the protein kinase, AMP-activated, gamma 3

non-catalytic subunit, may play a role in regulating the energy

metabolism of skeletal muscle [29,30]. MORC2 (MORC family

CW-type zinc finger 2) was over-expressed in breast cancer tissue

and in situ carcinoma as compared to adjacent normal breast

tissue. However, its function in breast cancer remains unknown

[31,32]. GRB7 (growth factor receptor-bound protein 7) could

interact with some receptor tyrosine kinases and signaling

molecules. Several studies have indicated that GRB7 had an

adverse prognostic effect on breast cancer outcomes and is

associated with up-regulation of GRB7 in breast cancer [32].

Because of the absence of sufficient clinical information from

previously published studies, such as ER, PR, and HER2 status

and the clinical outcomes of the patients, our data cannot be

validated using an independent dataset. Furthermore, since the

subjects in this study had different observation periods, the cross-

validation was focused on predicting the possibility of recurrence.

We cross-validated this model by using leave-one-out support

vector regression. The accuracy of this model was 91.7%, the

specificity for TNBC was 94.6%, and the sensitivity was 81.8% as

compared to an average accuracy of 13.6% from one million

permutations of any six-gene model. Yet, since the prediction

model was established based on the TNBC patients in Taiwan, it is

probably not applicable to Caucasian populations, since none of

the genes found in our 6-gene prediction model were implicated

by previous survival predictions determined in Caucasians using a

70-gene profile or a two-gene ratio [13,14].

Because of the rarity of TNBC, the sample size of our study is

small compared to other published studies. However, to our

knowledge, this study has the largest sample size for TNBC in

recent years. The presented 6-combination gene set, including

SLC22A23, PRKAG3, DPEP3, MORC2, GRB7, and FAM43A, along

with several significant pathways, might underlie the basic

mechanism of the recurrence of TNBC, and points out a new

avenue for further investigation.

Supporting Information

Figure S1 Gene expression profiles of Triple negative breast

cancer differ between Caucasian and Asian populations in Taiwan

using dataset GSE18229. A. Triple negative breast cancer samples

(marked by yellow: our samples and blue: western samples) were

clustered regardless of different data sources. B. Only triple

negative breast cancer samples were used in clustering (yellow: our

samples, blue: western samples).

(TIF)

Table S1 Enriched pathways of differential expression genes

between different races, but not in cancer subtypes, using DAVID.

(DOC)

Table S2 Gene list of basal-like associated genes from Western

populations.

(DOC)
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