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    Introduction 
 Biological membranes are complex structures made up of a multi-

plicity of membrane lipids and proteins controlling essential 

cellular processes. This is exemplifi ed by mitochondria, double-

membrane bound organelles with essential roles in diverse meta-

bolic and cellular signaling pathways ( Chan, 2006 ;  McBride 

et al., 2006 ). The mitochondrial inner membrane is considered to 

be the most protein-rich cellular membrane, whose functional 

impairment is associated with aging, myopathies, and neurologi-

cal disorders in humans ( Chan, 2006 ). It harbors the multisubunit 

complexes of the respiratory chain, key enzymes of many cata-

bolic and anabolic pathways, and various protein translocases 

with crucial roles during mitochondrial biogenesis. Mitochondria 

form an interconnected, tubular network, which undergoes dy-

namic changes by balanced fusion and fi ssion events ( Hoppins 

et al., 2007 ). Mitochondrial biogenesis therefore requires adjust-

ing and coordinating the assembly of proteins, encoded by both 

nuclear and mitochondrial genomes, and membrane lipids, some 

of which are synthesized within mitochondria. However, although 

protein transport to mitochondrial membranes has been exten-

sively studied, mechanisms of lipid import into and within mito-

chondria are only poorly understood. 

 Prohibitins form an evolutionary conserved family of mem-

brane proteins with a variety of suggested activities in different 

cellular compartments ( Rajalingam et al., 2005 ;  Kasashima et al., 

2006 ;  Wang et al., 2008 ). Cell proliferation depends on prohibi-

tins targeted to mitochondria ( Merkwirth et al., 2008 ), where two 

homologous subunits, Phb1 and Phb2, assemble into multimeric, 

high – molecular weight complexes in the inner membrane ( Coates 

et al., 1997 ;  Berger and Yaffe, 1998 ;  Tatsuta et al., 2005 ). Prohi-

bitins have been found to be part of mitochondrial nucleoids 

 P
rohibitin ring complexes in the mitochondrial inner 

membrane regulate cell proliferation as well as the 

dynamics and function of mitochondria. Although 

prohibitins are essential in higher eukaryotes, prohibitin-

defi cient yeast cells are viable and exhibit a reduced rep-

licative life span. Here, we defi ne the genetic interactome 

of prohibitins in yeast using synthetic genetic arrays, and 

identify 35 genetic interactors of prohibitins (GEP genes) 

required for cell survival in the absence of prohibitins. 

Proteins encoded by these genes include members of a 

conserved protein family, Ups1 and Gep1, which affect 

the processing of the dynamin-like GTPase Mgm1 and 

thereby modulate cristae morphogenesis. We show that 

Ups1 and Gep1 regulate the levels of cardiolipin and 

phosphatidylethanolamine in mitochondria in a lipid-

specifi c but coordinated manner. Lipid profi ling by mass 

spectrometry of GEP-defi cient mitochondria reveals a 

critical role of cardiolipin and phosphatidylethanolamine 

for survival of prohibitin-defi cient cells. We propose that 

prohibitins control inner membrane organization and in-

tegrity by acting as protein and lipid scaffolds.
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which were previously found to genetically interact with each 

other ( Dimmer et al., 2005 ). Diverse functions have been associ-

ated with another group of eight GEP genes, which include the 

synthesis of CL (by the CL synthase Crd1) and the synthesis of 

PE (by the phosphatidylserine [PS] decarboxylase Psd1). Finally, 

growth of prohibitin-defi cient cells was found to depend on eight 

GEP genes of unknown function ( Table I ). 

 Mitochondrial inner membrane integrity 
depends on Gep1 and prohibitins 
 The open reading frame  YLR168c , which was termed  GEP1 , at-

tracted our attention, as it showed a strong genetic interaction with 

prohibitin genes and belongs to a highly conserved gene family, 

including previously described  UPS1 / Preli1  genes ( Fig. 1 A ;  Dee 

and Moffat, 2005 ;  Sesaki et al., 2006 ). Similar to Ups1 and 

PRELI1, Gep1 has been identifi ed in the mitochondrial pro-

teome ( Kumar et al., 2002 ). To assess mitochondrial defects in 

the absence of both Gep1 and Phb1, we generated  �  gep1  �  phb1  

cells expressing Phb1 from a tetracycline-regulatable promoter 

([ PHB1 ]). These cells grew normally on both fermentable and 

nonfermentable carbon sources under nonrepressing conditions, 

whereas addition of the tetracycline analogue doxycycline shut 

off  PHB1  expression and inhibited cell growth ( Fig. 1 B ). 

Immunoblot analysis of cell extracts revealed that outer mem-

brane proteins accumulated normally in these cells ( Fig. 1 C ). 

However, the loss of Phb1 was accompanied by a decrease of 

mitochondrial inner membrane and matrix proteins, which sug-

gests functional defi cits in the inner membrane ( Fig. 1 C ). We 

therefore determined in Phb1-depleted cells the formation of 

the mitochondrial membrane potential, which is required for 

protein transport across and into the inner membrane and thereby 

essential for cell survival. Depletion of Phb1 decreased the 

membrane potential in  �  phb1 [ PHB1 ] cells and led to its com-

plete dissipation in  �  gep1  �  phb1 [ PHB1 ] cells ( Fig. 1 D ). These 

fi ndings point to essential functions of both genes for the integ-

rity of the inner membrane and provide an explanation for the 

synthetic lethal interaction of  GEP1  and  PHB1.  

 Requirement of Gep1 for mitochondrial 
cristae morphogenesis 
 To assess mitochondrial morphology in cells lacking Gep1 and 

prohibitins, we expressed mitochondrially targeted GFP variants 

in wild-type,  �  gep1 , or  �  phb1  cells and  �  gep1  or  �  gep1  �  phb1  

cells harboring [ PHB1 ]. An inspection of these cells by fl uores-

cence microscopy revealed the accumulation of ball-shaped 

and clustered mitochondria in  �  gep1  �  phb1  cells upon down-

regulation of Phb1 ( Fig. 2 A ). In the absence of doxycycline, 

mitochondrial morphology was slightly impaired in these cells, 

most likely refl ecting a deleterious effect of Phb1 overexpression. 

Notably, the aberrant morphology of mitochondria was not a 

consequence of cell death, as mitochondria were inspected while 

at least 85% of the cells were still viable as determined by FUN-1 

staining (unpublished data). Deletion of  PHB1  alone did not in-

terfere with the formation of tubular mitochondria ( Fig. 2 A ). 

 The analysis of mitochondrial ultrastructure by trans-

mission electron microscopy revealed swollen and clustered 

mitochondria in  � 40% of  �  gep1  �  phb1 [ PHB1 ] but not  �  phb1 

( Bogenhagen et al., 2003 ), to affect the organization of mitochon-

drial DNA ( Kasashima et al., 2008 ), and to protect endothelial 

cells against reactive oxygen – induced senescence ( Kasashima 

et al., 2008 ;  Schleicher et al., 2008 ). Fibroblasts lacking prohibi-

tins show aberrant mitochondrial cristae and exhibit a decreased 

resistance toward apoptosis ( Merkwirth et al., 2008 ). These defi -

ciencies are caused by an impaired processing of the dynamin-like 

GTPase OPA1 ( Merkwirth et al., 2008 ), a core component of the 

mitochondrial fusion machinery ( Hoppins et al., 2007 ), which 

is mutated in dominant optic atrophy ( Alexander et al., 2000 ;  

Delettre et al., 2000 ). 

 Despite recent progress in understanding of cellular roles 

of prohibitins, their molecular activity remained largely elu-

sive ( Mishra et al., 2006 ). Prohibitin complexes assemble with 

 m -AAA proteases in the mitochondrial inner membrane and 

thereby modulate the turnover of nonnative membrane proteins 

( Steglich et al., 1999 ). Therefore, they have been proposed to 

exert chaperone-like activity ( Nijtmans et al., 2002 ). However, 

the ring structure of purifi ed prohibitin complexes ( Tatsuta et al., 

2005 ) and the sequence similarity of prohibitins to lipid raft –

 associated proteins of the SPFH family ( Browman et al., 2007 ) 

are also consistent with a scaffolding function of prohibitin com-

plexes in the inner membrane. 

 Notably, although they are required for embryonic develop-

ment in mice,  Caenorhabditis elegans , and  Drosophila melano-
gaster , deletion of prohibitin genes in yeast leads to premature 

ageing but does not affect cell survival ( Coates et al., 1997 ;  Artal-

Sanz et al., 2003 ;  Merkwirth et al., 2008 ). We therefore searched 

for yeast genes whose function is essential for cell growth in the 

absence of prohibitins. Functional studies on the uncovered ge-

netic network identifi ed novel modulators of the phospholipid 

composition of the inner membrane and link the function of pro-

hibitin complexes to cardiolipin (CL) and phosphatidylethanol-

amine (PE), nonbilayer phospholipids critical for mitochondrial 

structure and integrity. 

 Results 
 Defi ning the genetic interactome 
of prohibitins 
 To identify genes genetically interacting with prohibitins, a syn-

thetic genetic array (SGA) analysis was performed using  �  phb1  

cells and a collection of 4,850 yeast strains lacking nonessential 

genes. Moreover, we tested candidate genes and reexamined pre-

viously described genetic interactors of prohibitins in the same 

yeast strain background. In this way, we identifi ed 35 GEP genes 

(for genetic interactors of prohibitins), whose deletion caused le-

thality or severely impaired growth of prohibitin-defi cient yeast 

cells on glucose-containing media ( Table I ). Consistent with a 

mitochondrial function of prohibitin complexes, 31 genes code 

for mitochondrial proteins. Interestingly, 19 of the genetic inter-

actors fall into two functional classes: genes with functions dur-

ing the assembly of the respiratory chain, and genes required for 

the maintenance of mitochondrial morphology ( Dimmer et al., 

2002 ) and the assembly of  � -barrel proteins in the outer mem-

brane ( Meisinger et al., 2007 ). The latter group includes the genes 

 MMM1 ,  MDM10 ,  MDM12 ,  MDM31 ,  MDM32 , and  MDM34 , 
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Pcp1 in the inner membrane. Cleavage results in the accumulation 

of two isoforms, L- and S-Mgm1, that functionally cooperate 

during inner membrane fusion ( Sesaki et al., 2003 ). Interest-

ingly, deletion of  GEP1  signifi cantly impaired the formation of 

S-Mgm1 in cells grown under respiring conditions ( Fig. 3 B ). 

These fi ndings identify Gep1 as a novel modulator of Mgm1 

processing in the inner membrane and suggest that the unbal-

anced accumulation of L- and S-Mgm1 causes defi ciencies in 

cristae morphogenesis in  �  gep1  mitochondria. 

 Gep1 regulates the accumulation of PE 
within mitochondria 
 To further defi ne the role of Phb1 and Gep1 for mitochondrial 

morphogenesis and Mgm1 processing, we screened for genes 

whose overexpression promotes growth of cells lacking both genes. 

 �  gep1  �  phb1  cells expressing plasmid-borne  PHB1  were trans-

formed with a multicopy yeast library. After plasmid shuffl ing, 

[ PHB1 ] cells depleted of Phb1 ( Fig. 2 B ). We carefully quanti-

fi ed the surface of cristae membranes and related it to the sur-

face of the mitochondrial contours in ultrathin sections of 

Gep1- and Phb1-defi cient cells ( Fig. 2 C ). The surface of cris-

tae membranes decreased only slightly in  �  phb1 [ PHB1 ] cells 

but was reduced dramatically by  � 80% in  �  gep1  �  phb1 [ PHB1 ] 

cells upon down-regulation of Phb1 ( Fig. 2 C ), which demon-

strates that Gep1 and Phb1 concomitantly affect mitochondrial 

cristae morphogenesis. 

 When cells were grown on glycerol-containing medium, 

 � 80% of  �  gep1  and  � 60% of  �  phb1  cells contained an at least 

partially fragmented mitochondrial network, which indicates 

that both proteins are crucial for mitochondrial morphology 

under conditions of increased mitochondrial demand ( Fig. 3 A ). 

Inner membrane fusion and the formation of cristae depend on 

the dynamin-like GTPase Mgm1 ( Meeusen et al., 2006 ), which 

undergoes proteolytic processing by the rhomboid protease 

 Table I.    GEP genes  

Functional group Gene ORF Localization Genetic interaction

Respiratory chain assembly  YTA10   a   YER017c IM SL

 YTA12   a   YMR089c IM SL

 YME1  YPR024w IM SL

 OXA1  YER154w IM GD

 COX6  YHR051w IM GD

 COX24  YLR204w IM GD

 ATP7  YKL016c IM GD

 ATP10   a   YLR292w IM GD

 ATP17  YDR377w IM GD

 ATP23   a   YNR020c IMS GD

 COQ1  YBR003w MA GD

Mitochondrial morphology/ � -barrel assembly  MMM1   a   ,   b   YLL006w IM/OM SL

 MDM10   a   ,   b   YAL010c OM SL

 MDM12   a   ,   b   YOL009c OM GD

 MDM31   b   YHR194w IM GD

 MDM32   b   YOR147w IM SL

 MDM34   b   YGL219c OM SL

 MDM35  YKL053c-A IMS SL

 UPS1   b   YLR193c IMS SL

Unknown  GEP1  YLR168c IMS SL

 GEP3  YOR205c M GD

 GEP4  YHR100c M SL

 GEP5  YLR091w M GD

 GEP6  YMR293c M SL

 GEP7  YGL057c M GD

 GEP8  YER093c-A ND SL

 GEP9  YNL170w ND SL

Diverse  PSD1   a   YNL169c IM SL

 CRD1   b   YDL142c IM SL

 HMI1  YOL095c IM/MA GD

 MRE11  YMR224c M, N, C GD

 CTK3  YML112w N, C GD

 PIF1  YML061c M, N GD

 PIH1  YHR034c N GD

 EMI1  YDR512c C GD

C, cytosol; GD, growth defect associated with double mutant; IM, inner membrane; IMS, intermembrane space; M, mitochondria; MA, matrix; N, nucleus; ND, not 
determined; OM, outer membrane; SL, synthetically lethal.

 a Previously described synthetic lethal interactions ( Berger and Yaffe, 1998 ;  Steglich et al., 1999 ;  Birner et al., 2003 ;  Osman et al., 2007 ).

 b Genetic interactors identifi ed by sporulation and tetrad dissection only.
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 Strikingly, overexpression of the PS synthase Cho1 was also 

found to completely restore growth of  �  gep1  �  phb1  cells, linking 

functional defects in these cells to the cellular phospholipid 

metabolism ( Fig. 4 A ). PS, which is synthesized by Cho1 in the 

ER, is transported to mitochondria and decarboxylated to form 

the previously uncharacterized  GEP2  gene ( YDR185c ), which 

codes for a homologue of Gep1, was identifi ed as a multicopy 

suppressor of the synthetic lethal interaction of  �  gep1  and 

 �  phb1  ( Fig. 4 A ), indicating overlapping functions of members 

of this conserved protein family. 

 Figure 1.    Phb1 is required for mitochondrial inner membrane integrity in the absence of Gep1.  (A) Multiple sequence alignment (score matrix: Blosum62) 
of Gep1, Gep2, Ups1, and human homologues. The conserved MSF1 � /PRELI domain is depicted. Numbers refer to amino acids. Black highlighting 
indicates full conservation across all species; gray highlighting represents amino acids with similar properties conserved in at least three of the analyzed 
sequences. (B) Synthetic lethal interaction of  �  gep1  and  �  phb1 . Fivefold serial dilutions of cell suspensions were spotted on glucose (Glc)- or galactose 
(Gal)-containing YP plates, which were supplemented with 2  μ g/ml doxycycline (Dox) when indicated and incubated at 30 ° C. WT, wild type. (C) Steady-
state levels of mitochondrial proteins in  �  gep1  �  phb1 [ PHB1 ] cells. Mitochondria were isolated from cells grown on glucose-containing media in the pres-
ence of doxycycline for different time periods. Mitochondrial proteins were analyzed by SDS-PAGE and immunoblotting. IM, inner membrane; OM, outer 
membrane; M, matrix; L, long isoform of Mgm1; S, short isoform of Mgm1. (D) Dissipation of the membrane potential in mitochondria lacking Gep1 and 
Phb1. Mitochondria were isolated from cells grown for 12 h on glucose-containing media in the presence or absence of doxycycline and stained with the 
potential-sensitive dye 3,3 � -dipropylthiadicarbocyanine iodide (DiDC 3 (5)).   
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 Figure 2.    Impaired mitochondrial cristae morphogenesis in cells lacking Gep1 and Phb1.  (A, left) Wild-type (WT),  Δ  phb1 ,  Δ  gep1 ,  Δ  phb1 [ PHB1 ], and 
 Δ  gep1  Δ  phb1 [ PHB1 ] cells expressing mitochondria-targeted GFP or DsRed were grown to log phase in YPD medium in the presence or absence of doxycy-
cline, and analyzed by differential interference contrast (left) and fl uorescence (right) microscopy. Bar, 5  μ m. (right) The bar graph indicates the percentage 
of wild type – like (light gray), fragmented (dark gray), and ball-shaped (black) mitochondria.  n   ≥  100; data represent mean values  ±  SD of three indepen-
dent experiments. (B, left) Wild type,  �  phb1 , and  �  gep1  or  Δ  phb1 [ PHB1 ] and  Δ  gep1  Δ  phb1 [ PHB1 ] cells depleted of prohibitin were grown to log phase 
in YPD medium containing doxycycline and analyzed by transmission electron microscopy. Bar, 500 nm. (right) The bar graph indicates the percentage 
of wild type – like (light gray) or clustered mitochondria (black), and other mitochondrial phenotypes (dark gray).  n  = 100. Two representative micrographs 
of  Δ  gep1  Δ  phb1 [ PHB1 ] cells depleted of prohibitin are shown. (C) The cristae/contour ratio was determined as described in Materials and methods. The 
quantifi cation is illustrated in the bar graph.  n   ≥  100.   
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Psd1 within mitochondria or by Psd2 in the Golgi apparatus 

( Voelker, 2004 ). To examine which of these pathways is af-

fected by Gep1, we deleted  GEP1  in  �  psd1  and  �  psd2  cells 

and examined cell growth both on fermentable and nonfer-

mentable carbon sources ( Fig. 4 C ). The absence of Gep1 did 

not impair growth of cells defi cient of Psd1 at any tempera-

ture, which is consistent with an epistatic relationship of these 

genes ( Fig. 4 C ). However, growth of  �  gep1  �  psd2  cells was 

inhibited on nonfermentable carbon sources at 37 ° C ( Fig. 4 C ), 

which suggests that Gep1 specifi cally affects mitochondrial 

PE. The synthesis of PE within mitochondria was previously 

found to be essential for the viability of yeast mutants lacking 

the CL synthase Crd1, which is localized in the mitochondrial 

inner membrane ( Gohil et al., 2005 ). Consistent with the sig-

nifi cantly reduced levels of PE in  �  gep1  mitochondria, we did 

not obtain viable double mutant offspring after tetrad dissec-

tion of diploid cells heterozygous for deletions in  GEP1  and 

 CRD1  indicating synthetic lethality ( Fig. 4 D ). We conclude 

from these experiments that Gep1 is required for the accumu-

lation of PE in mitochondria. 

 These fi ndings raise the possibility that an altered phos-

pholipid composition of the inner membrane impairs Mgm1 

cleavage and causes an altered cristae morphogenesis in the 

absence of Gep1. We therefore assessed processing of Mgm1 

in mitochondria lacking Psd1 or Crd1 ( Fig. 3 B ). Deletion of 

 PSD1 , as well as that of  GEP1 , impaired the formation of 

S-Mgm1, whereas Mgm1 cleavage was not affected in the ab-

sence of  CRD1  under these conditions ( Fig. 3 B ). We conclude 

that the phospholipid composition, in particular the PE con-

tent, is crucial for effi cient Mgm1 processing by rhomboid in 

the inner membrane. 

 Gep1 is dispensable for PE synthesis but 
controls its stability in mitochondria 
 To unravel the molecular basis of impaired PE accumulation in 

the absence of Gep1, we fi rst determined the localization of 

Gep1 within mitochondria. A Gep1 variant carrying a C-terminal 

hemagglutinin tag was expressed in  �  gep1  cells and in  �  gep1
  �  phb1  cells. Expression of this variant promoted growth of 

 �  gep1  �  phb1  cells, demonstrating that the C-terminal extension 

did not interfere with Gep1 function (unpublished data). Mito-

chondria were isolated from  �  gep1  cells and subjected to pro-

tease treatment. Gep1 was degraded only under hypotonic 

con ditions, which resulted in osmotic disruption of the outer 

membrane, indicating that Gep1 is localized in the intermem-

brane space ( Fig. 5 A ). A hydropathy blot did not provide any 

evidence for the presence of a membrane-spanning segment in 

Gep1. However, Gep1 was found in the pellet fraction after car-

bonate extraction of mitochondrial membranes, which indicates 

a tight membrane association ( Fig. 5 A ). 

 As Gep1 may directly regulate Psd1 in the inner mem-

brane, we assessed the enzymatic activity of Psd1 in wild-type 

and  �  gep1  mitochondria. After osmotic disruption of the outer 

membrane, mitoplasts were incubated with fl uorescently la-

beled PS (NBD-PS), which is converted to NBD-PE ( Fig. 5 B ). 

NBD-PE did not accumulate in  �  psd1  mitochondria, which 

demonstrates that NBD-PE is formed by Psd1. The synthesis 

PE by Psd1 in the inner membrane ( Voelker, 2005 ). Psd1 is a 

bifunctional protein, which is required for both PE synthesis 

and the regulation of multidrug resistance ( Gulshan et al., 2008 ). 

It has been observed to genetically interact with prohibitins 

( Table I ;  Birner et al., 2003 ), indicating a complex network of 

genetic interactions between prohibitins, Gep1, and the cellular 

phospholipid metabolism. 

 We therefore determined the mitochondrial phospholipid 

profi le in  �  gep1  cells by TLC. Whereas the majority of mito-

chondrial phospholipids accumulated at normal levels in the 

absence of Gep1, PE was present at signifi cantly reduced lev-

els in  �  gep1  mitochondria ( Fig. 4 B ). Overexpression of Cho1 

or Gep2, but not of Ups1, restored normal PE levels in Gep1-

defi cient mitochondria ( Fig. 4 B ). Further genetic experiments 

corroborated the role of Gep1 for the formation of cellular PE. 

Cell survival depends on PE, which is synthesized either by 

 Figure 3.    Gep1 affects mitochondrial morphology and Mgm1 processing 
under respiring conditions.  (A, left) Wild-type (WT),  Δ  phb1 , and  Δ  gep1  
cells expressing mitochondria-targeted GFP were grown to log phase in YP 
medium containing glycerol (YPG) and analyzed as in  Fig. 2 A . Bar, 5  μ m. 
(right) The bar graph indicates the percentage of wild type – like (light gray), 
fragmented (dark gray), and short tubular, partially fragmented (black) 
mitochondria. Data represent mean values  ±  SD of three independent 
experiments. (B) Decreased PE levels impair Mgm1 processing. Extracts 
of the indicated cells grown in YPG were analyzed by SDS-PAGE and 
immuno blotted using Mgm1- and Tom40-specifi c antisera. A quantifi ca-
tion of the immunoblots is shown in the bottom panel. The percentage of 
S-Mgm1 was calculated from the ratio S-Mgm1/(S-Mgm1 + L-Mgm1). Data 
represent mean values  ±  SD of four independent experiments. *, P  <  0.05; 
**, P  <  0.01. L, long isoform of Mgm1; S, short isoform of Mgm1.   
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TLC and by mass spectrometry ( Fig. 6, A and B ). In contrast 

to  GEP1 , deletion of  GEP2  and  UPS1  did not affect PE levels 

within mitochondria ( Fig. 6, A and B ). Our analysis revealed, 

however, a crucial role of Ups1 for CL levels. CL is a dimeric 

phosphoglycerolipid predominantly present in mitochondria, 

where it is synthesized by the CL synthase Crd1 in the inner 

membrane ( Schlame, 2008 ). CL was decreased approximately 

sevenfold in  �  ups1  mitochondria but remained unaffected in 

the absence of Gep1 or Gep2 ( Fig. 6, A and B ). Growth of  �  ups1  

cells was severely impaired on glucose-containing medium 

( Fig. 6 C ), a phenotype reminiscent of yeast cells lacking Pgs1 

that catalyzes the rate-limiting step of CL biosynthesis. Dele-

tion of  GEP1  and  GEP2 , however, did not affect cell growth 

under these conditions ( Fig. 6 C ). Similar to cells lacking Psd1, 

 �  gep1  cells exhibited an increased tendency to lose mito-

chondrial DNA under these conditions (unpublished data). We 

conclude that the accumulation of CL in mitochondria de-

pends on Ups1, whereas Gep1 controls mitochondrial PE. 

 Strikingly, deletion of  GEP1  restored normal CL levels in 

membranes of  �  ups1  mitochondria ( Fig. 6, A and B ) and sup-

pressed growth defects associated with the loss of Ups1 ( Fig. 6 C ). 

In contrast, neither CL levels nor cell growth were affected 

upon deletion of  GEP2  in  �  ups1  cells, although Gep1 and Gep2 

share 55% identical amino acids ( Fig. 6, A – C ). PE, however,

remained reduced in  �  gep1  �  ups1  mitochondria and accumulated 

at similar levels as in  �  gep1  mitochondria ( Fig. 6, A and B ), 

which demonstrates that the absence of Ups1 does not alleviate 

the requirement of Gep1 for the accumulation of PE. Thus, a 

of NBD-PE was not affected in the absence of Gep1 ( Fig. 5 B ). 

We observed a slightly but signifi cantly increased rate of NBD-PE 

synthesis in  �  gep1  mitochondria, which may indicate an allevi-

ated product inhibition of Psd1 in these mitochondria. 

 These results were substantiated by pulse-labeling experi-

ments in vivo, which were performed in a  �  psd2  strain back-

ground to exclude masking effects of nonmitochondrial PE 

synthesis ( Fig. 5 C ). We labeled  �  psd2  and  �  psd2  �  gep1  cells 

with [ 3 H]serine and monitored the incorporation of  3 H in PE 

within mitochondria. Deletion of  GEP1  did not affect mito-

chondrial PE synthesis by mitochondrial Psd1 ( Fig. 5 C ). Pulse 

chase experiments, however, revealed a signifi cantly decreased 

stability of newly synthesized PE in the absence of Gep1 with-

out a signifi cant accumulation of other lipid species ( Fig. 5 D ). 

We conclude that the decreased PE concentration in the absence 

of Gep1 is not caused by an impaired Psd1 activity or uptake of 

its substrate PS but instead refl ects a reduced stability of PE 

within  �  gep1  mitochondria. 

 Lipid-specifi c functions of Gep1-like 
proteins for PE and CL 
 Several lines of evidence point to overlapping activities of 

Gep1 family members: fi rst, both  �  gep1  and  �  ups1  show a 

synthetic lethal interaction with prohibitin mutants ( Table I ); and 

second, overexpression of Gep2 promoted growth of  �  gep1  �  phb1  

cells and restored PE accumulation in Gep1-defi cient mito-

chondria ( Fig. 4 A, B ). We therefore determined the accumula-

tion of PE in  �  gep1 ,  �  gep2 , and  �  ups1  mitochondria both by 

 Figure 4.    The accumulation of PE in mitochon-
dria depends on Gep1.  (A) Overexpression of 
Gep2 or Cho1 allows growth of  �  gep1  �  phb1  
cells.  �  gep1  �  phb1 [ PHB1 ] cells overexpress-
ing Phb1, Gep2, or Cho1 were incubated at 
30 ° C on media with or without 5 �  fl uoroorotic 
acid, which prevents growth of cells harboring 
the [ PHB1 ] expression plasmid. (B) TLC analy-
sis of mitochondrial phospholipids isolated 
from  �  gep1  cells overexpressing Cho1, Ups1, 
or Gep2. The asterisk indicates an unidentifi ed 
lipid species. (C) Gep1 and Psd2 interact ge-
netically. Yeast cells were spotted on YP plates 
containing glucose (YPD) or glycerol (YPG) 
and incubated at 30 ° C or 37 ° C. (D) Synthetic 
lethal interaction of  �  gep1  and  �  crd1 . A dip-
loid strain heterozygous for deletions of  GEP1  
and  CRD1  was subjected to sporulation and 
tetrad dissection. Arrowheads indicate inviable 
double mutant progeny.   
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in  �  ups1  cells upon deletion of  GEP1  and the reduction of CL 

levels upon Gep1 overexpression suggest a competition be-

tween Gep1 and Ups1. 

 Survival of prohibitin-defi cient cells 
depends on the lipid composition of 
mitochondrial membranes 
 The regulation of the phospholipid composition of the inner 

membrane by Gep1 and Ups1 proteins together with their syn-

thetic lethal interaction with prohibitins suggests that reduced 

levels of PE and CL are deleterious for inner membrane integ-

rity in prohibitin-defi cient cells. Accordingly, other GEP genes 

may affect the PE and CL levels in mitochondrial membranes as 

well. We therefore isolated mitochondria from various yeast 

strains lacking Phb1 or GEP genes, extracted membrane lipids, 

and determined PE and CL levels by mass spectrometry ( Fig. 7 ). 

Strikingly, mitochondrial PE and/or CL were affected in the ma-

jority of 23 examined strains ( Fig. 7 ). Only some strains showed 

normal PE and almost unaltered CL levels in mitochondria ( Fig. 7 ). 

The latter group included cells lacking assembly factors of the 

F O  particle of the F 1 F O  ATP-synthase, like Atp10 and Atp23, 

that have been previously found to interact genetically with 

complex functional network of Gep1-like proteins controls mito-

chondrial PE and CL. 

 To further defi ne the functional interdependence of PE 

and CL pathways, we generated yeast strains overexpressing 

Gep1, Gep2, or Ups1 from galactose-inducible promoters. 

Overexpression of Gep1 impaired cell growth on galactose-

containing medium, whereas increased cellular levels of Gep2 

or Ups1 did not interfere with cell growth ( Fig. 6 F ). Mito-

chondria were isolated from these cells, and the phospholipid 

profi le was determined by TLC and mass spectrometry ( Fig. 6, 

D and E ). In agreement with the observed growth defect, we 

noted a signifi cantly reduced CL content of mitochondria con-

taining overexpressed Gep1 ( Fig. 6 D, E ). Moreover, PE levels 

were increased, whereas other phospholipids were present 

at normal levels in these mitochondria ( Fig. 6, D and E ; and 

unpublished data). PE and CL were not altered in a statisti-

cally signifi cant manner upon overexpression of Ups1 or Gep2 

( Fig. 6, D and E ). 

 Collectively, these experiments defi ne lipid-specifi c activ-

ities of Gep1-like proteins for CL and PE and, at the same time, 

point to common steps in the regulation of both phospholipids 

within mitochondria. Both the observed restoration of CL levels 

 Figure 5.    Gep1 is required for the stability 
of mitochondrial PE.  (A) Localization of Gep1 
in the mitochondrial intermembrane space. 
(left) Isolated mitochondria were treated with 
Na 2 CO 3 , pH 11.5 (T), and split into a soluble 
(S) and insoluble (P) fractions by ultracentri-
fugation. The asterisk indicates an unspecifi c 
cross-reaction of the antiserum. (right) Mito-
chondria or mitoplasts, generated by osmotic 
disruption of the outer membrane (SW), were 
treated with 50  μ g/ml trypsin and analyzed 
by SDS-PAGE and immunoblotting. Tom70, an 
outer membrane protein; Yme1, an integral 
inner membrane protein exposed to the IMS; 
and Hsp60, a soluble matrix protein, served 
as controls. (B) Psd1 activity in the absence of 
Gep1. Mitoplasts of WT or  �  gep1  cells were 
incubated with NBD-PS for indicated time pe-
riods. Phospholipids were fractionated by TLC 
and fl uorescent lipids were quantifi ed by fl uor 
imaging. Equal loading was monitored by mo-
lybdenum blue staining. NBD-PE accumulating 
in wild-type mitochondria after 20 min was set 
to 100%. Data represent  ±  SD of four inde-
pendent experiments. **, P  <  0.01. (C) Mito-
chondrial PE synthesis in Gep1-defi cient cells. 
 �  psd2  and  �  psd2  �  gep1  cells were incubated 
with [ 3 H]serine for 0, 20, 40, or 60 min. Phos-
pholipids extracted from crude mitochondrial 
isolations were subjected to TLC. PE was recov-
ered from the TLC plate and radioactivity was 
determined by liquid scintillation counting. 
Labeled PE accumulating in  �  psd2  cells after 
60 min was set to 100%. Data represent mean 
values  ±  SD of fi ve independent experiments. 
(D) PE stability is decreased in the absence of 
Gep1.  �  psd2  and  �  psd2  �  gep1  cells were 
incubated with [ 3 H]serine for 10 min, and, 
after addition of excess serine and further in-
cubation for the time points indicated, PE was 
quantifi ed as in C. Labeled PE accumulating in 
 �  psd2  cells at time point 0 was set to 100%. 
Data represent mean values  ±  SD of four in-
dependent experiments. *, P  <  0.05; **, P  <  
0.01; ***, P  <  0.001.   
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morphology and the assembly of  � -barrel proteins ( MDM10 , 

 MMM1 ,  MDM31 ,  MDM32 ,  MDM34 , and  MDM35 ;  Merz et al., 

2007 ;  Bolender et al., 2008 ), genes associated with the assem-

bly of respiratory chain complexes ( COX6 ,  YTA10 , and  YTA12 ), 

and several uncharacterized open reading frames ( GEP3-6 ). 

Our fi ndings link the function of these genes to the mitochon-

drial lipid metabolism and point to a critical role of the PE and 

CL content of the inner membrane for the survival of prohibitin-

defi cient cells. 

 Discussion 
 The network of prohibitin-interacting genes unraveled by our 

SGA analysis demonstrates an intimate functional relationship 

prohibitins ( Osman et al., 2007 ), or Oxa1, for which a function 

during F O  assembly was recently described ( Jia et al., 2007 ). 

Deletion of  PSD1  or  CRD1  resulted in the expected drastic re-

duction of the PE or CL content of mitochondrial membranes, 

respectively ( Fig. 7 ). Notably, we observed increased PE levels 

in cells showing a severely reduced CL content. This is in agree-

ment with previous fi ndings describing an increase in mitochon-

drial PE in  �  crd1  cells, and suggested a coordinated regulation 

of both phospholipids ( Zhong et al., 2004 ). Moreover, mem-

branes isolated from Phb1-defi cient mitochondria contained re-

duced amounts of CL and slightly increased PE levels. Strikingly, 

the loss of a large number of GEP genes genetically interacting 

with prohibitins led to strongly reduced levels of PE and/or CL 

( Fig. 7 ). These included genes with functions for mitochondrial 

 Figure 6.    Gep1 and Ups1 regulate the 
phospholipid composition of mitochondrial 
membranes.  (A and B) Phospholipid profi le 
of mitochondria lacking Gep1-like proteins. 
Phospholipids were extracted from mitochon-
dria isolated from the indicated strains ( �  �  � : 
 �  gep1  �  gep2  �  ups1 ) and analyzed by TLC 
(A) and mass spectrometry (B). Mean values  ±  
SD obtained from at least two independent 
mitochondrial isolations; samples analyzed in 
duplicate are shown in B. Asterisks indicate 
unidentifi ed lipid species. (C) Cell growth in 
the absence of Gep1-like proteins. Fivefold se-
rial dilutions of the indicated cells were spotted 
on YPD plates. Strains were grown at 30 ° C. 
(D and E) Phospholipid profi le of mitochondria in 
cells overexpressing Gep1-like proteins. Mito-
chondrial phospholipids were analyzed by TLC 
(D) and mass spectrometry (E). Mean values  ±  
SD obtained from three mitochondrial isola-
tions, each analyzed in duplicate, are shown 
in E. (F) Impaired cell growth upon Gep1 
overexpression. Gep1-like proteins were ex-
pressed in wild-type cells from high-copy plas-
mids under the control of the  GAL  promoter. 
Fivefold serial dilutions of the cells were grown 
on synthetic media containing galactose as the 
carbon source (SCGal) at 30 ° C.   
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proteins like fl otillins/reggies, which are distantly related to 

prohibitins and were found to induce microdomains in the 

plasma membrane and to modulate the assembly of signaling 

complexes ( Frick et al., 2007 ;  Langhorst et al., 2008 ). 

 Altered levels of CL or PE compromise mitochondrial 

activities and are associated with many pathophysiological 

states, but the mechanisms that determine the phospholipid 

composition of mitochondrial membranes are poorly under-

stood. Our fi ndings identify the conserved family of Gep1-like 

proteins as novel membrane-associated regulators of CL and 

PE in mitochondrial membranes. Gep1 is essential for the ac-

cumulation of PE, whereas Ups1 is required for the accumula-

tion of CL in mitochondrial membranes. Strikingly, deletion 

of  GEP1  in  �  ups1  cells restored CL levels in mitochondria, 

which suggests competition between Gep1 and Ups1. Consis-

tently, overexpression of Gep1 reduces CL in mitochondria. 

Thus, the phospholipid content of mitochondrial membranes 

critically depends on the level of Gep1. The competitive ac-

tion of Gep1 and Ups1 allows the adjustment of relative PE 

and CL levels simply by modulating the amounts or the avail-

ability of the regulatory proteins. These fi ndings demonstrate 

that mitochondrial levels of PE and CL are regulated coordi-

nately by related proteins and are therefore in agreement with 

previous notions that cells may require a critical amount of 

these nonbilayer-forming phospholipids ( Zhong et al., 2004 ; 

 Gohil et al., 2005 ). 

 Gep1-like proteins likely exert a regulatory role during 

membrane biogenesis, as the mitochondrial phospholipid profi le 

is only modestly altered in cells lacking all Gep1-like proteins. 

The decrease of the PE content of mitochondrial membranes in 

the absence of Gep1 is not caused by an impaired PE synthesis. 

Rather, PE does not accumulate stably in Gep1-defi cient mito-

chondria, suggesting that Gep1 inhibits either a PE-specifi c li-

pase or the export of PE from mitochondria. Accordingly, the 

competition of Gep1 and Ups1 may determine the specifi city 

of mitochondrial phospholipases or lipid transport processes. 

of prohibitins to the lipid composition of mitochondrial mem-

branes ( Fig. 8 A ). While they are dispensable for yeast cell 

growth under normal conditions, prohibitins are essential for 

the integrity of the inner membrane and cell survival if mem-

branes are defi cient for CL or PE. Both CL and PE have similar 

physical properties and cluster into nonbilayer, hexagonal phase 

structures in lipid membranes ( de Kruijff, 1997 ). Disturbances 

in both biosynthetic pathways are synthetic lethal in yeast 

( Gohil et al., 2005 ) and bacteria, illustrating that the physical 

similarities of CL and PE are of functional relevance in vivo. 

Consistently, clusters of PE and CL have been detected in bacte-

rial membranes ( Matsumoto et al., 2006 ). It is therefore con-

ceivable that defi ned lipid clusters with specifi c functions exist 

in the inner membrane of mitochondria. Contact sites between 

inner and outer mitochondrial membrane, at which import of 

nuclear-encoded mitochondrial proteins occurs ( Reichert and 

Neupert, 2002 ) and which have been linked to phospholipid 

transport processes ( Simbeni et al., 1990 ), were found to be 

enriched in PE and CL, and may represent such specialized 

membrane domains. Ringlike prohibitin complexes may serve 

as membrane organizers and affect the distribution of CL and PE 

in the membrane bilayer ( Fig. 8 B ). If CL and PE are present 

only at low concentrations, this function may become essential 

for inner membrane integrity and membrane-associated pro-

cesses. Such an activity of prohibitins is in perfect accordance 

with the predicted function of prohibitins as protein scaffolds, 

and may ensure the recruitment of membrane proteins to a spe-

cifi c lipid environment. This includes  m -AAA proteases that as-

semble with prohibitins into large supercomplexes in the inner 

membrane ( Steglich et al., 1999 ). It should be noted that a 

fencelike activity of prohibitin ring complexes could also en-

sure the formation of protein-free domains in the mitochondrial 

inner membrane, which is considered to be the most protein-

rich cellular membrane. These proposed functions of prohibi-

tins as membrane organizers are reminiscent of other SPFH 

 Figure 7.    Lipid profi le of mitochondria lacking GEP genes.  CL and PE levels were determined by mass spectrometry in mitochondria isolated from wild 
type (WT) and  �  phb1  cells, and cells lacking various GEP genes grown on galactose-containing media. Mean values of two mitochondrial lipid extracts 
are shown. Effects of Yme1 and Oxa1 on mitochondrial PE levels have been previously observed in cells grown on glucose-containing media ( Nebauer 
et al., 2007 ).   
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ing of the dynamin-like GTPase Mgm1, which is required for 

membrane fusion and cristae formation ( Meeusen et al., 2006 ). 

Under these conditions, prohibitins are essential to maintain 

inner membrane integrity. Thus, residual Mgm1 processing 

suffi cient to maintain mitochondrial cristae at decreased PE 

levels appears to critically depend on prohibitins. Notably, we 

have recently identifi ed the processing of the mammalian 

Mgm1 homologue OPA1 as the central process controlled by 

prohibitins in mouse fi broblasts ( Merkwirth et al., 2008 ), 

which indicates that the same processes depend on prohibitin 

function in evolutionary distant organisms. Therefore, pheno-

typic differences associated with the loss of prohibitins in 

yeast and mammals likely refl ect differences in the phospho-

lipid profi le of mitochondrial membranes or the lipid depen-

dence of Mgm1/OPA1 processing itself. 

 Although the absence of CL did not inhibit Mgm1 process-

ing in our experiments, we do not exclude a role of CL for proteo-

lytic cleavage under certain growth conditions in yeast or 

in other organisms. Variations of the PE content of the inner 

membrane may mask the dependence of Mgm1 processing on 

CL. Accordingly, differences in the relative content of PE and 

CL may explain why the loss of Ups1 was observed previously to 

inhibit Mgm1 processing ( Sesaki et al., 2006 ). It is therefore an 

intriguing possibility that impaired processing of the mammalian 

Mgm1 homologue OPA1 causes the disturbed formation of mito-

chondrial cristae, which was observed in lymphoblasts of Barth 

syndrome patients or yeast cells lacking the CL transacylase ta-

fazzin ( Acehan et al., 2007 ;  Claypool et al., 2008 ). The identifi -

cation of Gep1-like proteins as regulators of CL and PE now 

allows for the direct examination of the role of an altered phos-

pholipid composition for mitochondrial dysfunction in disease. 

 Gep1-like proteins and prohibitins acting as membrane 

organizers may affect various membrane-associated processes, 

which are known to depend on nonbilayer phospholipids. 

Mitochondrial fusion requires phospholipase D, which hydrolyzes 

CL in the outer membrane and generates the fusogenic lipid 

phosphatidic acid ( Choi et al., 2006 ). CL and PE affect also the 

insertion and oligomerization of the proapoptotic Bcl2-family 

member Bax in the outer membrane ( Lucken-Ardjomande 

et al., 2008 ). A CL defi ciency in the inner membrane impairs 

the activity of mitochondrial enzymes ( Jiang et al., 2000 ), de-

creases the stability of respiratory chain supercomplexes and 

of mitochondrial DNA ( Pfeiffer et al., 2003 ), and accelerates 

apoptosis by facilitating the release of cytochrome  c  from the 

intramitochondrial storage compartments ( Choi et al., 2007 ). 

It is conceivable that the assembly of the F 1 F O  ATP-synthase and 

respiratory complexes is yet another process dependent on de-

fi ned functional domains within mitochondrial membranes. 

This is suggested by the synthetic interaction of prohibitins with 

genes coding for assembly factors of inner membrane complexes 

( Osman et al., 2007 ), which do not drastically affect mitochon-

drial PE or CL levels when deleted. 

 Interestingly, mutations in the majority of GEP genes, which 

show a synthetic interaction with prohibitins, cause decreased 

levels of nonbilayer lipids. This includes  MDM10  and  MMM1 , 

which were originally identifi ed as genes required for mito-

chondrial inheritance and DNA stability ( Boldogh et al., 1998 ) 

In agreement with an inhibitory role of Gep1 for PE export from 

mitochondria, we observed in the absence of Gep1 a slight in-

crease of PC, which is generated by methyl transferases in ER 

membranes using mitochondrial PE ( Kodaki and Yamashita, 

1989 ). Contact sites between inner and outer mitochondrial mem-

branes have been discussed as sites of phospholipid transport 

( Simbeni et al., 1990 ). It will be therefore of interest to examine 

whether Gep1-like proteins locate to these sites. 

 We identify the morphogenesis of cristae as one process 

critically dependent on mitochondrial PE. Decreased PE lev-

els in Gep1- or Psd1-defi cient cells compromise the process-

 Figure 8.    Prohibitins and mitochondrial inner membrane organization.  
(A) Genetic interaction of prohibitins with PE and CL biosynthetic path-
ways. Synthetic lethal interactions between  CHO1  and  PGS1  and between 
 PSD1  and  CRD1  have been described previously ( Janitor et al., 1996 ; 
 Gohil et al., 2005 ). (B) Hypothetical model for the role of prohibitins as 
membrane organizers. The maintenance of putative functional membrane 
domains containing CL and PE (gray dots) depends on prohibitin ring com-
plexes or a high level of CL and PE in the inner membrane.   
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H 2 O (1:1, vol/vol). Samples were then dried under a constant stream of air. 
Lipids were dissolved in chloroform, phosphate concentration was deter-
mined ( Rouser et al., 1970 ), and samples were subjected to TLC analysis. 
TLC plates (HPTLC; Merck  &  Co., Inc.) were developed with chloroform/
methanol/25% ammonia (50:50:3, vol/vol/vol) when not stated otherwise, 
allowing the separation of PC, PE, and CL from other mitochondrial phos-
pholipids (Fig. S1, available at http://www.jcb.org/cgi/content/full/
jcb.200810189/DC1). TLC plates were stained with 470 mM CuSO 4  in 
8.5%  o -phosphoric acid and subsequently incubated for 10 min at 180 ° C. 

 Quantifi cation of PE and CL by mass spectrometry.   Mitochondrial lipids 
were extracted and phosphate concentration was determined according to 
 Rouser et al. (1970) . For mass spectrometric analysis, 1.5-nmol phospho-
lipids of mitochondrial fractions were extracted in the presence of CL 
(CL56:0; Avanti Polar Lipids, Inc.) and PE standard (50 pmol each) as de-
scribed previously ( Br ü gger et al., 2006 ). Dried lipids were redissolved in 
10 mM ammonium acetate in methanol. 

 Quantifi cation of PE was performed by neutral-loss scanning, select-
ing for a neutral loss of 141 D as described previously ( Br ü gger et al., 
2006 ). Quantifi cation of CL was performed in negative ion mode on a 
quadrupole time-of-fl ight mass spectrometer (QStar Elite, Applied Bio-
systems). 10  μ l of lipid extracts was diluted 1:2 with 0.1% piperidine in metha-
nol and automatically infused (Triversa Nanomate; Advion Biosciences). 
The ionization voltage was set to  � 0.95 kV and gas pressure was set to 
0.5 psi. CLs were detected as single charged molecules. CL species (all 
combinations of fatty acids 16:0, 16:1, 16:2, 18:0, 18:1, and 18:2) were 
analyzed by targeted product ion scanning. The peak areas of CL-derived 
fatty acid fragments were extracted from the respective product ion spectra 
via the  “ Extract Fragments ”  script (Analyst QS 2.0; Applied Biosystems). 
Isotope correction for M +2  ions was performed manually, and values were 
corrected for response factors of standards. 

 Determination of Psd1 activity.   Mitochondria were resuspended in 
assay buffer B (0.1 M Tris/HCl, pH 7.4, 10 mM EDTA, and 2  μ M PS-C6-NBD 
[Avanti Polar Lipids]) to a fi nal concentration of 5 mg/ml and incubated at 
25 ° C. At the time points indicated, mitochondria (500  μ g) were removed 
from the reaction mixture, and phospholipids were extracted and analyzed 
by TLC (developing solvent: chloroform/methanol/H 2 O/triethylamine; 
30:35:7:35 vol/vol/vol/vol). NBD signals were detected and quantifi ed 
by fl uor imaging (TyphoonTrio; GE Healthcare). 

 In vivo labeling of phospholipids.   Logarithmically growing yeast cells 
were harvested and resuspended in medium supplemented with [ 3 H]serine 
(12.5  μ Ci/ml) to a fi nal OD 600  of 5. After incubation at 30 ° C for 0, 20, 40, 
or 60 min, cells corresponding to 10 OD 600  were harvested and stored in 
liquid nitrogen. Phospholipids were extracted and analyzed by TLC. PE spots 
were recovered from the TLC plates and mixed with 400  μ l H 2 O and 8 ml of 
scintillation cocktail. Labeled PE was quantifi ed by liquid scintillation counting. 
The stability of PE was monitored in pulse chase experiments. Yeast cells 
were labeled for 10 min as described above. Cells were then harvested, re-
suspended in medium containing 20 mM of unlabeled serine, and incubated 
at 30 ° C for 0, 30, 60, 90, 120, or 150 min before PE was quantifi ed. 

 Online supplemental material 
 Fig. S1 documents the resolution of the TLC system applied in this study. Table S1 
lists yeast strains used in this study. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200810189/DC1. 
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