
Age-related macular degeneration (AMD) is a slowly 
progressing, complex degenerative disease with typical onset 
at around 60 years of age. The disease involves pathology in 
the retina, the light-sensitive tissue at the posterior pole, the 
RPE, the blood–retina barrier, and the choroid, the ocular 
blood supply. AMD involves environmental and genetic risk 
factors [1], with an overactive complement pathway having 
been associated with all forms of AMD. Specifically, the 
Y402H single nucleotide polymorphism (SNP) in the comple-
ment inhibitor complement factor H (CFH) poses the greatest 
single genetic risk for AMD (reviewed in [2]). In addition, 
other variants that modify complement activation and are part 
of either complement inhibition [2-4] or activation [5-7] have 
been reported.

The complement system is an evolutionarily ancient 
part of the innate and adaptive immune system, and is 

involved in many different stress- and age-related diseases 
[8,9]. It is triggered in response to the generation of stress or 
injury-exposed antigens and produces three sets of biologic 
effector molecules: anaphylatoxins (C3a and C5a) that recruit 
phagocytes, opsonins (C3d and C3dg) that tag damaged cells 
or debris for removal, and the membrane attack complex 
(MAC), which lyses cells [10]. Based on the central role of 
the alternative pathway (AP) of complement in triggering 
complement dependent disease [8,9], we developed a designer 
complement inhibitor molecule (CR2-fH), which consists of 
the AP-inhibitory domain of CFH linked to the complement 
receptor 2 (CR2) targeting fragment that binds opsonins [11]. 
This protein was efficacious in a mouse model of wet AMD 
(laser-induced choroidal neovascularization [CNV]) when 
injected systemically [12] or delivered via gene therapy [13]. 
Recently, we confirmed that a biologic such as CR2-fH with 
potentially limited long-term stability in a 37 °C environment 
can successfully be delivered long-term using cell encapsula-
tion technology (ECT). Specifically, we used immortalized 
RPE cells, stably transfected with an expression plasmid 
for CR2-fH and encapsulated in alginate for the treatment 
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Purpose: Risk for age-related macular degeneration (AMD), a slowly progressing, complex disease, is tied to an overac-
tive complement system. Efforts are under way to develop an anticomplement-based treatment to be delivered locally or 
systemically. We developed an alternative pathway (AP) inhibitor fusion protein consisting of a complement receptor-2 
fragment linked to the inhibitory domain of factor H (CR2-fH), which reduces the size of mouse choroidal neovascu-
larization (CNV) when delivered locally or systemically. Specifically, we confirmed that ARPE-19 cells genetically 
engineered to produce CR2-fH reduce CNV lesion size when encapsulated and placed intravitreally. We extend this 
observation by delivering the encapsulated cells systemically in Matrigel.
Methods: ARPE-19 cells were generated to stably express CR2 or CR2-fH, microencapsulated using sodium alginate, 
and injected subcutaneously in Matrigel into 2-month-old C57BL/6J mice. Four weeks after implantation, CNV was 
induced using argon laser photocoagulation. Progression of CNV was analyzed using optical coherence tomography. 
Bioavailability of CR2-fH was evaluated in Matrigel plugs with immunohistochemistry, as well as in ocular tissue with 
dot blots. Efficacy as an AP inhibitor was confirmed with protein chemistry.
Results: An efficacious number of implanted capsules to reduce CNV was identified. Expression of the fusion protein 
systemically did not elicit an immune response. Bioavailability studies showed that CR2-fH was present in the RPE/
choroid fractions of the treated mice, and reduced CNV-associated ocular complement activation.
Conclusions: These findings indicate that systemic production of the AP inhibitor CR2-fH can reduce CNV in the 
mouse model.
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of mouse CNV [14]. Local administration using intravitreal 
injection has been the administration route of choice for 
AMD therapeutics [15-17]; however, based on the potential 
global effect of the complement system, systemic approaches 
are being considered [18].

METHODS

Cell encapsulation: Stably transfected ARPE-19 cells 
(ATCC® CRL-2302™; purchased from ATCC with required 
specifications examining short tandem repeat profiling to 
verify the human unique DNA profile and rule out intraspe-
cies contamination) with plasmid constructs of CR2 and 
CR2-fH [12] have already been described and long-term 
CR2-fH secretion confirmed [14]. Likewise, cell encapsu-
lation using the electrospray method was published by us 
in detail, including a video protocol [14,19]. In short, the 
encapsulation was performed by spraying cells at a final cell 
concentration of 1x106 in 2% w/v alginate solution pumped 
through a 30G blunt tip needle connected to a high voltage 
generator producing a flowrate of 60 mm/h at 8.0 kV voltage. 
The capsules were dropped into a gelling bath containing a 
HEPES-buffered saline solution (100 mM CaCl2 and 0.5% 
w/v poly-L-ornithine) to add a second coating. Microcapsules 
were stored in Dulbecco′s Modified Eagle′s Medium‎ at 37 ºC 
and 5% CO2 until further use.

Animals: Cell-containing microcapsules were suspended in 
100 μl of serum-free media and then mixed with 100 μl of 
cold Matrigel (Corning Cat # 354234, Corning, NY) [20]. 
C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were 
bred in house and used at 2 months old in accordance with 
the ARVO Statement for the Use of Animals in Ophthalmic 
and Vision Research and with the approval of the University 
Animal Care and Use Committee. Subcutaneous injections 
were performed on mice of both sexes with isoflurane anes-
thesia, using a 23-gauge needle.

Immunohistochemistry: One month after injection, the 
presence of CR2-fH was confirmed in cryosections (14 μm 
sections) of Matrigel plugs and surrounding tissues fixed 
overnight with 4% paraformaldehyde (PFA) and probed with 
anti-CR2 (7G6) antibody (1:200), followed by secondary anti-
body binding (Alexa Fluor 488 goat anti-mouse IgG; 1:500, 
Invitrogen, Carlsbad, CA) [12]. Fluorescence microscopy 
(Zeiss, Thornwood, NY) equipped with a digital black-and-
white camera (Spot camera: Diagnostic Instruments, Sterling 
Heights, MI) was used to identify CR2-fH positive cells.

Choroidal neovascularization and optical coherence 
tomography: One month following the injection, argon laser 
photocoagulation (532 nm, 100 µm spot size, 0.1 s duration, 
100 mW) was used to generate four laser spots around the 

optic nerve of each eye [12]. Five days after laser-induced 
CNV, the mouse eyes were imaged with optical coherence 
tomography (OCT) using an SD-OCT Bioptigen® Spec-
tral Domain Ophthalmic Imaging System (Bioptigen Inc., 
Durham, NC) as previously described [21-23], before being 
sacrificed by isoflurane inhalation for tissue collection on 
day 6.

Protein analyses: Dot blot analyses (Bio-Dot® Microfiltra-
tion Apparatus; Bio-Rad Laboratories Inc., Hercules, CA) of 
the total RPE/choroid protein was used to detect CR2-fH and 
CR2 using the anti-CR2 antibody as published previously 
[14]. In short, total protein (25 μl per well of a 96 well plate) 
was transferred onto a nitrocellulose membrane, blocked for 
2 h with 5% nonfat milk in TBST (Tris-buffered saline, 0.1% 
Tween 20), probed with an anti-CR2 primary antibody (10 
µg/ml; rat anti-mouse CD21, clone 7G6; purified in house 
[24]) and visualized with Clarity™ Western ECL Blotting 
Substrate optimized for horseradish peroxidase substrates 
(Bio-Rad Laboratories Inc). C3a levels were measured using 
a sandwich enzyme immunoassay (LifeSpan Biosciences, 
Inc; Seattle, WA) in the RPE/choroid tissue homogenates as 
we have previously described [23,25]. In short, tissues were 
rinsed with ice cold PBS to remove excess blood, lysed by 
ultrasonication in the presence of protease inhibitor cocktail 
(Sigma-Aldrich, St. Louis, MO), and homogenates cleared 
by centrifugation. Measurements were obtained according 
to the manufacturer’s instructions. To determine whether 
mice generate antibodies against CR2-fH secreted from the 
ARPE-19 cells, CR2-fH was electrophoresed on a 4–20% 
Criterion™ TGX™ Precast Gels (Bio-Rad Laboratories, Inc.), 
proteins transferred to a PVDF membrane, and membranes 
incubated with primary antibody against CR2 (7G6), or 
serum (1:50) from mice treated with capsules, as previously 
described [14].

Statistical analysis: Data are presented as mean ± standard 
error of the mean (SEM). Single comparisons were analyzed 
using unpaired t tests, data consisting of multiple groups 
were analyzed with analysis of variance (ANOVA); Fisher’s 
protected least significant difference). Mean value differences 
were considered statistically significant at p values less than 
or equal to 0.05 (StatView).

RESULTS

Subcutaneous delivery of encapsulated ARPE-19 cells, dose-
finding study: Stably transfected ARPE-19 cells expressing 
CR2 or CR2-fH were encapsulated and injected subcutane-
ously into the back of the mice within a Matrigel suspension 
[20]. Then, the Matrigel plugs were collected for analysis. The 
presence of cells containing CR2-fH was documented with 
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fluorescence microscopy using an antibody against the CR2 
portion of the molecule [12] (Figure 1A).

After the presence of the therapeutic fusion protein in 
Matrigel plugs was confirmed, 1 month following the injec-
tion, argon laser photocoagulation was used to generate four 
CNV lesions per eye [12]. After 5 days, the CNV lesions sizes 
were assessed with OCT. To identify an effective concen-
tration to reduce CNV progression, depots of CR2- versus 
CR2-fH expressing cells were compared and analyzed based 
on the ability of the proteins to target binding sites in the 
RPE/choroid of eyes with CNV lesions, reduce the CNV-
induced generation of C3a in the eye, and reduce the CNV 
lesion size in a dose-finding study with a small set of animals. 
In dot blot analyses of the total RPE/choroid protein, CR2-fH 
and CR2 were detected using the anti-CR2 antibody also 
used for immunohistochemistry, and confirmed to increase 
in levels with increasing numbers of capsules (Figure 2A). 
CNV-induced generation of C3a in the RPE/choroid fraction 
was reduced by the presence of CR2-fH when compared to 
CR2 alone (Figure 2B). A preliminary CNV analysis testing 
Matrigel depots containing 500–25,000 capsules suggested 
that CR2-fH secreted from 1,000 capsules was most effective 
in reducing CNV lesion sizes (Figure 2C). Importantly, as we 
reported for gene therapy [13] or intravitreal ECT delivery 
[14], complement inhibition by CR2-fH has an optimal level; 

too much inhibition is ineffective or potentially has cytotoxic 
effects. Finally, to confirm that long-term production of the 
mouse protein-based CR2-fH in Matrigel plugs does not 
induce anti-CR2-fH antibody production, the mouse serum 
was examined for the presence of anti-CR2-fH antibodies. 
One month after the implantation of the capsules, serum from 
experimental animals with CR2-fH capsules was used as 
the source of primary antibodies and compared to that from 
control animals (empty capsules). Neither immunoglobulin 
G (IgG) nor IgM antibodies recognizing CR2-fH could be 
identified (Figure 1B). These results confirmed previous 
results we found in mice treated with CR2-fH with ECT [14] 
or gene therapy [13].

Encapsulated ARPE-19 cells expressing CR2-fH reduce 
complement activation and attenuates CNV development: 
Having established proof of principle, we confirmed the 
effectiveness of encapsulated ARPE-19 cells (1,000 capsules 
per Matrigel plug) expressing CR2-fH when compared to 
CR2 on CNV lesion sizes. Mice were injected with Matrigel 
containing 1,000 capsules containing either CR2- (control) 
or CR2-fH-expressing ARPE-19 cells. After 1 month, CNV 
lesions were induced in all four quadrants of the eye, using 
argon laser-induced rupture of Bruch’s membrane [12], 
and OCT was used to evaluate lesion sizes based on two 
parameters: diameter [23] and maximum height or depth 

Figure 1. Encapsulated cell technology to deliver CR2-fH: Tool development. A: Detection of CR2-fH in the tissue surrounding the ARPE-19 
cell-containing matrigel plug with immunohistochemistry using an antibody against CR2. The corresponding differential interference 
contrast (DIC) and fluorescence image is presented. CR2 antibody staining was negative in control tissues containing empty alginate 
capsules. Scale bar: 100 μm. B: Systemically produced CR2-fH could trigger an immune response. Lack of immunoglobulin G (IgG) or IgM 
antibody production was confirmed 1 month after capsule injection. Purified CR2-fH was run at two different concentrations and probed for 
the presence of CR2-fH using the anti-CR2 antibody (positive control). Identical lanes were probed with serum from experimental animals 
(S: CR2-fH) or control animals (S: control) at 1:50, followed by the appropriate secondary antibodies.
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[26]. Both factors were statistically significantly decreased 
in the presence of CR2-fH containing capsules compared 
to those receiving the cells expressing CR2 (size: p = 0.03 
and lesion height p<0.0001; Figure 3A,B), and a repeated-
measure ANOVA revealed a treatment by measure interac-
tion (p<0.01). Complement activation in the RPE/choroid 
fractions was assessed with enzyme-linked immunosorbent 
assay (ELISA) for C3a. As expected in the presence of 
the AP inhibitor CR2-fH, a reduction in C3a was identi-
fied (Figure 3C). The ELISA measurements demonstrated 
that CNV (four lesions per eye) resulted in an approximate 
threefold difference in C3a in the eyes of animals exposed 
to capsules containing CR2-expressing cells when compared 
to the control mice without CNV. This increase was blunted 
statistically significantly by CR2-fH (p<0.01). Importantly, 
the therapeutic dose (as well as the higher doses above 1,000 
capsules) of CR2-fH delivered via systemic ECTs reduced 
complement activation, but never below levels present in 
animals without CNV. We have argued that these baseline 
levels would allow for normal homeostatic functions of the 
complement system in the eye and low-level surveillance of 
the immune system [27].

DISCUSSION

A successful therapeutic for a chronic disease such as AMD 
requires long-term drug delivery to the posterior pole. 
Although repeated ocular administration using intravit-
real injections has been the administration route of choice 
for AMD therapeutics [15-17], systemic approaches are 
being considered based on the potential global effect of the 
complement system in AMD [18]. The use of Matrigel was 
identified to facilitate the systemic delivery of genetically 
engineered encapsulated ARPE-19 cells that produce the 
designer complement inhibitor CR2-fH for the treatment of 
mouse CNV. The main results of the present study are as 
follows: (1) ARPE-19 cells encapsulated in alginate can be 
implanted subcutaneously using Matrigel, and expressed or 
secreted CR2-fH can be visualized in tissues with immuno-
histochemistry. (2) CR2-fH secreted systemically does not 
lead to anti-CR2-fH antibody production. (3) CR2-fH when 
expressed and secreted by ARPE-19 cells systemically targets 
the lesions in the RPE/choroid where it reduces complement 
activation and leads to the reduction in CNV lesion sizes.

As discussed in the parent paper to this publication [14], 
and citing Wong and colleagues [28], “the pinnacle goal of 

Figure 2. Encapsulated cell technology to deliver CR2-fH: Identification of a therapeutic dose. A: After systemic capsule delivery, CR2-fH 
was detectable in the RPE/choroid fraction of eyes with choroidal neovascularization (CNV) lesions. A dot blot of RPE/choroid samples 
with twofold dilution steps is presented documenting a dose-dependent increase in CR2 and CR2-fH delivery and binding to the tissues. B: 
CNV-induced complement activation in untreated animals was demonstrated by elevated levels of C3a when compared to animals with no 
lesions (control). C3a levels remained elevated in animals exposed to CR2, and statistically significantly reduced by CR2-fH. C: CNV sizes 
were reduced in animals injected systemically with ARPE-19 cells expressing CR2-fH as opposed to those expressing CR2, with an apparent 
efficacious dose of 1,000 capsules. Data shown are average values (± standard error of the mean [SEM]; n = 2–3 animals per condition).
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ECT is to provide sustained delivery of fresh therapeutics 
secreted by the encapsulated cells at the target sites without 
causing any immune reactions.” As in the previous publica-
tion using intravitreal delivery, we achieved both goals. First, 
we confirmed using dot blot analysis of RPE/choroid tissues 
that CR2-fH (and CR2) can be detected 1–2 months after 
capsule injection in the injured tissue; this observation also 
indirectly confirmed the continued viability of the implanted 
ARPE-19 cells. Second, no anti-CR2-fH antibodies (IgG 
and IgM) were generated during that time frame. In accor-
dance with our previous publication [14], we did not examine 
whether ARPE-19 cell epitopes elicit antibody production. 
First, human patients treated with encapsulated ARPE cells 
did not require immunosuppressants [29-31]; second, the 
potential immune response in the mouse to systemically 
implanted ARPE-19 is irrelevant for future preclinical 
work. We did not expect to be able to identify intact alginate 
capsules at the termination of the experiment (Figure 1A) as 
there are many enzymes able to degrade them; however, cells 
expressing CR2-positive material could be identified in the 
regions of the Matrigel plugs using immunohistochemistry. 

For future human studies, stable depots containing cells 
rather than alginate capsules will be explored.

ECT devices have been studied in the eye for scientific 
purposes, and Neurotech has tested them for therapeutic 
purposes using ARPE-19 cells. Specifically, two programs 
with intravitreal delivery are still being pursued: NT-501 
was designed to deliver ciliary neurotrophic factor (CNTF) 
and NT-503 a soluble anti-vascular endothelial growth factor 
receptor (VEGF-R) protein. In short, although both had 
good safety profiles, neither reached their primary clinical 
endpoints in geographic and wet AMD respectively [29,31]. 
A comprehensive discussion was provided in our previous 
publication [14]. However, as we discussed previously, 
ARPE-19 cells secrete not only therapeutic proteins (e.g., 
CNTF, anti-VEGF, or CR2-fH) but also a large range of 
proteins, including some known to play a role in angiogen-
esis or the immune response [32]. These additional proteins 
when secreted into the vitreous could potentially interfere 
with the efficacy of the therapeutic, or worse, augment 
disease. Thus, cell encapsulation and delivery systemically 
appears advantageous, as in the subcutaneous space the small 

Figure 3. Systemic ECT-mediated delivery of CR2-fH reduces CNV and complement activation. One month following subcutaneous injection 
of alginate capsules, laser choroidal neovascularization (CNV) was induced. On day 5 after injury, the lesion sizes were analyzed with optical 
coherence tomography (OCT; lesion size and height), and complement activation was determined using enzyme-linked immunosorbent assay 
(ELISA) for the C3 breakdown product C3a. A, B: CNV sizes and lesion heights were statistically significantly reduced in animals treated 
with ARPE-19 cells expressing CR2-fH as opposed to those expressing CR2. The gray line in the en face image can be used to pick the loca-
tions of B-scans, but are not used here; CNV lesion height is measured between BrM (black line) and its peak. C: CNV induced complement 
activation as demonstrated by elevated levels of C3 breakdown product C3a when compared to animals with no lesions (control), an effect that 
was mitigated by CR2-fH but not CR2. Data shown are average values (± standard error of the mean [SEM]; n = 5–8 animals per condition).
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amount of additional human protein secreted by these cells 
is not expected to alter systemic cell behavior. Although 
systemic delivery of therapeutic proteins aimed at the eye, 
such as CNTF and anti-VEGF, would require too many cells 
to be practical, a therapeutic with targeting potential, such as 
CR2-fH [11], can be used successfully. We and our collabora-
tors on this program have shown that CR2-targeting systemic 
delivery can be used successfully to treat many different 
organ systems. Importantly, it has been shown that CR2-fH 
via its opsonin binding domain (CR2) will bind specifically 
to organs with complement activation where it is retained for 
multiple days [33], whereas unbound protein has a half-life 
of approximately 8–9 h [34] and will be rapidly eliminated 
by the kidneys. Thus, the inhibitor will be available at sites 
of complement activation and not wasted on non-pathophysi-
ologically important complement target molecules. Although 
a residual inhibitory effect of CR2-fH in in vitro hemolysis 
assays has been observed, likely attributable to the fH moiety 
of CR2-fH acting in the fluid phase [35], the inhibitor had 
no measurable effect on serum complement activity in vivo 
in recipient mice, and therefore, is not expected to alter the 
homeostatic complement pathway [36]. Finally, CR2-fH has 
recently been humanized (TT30), and efficacy of TT30 in 
CNV was confirmed [37,38], allowing potentially for rapid 
development of this therapeutic approach.
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