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Adaptation and acclimation of traits
associated with swimming capacity in Lake
Whitefish (coregonus clupeaformis) ecotypes
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Abstract

Background: Improved performance in a given ecological niche can occur through local adaptation, phenotypic
plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is
needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake
Whitefish (Coregonus clupeaformis) representing the’normal’ (benthic form) and the ‘dwarf’ (derived limnetic form)
ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and
acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active
swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming
musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits
consistent with reductions in the energetic costs of swimming and maintenance metabolism.

Results: We found differences in traits predicted to decrease the costs of prolonged swimming and standard
metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined
body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard
metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme
activities.

Conclusion: Results support the view that local adaptation has contributed to the genetically-based divergence
of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these
ecotype pairs may have favoured repeated local adaptation to the limnetic niches.

Keywords: Phenotypic plasticity, Local adaptation, Ecophysiology, Geometric morphometrics, Speciation, Parallel
evolution, Swimming cost, Salmonidae

Background
Local adaptation occurs when individuals within a popu-
lation evolve in response to selective pressure leading to
increased fitness in their local environment relative to a
foreign environment [1]. It is notoriously difficult to dif-
ferentiate between local adaptation and environmentally
induced plasticity in wild populations because pheno-
typic variation could be the product of either mechan-
ism, or a combination of genetically based differentiation
and plastic responses. Distinguishing between these two

non-exclusive mechanisms is needed to better under-
stand the cause of intra specific phenotypic polymorph-
ism and the interaction of organisms with their
environment [2–4]. This is particularly true for traits
that commonly respond to a gradual change in the en-
vironment, a process known as acclimation (i.e. revers-
ible, “physiological” phenotypic plasticity, or flexibility;
[5]). Because it often increases survival in new environ-
ments, the process of acclimation is predicted to favour
gene flow [6, 7], and hinder local adaptation [1]. There-
fore, it is hypothesized that the extent of local adaptation
should be inversely proportional to the level of gene flow
between sympatric morphs exploiting different niches.
Northern freshwater fishes inhabiting postglacial envi-

ronments show remarkable amounts of intra specific
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polymorphism [8–12] and numerous cases of parallel
phenotypic evolution [13–17]. After the retreat of the
Pleistocene ice sheets (~12,000 years ago), several
species colonised newly formed lakes [18, 19], with free
ecological niches allowing for phenotypic diversification
[20, 21]. More specifically, sympatric ecotypes often
show patterns of phenotypic differentiation associated
with the benthic and limnetic niches [10, 11, 22–24]. A
major difference between benthic and limnetic environ-
ments is the need to continually swim when foraging in
the limnetic niche [24–27], as limnetic prey (i.e. zoo-
plankton) show greater variation in abundance and dis-
tribution than benthic prey [24, 28]. The energy that is
spent on swimming activity takes away from the energy
available for other metabolic requirements such as
growth, tissue maintenance and reproduction [29–31].
To maintain a balance between energy supply and de-
mand and cope with the requirements for more active
swimming in the limnetic niche, fish can adopt a
number of strategies [25–27, 29, 30, 32]. These include
decreasing the costs of swimming or the standard
metabolic rate (i.e. the minimum metabolic rate needed
to sustain life when animals are post-absorptive and
inactive) [27, 31–33]. For instance, a common feature
observed in limnetic morphs is a more hydrodynamic,
slender body shape, which will diminish drag during
steady swimming [24, 34, 35]. In contrast, benthic
morphs often display deeper bodies, which enhance
manoeuvrability and burst swimming capacity and in-
crease foraging efficiency on benthic prey [24, 32, 33, 36].
Fish may also decrease the costs of maintenance metab-
olism by reducing the size of ‘metabolically-expensive’
organs. Indeed, studies of intra specific variation in
standard metabolic rate often find positive correlations
between standard/basal metabolic rate and the size of
metabolically-expensive organs and a negative correl-
ation with growth [31–33]. Brain and liver are two of
the most metabolically-costly organs, so decreasing
their size is predicted to reduce whole-animal meta-
bolic maintenance cost [37–40]. A reduction of total
gill surface area may also decrease whole organism
energy expenditure because a larger gill surface area
will lead to greater ion loss in freshwater, requiring fish
to expend energy pumping ions to maintain osmoregu-
latory homeostasis [41]. These reductions in overall gill
surface area may decrease oxygen uptake and hinder
aerobic energy metabolism. However, fish normally use
all of their gill area for oxygen uptake only during
maximum aerobic swimming [42], which is not the case
during limnetic foraging. Therefore, a decrease in gill
surface area is predicted to be selected in freshwater
environments when fish are energy limited, but oxygen
is not limiting (i.e. normoxic waters). Overall, fish living
in the limnetic niche are predicted to have more

streamlined bodies, with smaller organ sizes (e.g. liver,
brain, gills) compared to their benthic congeners, and
thus save energy on maintenance costs and swimming
which will allow for more energy to be spent on
reproduction and growth (mainly in the white skeletal
muscle) while actively foraging [29, 31].
Two Lake Whitefish (Coregonus clupeaformis) eco-

types are found in several postglacial lakes of the St.
John River Drainage (Québec, Canada and Maine, USA)
[43]. The ‘normal’ ecotype (Atlantic lineage) is special-
ized to a benthic niche while the repeatedly derived
‘dwarf ’ ecotype (Acadian lineage) has colonised the free
limnetic niche following secondary contact after the last
glacial maximum [lineages were divided ~ 60,000 years
ago or about 15,000 generations during the last Pleisto-
cene glaciation and the secondary contact occurred ~
12,000 years ago or about 3000 generations] [23, 44–47].
Reduced viability and sperm performance, reactivation
of transposable elements and aneuploidy in hybrids are
post-zygotic barriers that restrict gene flow between
these ecotypes [48–52], in addition to ecological pro-
cesses that may reduce the fitness of hybrids in natural
conditions [11, 49]. As predicted by their ecological
divergence, the limnetic ‘dwarf ’ whitefish are more
active swimmers and are younger at maturity (2–3 years
vs 5 years or more) than normal fish, whereas normal
whitefish grow more quickly, live longer, attain larger
sizes, and have a higher condition factor than dwarf fish
[23, 53, 54]. Studies examining the mechanisms under-
lying these differences in whole-animal performance
have revealed that wild dwarf fish are more streamlined
[55] and have a higher capacity for oxygen transport and
use, which is required to fuel aerobic swimming (e.g.
larger hearts, more red muscle, higher muscle mitochon-
drial content) [56–58]. Some traits related to mainten-
ance and growth also follow predictions, as gill surface
area in dwarf fish is smaller than in normal fish, but no
differences in brain size are detected in wild caught fish
[59]. Differences in gene expression between limnetic
and benthic whitefish ecotypes have found extensive
divergence in central energy metabolism (i.e. mitochon-
drial oxidative phosphorylation, citric acid cycle, glycoly-
sis, glycogen metabolism, creatine phosphokinase). This
metabolic divergence is predicted to underlie the
observed trade-off in life-history traits, wherein en-
hanced survival via more active swimming is necessary
for increased foraging and predator avoidance in the
limnetic zone, but leads to energetic costs that translate
into slower growth rates and reduced fecundity in dwarf
relative to normal whitefish [23, 60–64].
However, the relative roles of acclimation and adapta-

tion in the expression of these traits, including brain
size, gill size and body shape is unclear because previous
studies have all been performed on wild caught fish
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where dwarf and normal whitefish may be exposed to
different environmental conditions [55, 59]. Moreover,
juvenile and adult fish often show phenotypic plasticity
in these traits in similar conditions [23, 65–67]. There-
fore, the goal of this study is to test if variation in traits
is due to acclimation and/or adaptation in controlled
environments. We predicted that both mechanisms are
used to compensate for the increase in energy allocation
to locomotion in dwarf fish, but that adaptation should
be a major mechanism underlying phenotypic diver-
gence, considering the reproductive barriers previously
documented between ecotypes pairs [11, 48–52]. We
also further investigate the energetic strategies used by
dwarf fish to inhabit the limnetic niche by measuring
additional traits predicted to influence maintenance
metabolism (i.e. liver size, liver metabolic capacity and a
more detailed study of gill surface area).

Methods
Experimental setup
Crosses were produced from parents collected from
Témiscouata (dwarf whitefish, Acadian lineage 47°36 N,
68°45 W) and Aylmer lakes (normal whitefish, Atlantic
lineage, 45°50 N, 71°26 W) in Québec, Canada, caught
in November 2011. It should be noted that these two
populations are the only populations of whitefish eco-
types for which the breeding sites are known and crosses
can be produced from. However, the divergence between
these two allopatric ‘dwarf ’ and ‘normal’ ecotypes is
representative of the differentiation among other wild
sympatric ecotype pairs. This is because transcriptomic

comparisons among ecotypes show similar patterns of
differentiation in these two populations and wild sym-
patric pairs of ecotypes [61]. As well, dwarf individuals
from Témiscouata and normal individuals from Alymer
lakes raised in the lab show heritable differentiation in
behavioural traits in accordance with the different life
history traits expected between limnetic and benthic
fishes [53] and show the same postzygotic isolation
mechanisms described above.
The fish used in this study are the same as those used

in a recently conducted experiment [58]. Briefly, gametes
from dwarf and normal whitefish were collected in the
field and brought to the Laboratoire de Recherche en
Sciences Aquatiques (LARSA, Université Laval) for arti-
ficial fertilization following [63]. Gametes from multiple
females and males were mixed (dwarf: seven females
with seven males; normal: nine females with 14 males).
We reared crosses in a fresh-water, flow through system
under identical temperatures, lighting schedules, water
velocities, and feeding regimes for the first 16 months.
The experiment started at ~ 17 months of age and
finished 6 months later before fish began to invest
energy in reproduction. Since no mature gonads were
observed during sampling, acclimation and not differ-
ences in maturation should have caused the observed
treatment effects (if any) during the experiment. A total
of 127 fish (63 dwarf and 64 normal) were separated into
eight 1 m tall × 50 cm diameter circular tanks (Fig. 1).
To ensure random sampling, each tank contained an
equivalent number of dwarf and normal whitefish of
similar size and weight to obtain an overall equivalent

Fig. 1 Schematic representation of the experimental setup testing the effect of ecotypes (dwarf vs. normal) and treatment (control vs. swim-training)
in Lake Whitefish. Water velocity was set at higher speeds in half of the tanks and 8 individual of each ecotypes were present in each tanks to ensure
blind sampling (see text for details)
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biomass. We re-identified each fish as being dwarf or
normal a posteriori by using a diagnostic mitochondrial
RFLP assay after sampling [58, 68]. Half of the tanks
(which we refer to as “swimming tanks”) were set with a
water current of 10 cm/s for 6 h/day. We chose exp-
erimental speeds to match the natural activity level
expected in the limnetic niche (constant and aerobic
swimming during foraging). This was confirmed by our
observations that i) at higher water velocities it was
difficult for some individuals to maintain their position
in the current and ii) previous studies show that Lake
Whitefish have a lower prolonged swimming capacity
than other salmonids [69, 70]. The other tanks (which
we refer to as “control tanks”) had only a very low water
current (<0.5 cm/s) required to allow for flow-through
conditions, 24 h/day. At the end of the experiment, no dif-
ference in mass was observed between ecotypes [58]. More
details on the rearing conditions are available in Dalziel et
al. [58]. All protocols were approved by Université Laval’s
animal care committee (Protocol 82178).

Phenotypic measurements
Shape analyses were based on geometric landmark co-
ordinates [71]. Seventeen landmarks were digitized on
each image (Fig. 2a) using tpsDig v2.16 [72]. We chose
landmarks to reflect characteristics predicted to be asso-
ciated with fish locomotion [25, 26, 73]. Fish were

sacrificed with pithing using a needle followed by cer-
vical dislocation. Immediately after fish were euthanized,
digital photographs of the left side of the fish were taken
with a Nikon Coolpix P7700 camera to avoid shape
deformation that can be associated with preservation
[65, 74]. Fish were repositioned and a second image was
captured to estimate measurement error, adapted for
Procrustes data [75, 76]. A Partial Generalized Procrus-
tes Analysis superimposition was first conducted to pre-
serve information on shape differences among fish and
to remove information unrelated to shape (i.e. scale, pos-
ition, and orientation) [77, 78]. Fish shape was estimated
from the superimposed coordinates projected on princi-
pal component analysis (PCA) using the MorphoJ soft-
ware v1.06 [79]. We used the wireframe graph option of
MorphoJ to display shape change on PC-axes considered
informative, based on a broken-stick distribution [80].
After the images were captured, wet brain and liver

mass were determined and gills were preserved in 4 %
formaldehyde. The first arch of the left gill was laid flat
on a microscope slide and photographed. We counted
the number of filaments and estimated the average
length of filaments, total length of filaments, average
space between lamellae, number of lamellae and total
hemibranch area using ImageJ [81]. The two latter esti-
mates were our gill area proxies. More precisely, the
average filament length was estimated by measuring

a

b c

Fig. 2 a Positions of 17 landmarks on Lake Whitefish (1: snout; 2–3: start and end of the dorsal fin; 4–5: start and end of the adipose fin; 6-7-8:
top, end and bottom of the caudal peduncle; 9–10: end and start of the anal fin; 11–12: end and start of the pelvic fin; 13: end of maxilla; 14–15:
eyes; 16–17: start and end of the pectoral fin). b Example of measurement estimating gill surface area (first left arch), including the number of
filaments and average length of filaments. c Example of measuring space between lamellae
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each fifth filament and divided the total by the number
of filaments measured (Fig. 2b). These points were also
used to obtain shape and measure of hemibranch area
(Fig. 2b). Total filament length was obtained by multi-
plying the average filament length and number of fila-
ments. Average space between lamellae was estimated by
the distance between ten lamellae, and measured five
times on different parts of the gill to control for meas-
urement error (Fig. 2c). Finally, the total number of
lamellae was calculated by dividing the total filament
length by the average space between lamellae and multi-
plied by ten (since average space between lamella was
measured on 10 lamellae).
To study the metabolic capacity of the liver, we

measured the activity of COX (cytochrome c oxidase,
EC 1.9.3.1, complex IV in the electron transport chain,
and found on the inner mitochondrial membrane) and
CS (citrate synthase, EC 2.3.3.1, a citric acid cycle
enzyme found in the mitochondrial matrix) per gram of
liver tissue and calculated enzyme activities for the
entire liver by multiplying this by total liver mass. COX
and CS activities are indicators of mitochondrial content
and should reflect the metabolic capacity of the liver
[82]. To do this, we re-weighed frozen liver (g), and im-
mediately added 20 volumes of chilled homogenization
buffer (50mmoll −1 hepes, 1mmoll −1 EDTA and 0.1 %
Triton X-100; pH7.4) in 4 ml Wheaton glass homoge-
nizers kept on ice. Enzyme activities were measured on
whole-cell extracts at 25 °C using non-limiting substrate
concentrations outlined by [58].

Statistical tests
We first tested for a relationship between each trait and
body mass and used residuals to remove allometric ef-
fects when there was a significant correlation (P < 0.05).
To test the effect of ecotype (fixed effect, dwarf or
normal whitefish) and treatment (fixed effect, control or
swim) we ran mixed effects linear models using the
‘nlme’ package in R v 3.1.1 with tanks nested as a
random effect and individual fish nested within tanks
(Two-way nested ANOVAs). Acclimation was defined as
a significant fixed-effect of treatment (e.g. both ecotypes
display a similar direction and extent of plasticity) or a
significant interaction effect (e.g. only one ecotype is
plastic or ecotypes display different directions and/or ex-
tents of plasticity) and a genetic control was defined by
similar criteria (fixed effect of ‘ecotypes’ or a significant
interaction indicating evolutionary variation in plasti-
city). We also performed a multivariate analysis to deter-
mine if traits measured in this study could differentiate
our four experimental groups (i.e. ecotype X treatment:
dwarf/control - dwarf/swim - normal/control - normal/
swim) and determine which traits best differentiated
them. To do this we performed a linear discriminant

function analysis (DFA) on mean value specific to each
ecotypes for each tank. All variables were standardized
and the function ‘lda’ in R software v 3.1.1 was used to
perform the DFA.

Results
The estimated variance between the two body shape
measures for the same individual, measured from two
independent pictures taken after repositioning the fish,
was on average 2.0 % of the variance between any two
different individuals. This indicates that the variation
among individuals is 50 times higher than the variation
produced between two pictures of the same individual
(i.e. measurement error). The differences among individ-
uals explained a significant portion of the shape vari-
ation (MANOVA; d.f. = 126; approx. F = 4.43; P < 0.001).
Therefore, the shape differentiation observed among
experimental groups (if any) should not have been
produced by fish manipulation and/or landmark
positioning.
Based on the broken-stick distribution, the first three

shape PCs were considered informative and represented
respectively 51.8 %, 10.9 % and 8.2 % of fish shape
variation (Fig. 3a, b). Dwarf and normal whitefish were
clearly separated on the first PC (Fig. 3a, b). This was
confirmed by a two-way nested ANOVA since the effect
of ecotype significantly explained fish shape PC-1
variation (P < 0.001; Fig. 4a). No effect of ecotype was
observed on PCs 2 and 3 and no effect of treatment or
interaction was observed for any informative PCs
(Fig. 3a, b; Additional file 1). Dwarfs differ from the
normal whitefish in shape because they have a more
slender body, shorter pectoral fins, longer caudal pedun-
cles and shorter dorsal fin bases (Fig. 4b). Finally, shape
differentiation on PCs 2 and 3 shows variation that
did not seem to be linked to functional morphology
associated with swimming (Additional file 2), thus
these two PCs have been removed from the subse-
quent multivariate analysis.
Dwarf whitefish brains (size adjusted) were smaller

than those from normal fish (P < 0.001; Fig. 5a). How-
ever, dwarf whitefish livers were larger (P < 0.001; Fig. 5b)
and an interaction between ecotypes and treatment was
also observed for liver mass (P = 0.040; Fig. 5b). Interest-
ingly, dwarf whitefish showed a trend towards a de-
creased liver mass in the swimming treatment, while
normals showed the inverse (Fig. 5b). As COX and CS
activities are indicators of mitochondrial content [82]
and should reflect the metabolic capacity of the liver, we
further investigated how liver mass may influence
whole-animal metabolism by measuring activity of these
two mitochondrial enzymes. A significantly higher
COX activity per gram was observed for the normal
ecotype (P < 0.001; Fig. 5c). No significant difference
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was observed for CS activity per gram despite a nearly
significant trend among ecotypes (P = 0.069; Fig. 5e;
Additional file 1). After calculating total liver enzyme
activity, we observed an effect of ecotype for both COX
and CS activity (P = 0.010; Fig. 5d; P = 0.010; Fig. 5f) and
an interaction (P = 0.023; Fig. 5d; P = 0.006; Fig. 5f).
Similar to the liver mass, total liver COX and CS activity
decreased in the swim treatment group for dwarf white-
fish, but increased for normal fish after swim-training.
A significant effect of ecotype was observed for the

number of gill filaments (P = 0.015; Fig. 6a) and average
space between gill lamellae (P = 0.003; Fig. 6d), which
were both higher in normal fish compared to dwarf

fish. No significant effect of ecotype, treatment or their
interaction was observed for the average length of fila-
ments, total length of filaments and number of lamellae
(Fig. 6b, c and f ). However, a nearly significant inter-
action (P = 0.066) was observed for hemibranch area,
which increased in only the normal whitefish after
swim-training (Fig. 6e). All results for our univariate
analyses are presented in the Additional file 1.
The DFA clearly differentiated dwarf and normal

whitefish on the first linear discriminant (ld), accounting
for 98.2 % of the variation (Fig. 7). Shape was the most
important factor discriminating groups on the first ld
according to a comparison of coefficient of linear

a b

Fig. 3 Shape comparisons between normal (black) and dwarf (white) Lake Whitefish in control (circle) and swim-training (triangle) treatments in
three PC-axes considered informative based on a broken-stick distribution (a) PC-1 and PC-2 and (b) PC-1 and PC-3). The larger symbols correspond to
the averages for each tank

Fig. 4 a Shape variation along PC-1 of swim-trained and control dwarf (white circle) and normal (black circle) Lake Whitefish. The effect of treatment,
ecotypes and/or their interaction are noted when P-values < 0.05. b Wireframe graph displaying shape changes on the first PC axis between ecotypes:
dwarf (white dots and dashed lines) and normal (black dots and straight lines) whitefish
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discriminations (24.33 for shape vs less than 5.00 for all
others traits; Fig. 7). The two last lds represented a total
1.8 % of the variation with no clear pattern, despite
possible discrimination of normal whitefish by treat-
ment on the second ld (Fig. 7).

Discussion
We found a significant effect of ecotype for eight traits
that are predicted to mediate energetic trade-offs
between dwarf and normal whitefish by contributing to
reductions in the cost of prolonged swimming (body
streamlining) and standard metabolic rate (liver, brain
and gill size). Three of these eight traits (all linked to
the liver: liver mass, total liver COX activity, total liver
CS activity) also showed a significant interaction be-
tween ecotype and environment, but no treatment ef-
fect was observed. Based on ecological and functional

expectations, only body shape and brain mass match
our predictions for reductions in swimming and meta-
bolic maintenance costs in the more active dwarf white-
fish, while liver mass varied in the opposite direction to
that which was predicted. In accordance with the
presence of postzygotic barriers between these ecotypes
[11, 48–52], our results indicate that adaptation (more
than acclimation) is the major mechanism allowing
specialisation to the limnetic niche. Furthermore, fish
shape was the trait that best differentiated ecotypes in
the multivariate analysis, suggesting that the evolution
of fish shape is of major importance in the colonisation
of a new trophic niche which requires a more active
lifestyle. In contrast, traits associated with liver metab-
olism and gill size do not match our predictions. This
could be the result of either genetic or functional
constraints (i.e. limitations on how traits could evolve

a b

c d

e f

Fig. 5 Brain mass (a), liver mass (b), COX/g liver (c), total liver COX activity (d), CS/g liver (e) and total liver CS activity (f) of swim-trained and control
dwarf (white circle) and normal (black circle) Lake Whitefish. The effect of treatment, ecotypes and/or their interaction are noted when P-values < 0.05.
NS was noted when no significant differences were observed
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due to functional roles in other performance traits/bio-
chemical pathways that strongly select against change)
or stochastic evolutionary processes (e.g. genetic drift).
Finally, the three traits associated with liver metabolism
showing ecotype–environment interactions suggest
that liver energy metabolism is more responsive to
swimming activity than the other traits measured in
this study.

Local adaptation vs. Acclimation in Lake Whitefish
ecotypes
Three traits had significant ecotype–environment inter-
actions and all were associated with liver metabolism
(liver mass, total COX activity and total CS activity). In
comparison, the genetic and environmental bases of
traits related to oxygen uptake, transport and use in the
same fish were also tested [58]. Eight traits related to
ventricle size and metabolism and white muscle mito-
chondrial respiration displayed evidence of acclimation
for at least one ecotype. In contrast, twice (n = 15) as
many traits, including hematocrit, skeletal muscle mito-
chondrial function and the activities of multiples enzyme
displayed a strong genetic basis and limited acclimation.
This suggests that acclimation to high swimming activity
leads to changes in liver metabolism, ventricle size and
mitochondrial respiration, but that traits related to body

shape, brain size, gill size, hematocrit and skeletal
muscle mitochondrial content are mainly under genetic
control. Similar experiments in other salmonids com-
monly find a significant effect of exercise on mor-
phological and physiological traits (e.g. heart size and
mitochondrial enzyme activities, skeletal muscle meta-
bolic enzyme activities and body shape) [34, 65, 83–85].
Here, we chose a water velocity between one and two
body lengths per second to emulate the constant aerobic
swimming required for the exploitation of the limnetic
niche (zooplankton are more aggregate and dispersed
than benthic prey in lakes) [28]. This swimming speed
should emulate the cruising speeds of many fish species
in the wild [86]. As well, our experimental fish did not
respond well to higher water velocities, so we did not
increase swimming speeds to the levels that were used
in other studies with salmonid fishes [70]. Our fish were
swim-trained for six months, which is normally suffi-
cient to induce a plastic response [34, 65, 85]. For
instance, a significant effect of swim-training on body
shape after training at a similar water velocity was found
in the benthic fish Salaria fluviatilis after only 28 days
[65]. Together, these data suggest that Lake Whitefish
acclimation to swim-training is relatively subtle in com-
parison to evolutionary divergence. This hypothesis is
also supported by the first axis of the discriminant

a b c

d e f

Fig. 6 Measures to calculate gill surface area (number of filaments (a), average length of filaments (b), total length of filaments (c), average space
between lamellae (d), hemibranch area (e) and number of lamellae (f)) of swim-trained and control dwarf (white circle) and normal (black circle)
Lake Whitefish. The effect of treatment, ecotypes and/or their interaction are noted when P-values < 0.05. NS was noted when no significant
differences were observed
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function analysis that accounts for 98.2 % of the vari-
ation among groups and strongly differentiates ecotypes
but not treatments. Lake Whitefish ecotypes are known
to have the strongest reproductive barrier among all
studied species-pairs of northern temperate fishes
undergoing ecological speciation [11], and our results
are consistent with the hypothesis that strong reproduct-
ive barriers are linked to the accumulation of adaptive
genetic divergence between sympatric ecotypes [87, 88].
Admittedly, our results do not exclude the possibility
that other environmental variables (e.g. diet, predation,
temperature, dissolved oxygen content), which vary be-
tween benthic and limnetic niches could induce a plastic
response on these traits, nor can we rule out the pres-
ence of developmental plasticity at an earlier life stage.

Limits of the experimental setup
Comparing organisms reared in different controlled
environments allow biologists to test for the presence of
genetic differentiation and local adaptation [1]. Differen-
tiation observed in a trait of interest among environ-
mental treatments indicates phenotypic plasticity in this
trait, differentiation in a trait among ecotypes in the
same environment indicates genetic divergence, and

differential responses to environments among ecotypes
suggests that phenotypic plasticity has evolved differ-
ently [3]. To rigorously test for genetic differentiation,
second-generation offspring reared in a common garden
must be used in the controlled experiment, since long-
term phenotypic plasticity produced by prior parental
exposure to different environments is possible [3, 89]. In
the present study, parents could not be chosen from
grandparents reared in a common garden because of the
long generation time of the Lake Whitefish (2–3 years
for the dwarf and 5 years or more for the normal white-
fish) and the difficulty of maintaining enough individuals
for a second round of artificial fertilization without
losing a substantial amount of genetic diversity. Despite
the fact that long term environmental effects cannot be
excluded, we clearly ruled out short term acclimation as
a major mechanism leading to traits variation. In
addition, previous studies comparing reciprocal hybrid
crosses (dwarf female X normal male; normal female
X dwarf male) found no significant differences in
swimming activity among crosses [53]. These data
suggest that the parent of origin does not have a
significant effect on these performance traits and that,
if present, parental effects are equally transmitted by

Fig. 7 Top- DFA discriminating fish by group (dwarf-control: white circle; dwarf-swim trained: white triangle; normal-control: black circle; normal-swim
trained: black triangle) with the percentage of variation explained for each of the three axes. Each point represent one of the eight tanks. Bottom- factor
loadings contributing on the first ld for each traits measured (see Figs. 4, 5 and 6)
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males and females [53]. Finally, the findings from this
study extend mainly to the comparison of this par-
ticular set of dwarf and normal whitefish.

Decreasing the cost of swimming
When a species begins to forage on a new resource, a
first and crucial step in successful foraging is having the
ability to reach this new resource, which comes at an
energetic cost of transporting the body to the resource’s
location [86, 90, 91]. Fish shape influences locomotion,
and ultimately foraging efficiency. Thus, it is predicted
to be under selection when major changes in diet occur
that require a change in swimming mode [25–27, 32].
We found that dwarf whitefish have evolved a more
slender body with smaller pectoral fins. Such shape
differentiation is generally associated with the limnetic
niche in salmoniform swimmers as it decreases drag,
and allows fish to expend less energy foraging on dis-
persed zooplankton [25–28, 32]. In contrast, a stouter
body and longer pectoral fins are expected to increase
manoeuvrability and are predicted to be beneficial when
foraging on benthic organisms [24–27, 32]. Fish shape
was the trait that best discriminated our four experimen-
tal groups (five times more than any other trait), sug-
gesting the importance of shape evolution during the
colonisation of the limnetic niche. Because no effect of
treatment was observed on body shape, the use of the
benthic niche by a dwarf individual or the limnetic niche
by a normal individual would likely result in a decrease
in foraging efficiency. Such adaptive phenotypic diver-
gence in foraging efficiency has been observed in the
European Whitefish ecotypes as well [92]. As discussed
above, a long term environmental effect, such as paren-
tal effects, could not be ruled out by our experimental
setup. However, similar shape differentiation in wild fish
and a signal of selection on shape-QTL (Quantitative
Trait Loci) have previously been documented, indicating
that shape is genetically based and reflects adaptive
divergence [55].

Diminishing costs of organ maintenance metabolism
With respect to maintenance metabolism, including the
costs of tissue maintenance, reproduction and growth,
we predicted that dwarf whitefish would show reduc-
tions in liver and brain size as both are metabolically
expensive organs to maintain [37–39]. Reductions in the
size of these organs may allow for an increase in energy
available for foraging in the limnetic niche. As predicted,
dwarf whitefish had a smaller brain mass than the
normal ecotype, suggesting that a reduction in energy
expenditure could be used to divert additional energy
towards locomotion. However, no parallel trend in brain
mass differentiation was observed among wild ecotypes
of Lake Whitefish [59]. Nevertheless, a bigger or a

smaller brain in dwarf whitefish could be observed
when considering a single sympatric pair [59]. It is
possible that other ecological conditions induce a
plastic response in brain mass in wild Lake Whitefish
[66, 93–95]. For example, changes in brain structures
were found in fish actively escaping predators [66, 93]
and it is thought that the smaller dwarf whitefish suf-
fer from higher predation pressure than normal fish
[46, 53, 54, 96]. Further research specifically addressing
brain structure differentiation will be needed to unravel
this organ’s role in the origin of the dwarf ecotype.
Contrary to our predictions, we found that the liver

was larger in dwarf whitefish. We further investigated
this finding by testing if the maintenance costs of liver
tissue might vary among ecotypes. A higher mitochon-
drial content is predicted to be associated with a higher
standard metabolic rate because of increases in mem-
brane density and transmembrane ion gradient main-
tenance costs [97, 98]. Indeed, variation in liver
mitochondrial content (COX and CS enzyme activity)
correlates positively with differences in whole-fish stand-
ard metabolic rate among species, while total liver size
does not [40]. As predicted, we found that the enzyme
activities of COX and CS were higher in normal white-
fish per gram of liver indicating a higher mitochondrial
content per gram of tissue than for dwarf fish. However,
total liver enzyme activity, which is a function of both
activity and liver size, remained higher in dwarf than
normal fish under control conditions, opposite to pre-
dictions. Interestingly, there was an interaction between
ecotype and environment for both enzymes such that
when fish were subjected to swim-training, differences
in overall liver enzyme activity were no longer found.
This suggests that potential reduction in liver size in
dwarf whitefish is constrained by the many other physio-
logical functions this organ is involved in [99]. For ex-
ample, the higher food consumption rate of the dwarf
whitefish could necessitate a relatively larger liver to
support increases in gluconeogenesis, blood filtration
and waste management [30, 61].
We also predicted dwarf fish to have a smaller total

gill surface area because a reduction in ion loss in these
freshwater fish could decrease whole organism energy
expenditure [41, 42]. We observed an ecotype effect that
revealed fewer gill filaments and smaller space between
lamellae in the dwarf whitefish. Fewer gill filaments
matches our prediction but smaller space between
lamellae does not. Since no significant differentiation
was observed in the number of lamellae, the variation in
filament number and lamellar spacing negate each other
leading to similar gill surface areas. In contrast, a nearly
significant ecotype-environment interaction in hemi-
branch area was also observed. However, this trait does
not take into account differences in space between
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lamellae when estimating gill surface area. The similar
total gill surface areas in dwarf and normal fish suggests
that differences in underlying gill morphological traits
(e.g. lamellar spacing and number of filaments) is likely
due to stochastic evolutionary processes [23]. In wild
fish, there were differences in hemibranch area, hemi-
branch perimeter, number of filaments, average length of
filaments and total length of filaments, leading to a
slightly, but not significantly, larger gill surface area in
normal whitefish, but space between lamellae was not
measured [59]. Here, we found that space between
lamellae may have contributed to this difference between
wild ecotypes and that there are no differences in overall
gill surface area among lab-reared ecotypes when it is
taken into account.

Conclusion
We found differences in a number of morphological and
physiological traits predicted to respond to the more
active and energy demanding lifestyle of the dwarf fish,
associated with occupying the limnetic niche. In combin-
ation with Dalziel et al. [58], a total of 23 traits related to
body shape, brain size, liver size, gill surface area, ventricle
mass, ventricle and skeletal muscle metabolism, mito-
chondrial function and hematocrit show a predominant
genetic basis for the variation observed in these traits
between dwarf and normal Lake Whitefish. The two
studies together also revealed that eleven traits related to
ventricle mass, mitochondrial function and liver mass
show an induced-environmental response for at least one
ecotype. Overall, these data suggest that local adaptation
(more than acclimation) is the major mechanism under-
lying the divergence of swimming activity between dwarf
and normal whitefish, suggesting that there is a low
probability for fish to switch trophic niches within a
lifetime in the wild. The well-documented reproductive
barriers between these ecotypes and genetically based
differences in several behavioural, physiological and
morphological traits underlying differences in swimming
activity also support this hypothesis [48–55].
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