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Abstract Neurons regulate their excitability by adjusting their ion channel levels. Degeneracy – 
achieving equivalent outcomes (excitability) using different solutions (channel combinations) – facil-
itates this regulation by enabling a disruptive change in one channel to be offset by compensatory 
changes in other channels. But neurons must coregulate many properties. Pleiotropy – the impact 
of one channel on more than one property – complicates regulation because a compensatory ion 
channel change that restores one property to its target value often disrupts other properties. How 
then does a neuron simultaneously regulate multiple properties? Here, we demonstrate that of the 
many channel combinations producing the target value for one property (the single-output solution 
set), few combinations produce the target value for other properties. Combinations producing the 
target value for two or more properties (the multioutput solution set) correspond to the intersection 
between single-output solution sets. Properties can be effectively coregulated only if the number of 
adjustable channels (nin) exceeds the number of regulated properties (nout). Ion channel correlations 
emerge during homeostatic regulation when the dimensionality of solution space (nin − nout) is low. 
Even if each property can be regulated to its target value when considered in isolation, regulation 
as a whole fails if single-output solution sets do not intersect. Our results also highlight that ion 
channels must be coadjusted with different ratios to regulate different properties, which suggests 
that each error signal drives modulatory changes independently, despite those changes ultimately 
affecting the same ion channels.

Editor's evaluation
Neurons develop and maintain rich electrophysiological properties that enable nervous systems 
to function. The question of how different neural properties are regulated by internal ion channel 
expression mechanisms remains unresolved. In this paper, Yang and colleagues address the question 
from an abstract perspective by asking how multiple constraints on the physiological properties of 
neurons, such as firing rate curves and energy efficiency, narrow down the available regulatory possi-
bilities. Their results from a mixture of modelling and dynamic clamp experiments point to the exis-
tence of multiple parallel internal feedback loops for controlling ion channel expression in neurons, 
and derive conditions under which co-regulation mechanisms will fail.
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Introduction
Neurons maintain their average firing rate near a target value, or set point, by adjusting their 
intrinsic excitability and synaptic weights (Turrigiano et al., 1994; O’Leary et al., 2010; Aizenman 
et al., 2003; Desai et al., 1999; Hengen et al., 2013; van Welie et al., 2006). Homeostatic regula-
tion of intrinsic excitability is achieved through feedback control of diverse ion channels (Turrigiano 
et al., 1994; O’Leary et al., 2010; Desai et al., 1999; Joseph and Turrigiano, 2017). Computational 
models have successfully employed negative feedback to adjust ion channel densities (O’Leary et al., 
2014; O’Leary and Marder, 2016; Liu et al., 1998; Olypher and Prinz, 2010; LeMasson et al., 
1993) and control theory provides a valuable framework to conceptualize how this occurs (O’Leary 
and Wyllie, 2011). But most of the mechanistic details remain unclear (Davis, 2006; Turrigiano, 
2011) and are not straightforward; for instance, different perturbations can trigger similar changes 
in excitability via different signaling pathways affecting different ion channels (Kulik et al., 2019), or 
via different combinations of excitability changes and synaptic scaling (Maffei and Turrigiano, 2008).

Firing rate homeostasis is facilitated by the ability of different ion channel combinations to produce 
equivalent excitability (Marder, 2011). The ability of distinct elements to produce the same outcome 
is known as degeneracy (Edelman and Gally, 2001) and has attracted increasing attention in neurosci-
ence (Marder, 2011; Marder and Goaillard, 2006; Cropper et al., 2016; O’Leary, 2018; Ratté and 
Prescott, 2016; Tononi et al., 1999; Goaillard and Dufour, 2014; Mason et al., 2015; Rathour and 
Narayanan, 2019). Many aspects of neural function at the genetic (Klassen et al., 2011; Trojanowski 
et al., 2014), synaptic (Mukunda and Narayanan, 2017; Anirudhan and Narayanan, 2015), cellular 
(Kim et al., 2017; Taylor et al., 2009; Drion et al., 2015; Ratté et al., 2014b; Mittal and Narayanan, 
2018; Jain and Narayanan, 2020; Günay et al., 2008; Migliore et al., 2018), and network (Grashow 
et al., 2010; Marder and Taylor, 2011; Prinz et al., 2004; Price and Friston, 2002; Onasch and 
Gjorgjieva, 2020) levels are now recognized as being degenerate. Ion channel degeneracy facilitates 
robust homeostatic regulation of neuronal excitability by enabling a disruptive change in one ion 
channel to be offset by compensatory changes in other ion channels (O’Leary, 2018; Drion et al., 
2015; Ratté et al., 2014b; Rho and Prescott, 2012; Swensen and Bean, 2005; Zhao and Golowasch, 
2012; Achard and De Schutter, 2006; Bhalla and Bower, 1993; Olypher and Calabrese, 2007).

But to maintain good neural coding, neurons must regulate various aspects of their activity beyond 
average firing rate (Stemmler and Koch, 1999), and must do so while also regulating their energy 
usage, osmolarity, pH, protein levels, etc. (Frere and Slutsky, 2018; Fisher et al., 2010; Balch et al., 
2008). These other cellular properties affect and are affected by neuronal activity, which is to say 
that properties are not regulated in isolation from one another. And just as each property depends 
on multiple ion channels, each ion channel can affect multiple properties (Taylor et al., 2009; Günay 
et al., 2008). This pleiotropy or functional overlap (Goaillard and Marder, 2021) confounds the inde-
pendent regulation of each property. In response to a perturbation, a compensatory ion channel 

Figure 1. Simultaneous regulation of >1 property in a theoretical neuron. (A) Challenge: If two ion channels, ‍gM‍ (pink) and ‍gAHP‍ (purple), both affect 
firing rate (orange), then the change in firing rate caused by perturbing ‍gM‍ can be offset by a compensatory change in ‍gAHP‍. However, if ‍gM‍ and ‍gAHP‍ 
also affect firing pattern (blue), but not in exactly the same way, then the compensatory change in ‍gAHP‍ that restores firing rate to its target value may 
exacerbate rather than resolve the change in firing pattern. (B) Solution: Adjusting ‍gAHP‍ and at least one additional conductance, ‍gx‍ (green), that affects 
each property in a different way than ‍gAHP‍, may enable firing rate and firing pattern to be regulated back to their target values. This suggests that 
the number of adjustable ion channels (‘dials’) relative to the number of regulated properties is important. Note that adjusting ‍gx‍ to restore the firing 
pattern necessitates a small extra increase in ‍gAHP‍ (compare pale and dark purple); in other words, conductances must be coadjusted.

https://doi.org/10.7554/eLife.72875
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change that restores one property to its target value may exacerbate rather than mitigate the distur-
bance of a second property (Figure 1A). In theory, both properties could be regulated by adjusting 
two or more ion channels (Figure 1B), but this suggests that the number of properties that can be 
coregulated is limited by the number of adjustable ion channels, even if the channels are pleiotropic.

To identify the requirements for coregulating many properties, we began with an experiment to 
confirm that regulating one property by adjusting a single channel is liable to disrupt other prop-
erties. We then proceeded with modeling to unravel how multiple channels must be coadjusted to 
ensure proper regulation of >1 property. We show that the number of adjustable ion channels (nin) 
must exceed the number of regulated properties (nout). This is consistent with past work (Olypher and 
Prinz, 2010; Olypher and Calabrese, 2007; Foster et al., 1993) but the implications for homeostatic 
regulation have not been explored. To that end, we show that the dimensionality of solution space 
(nin − nout) influences the emergence of ion channel correlations in the presence or absence of noise, 
and that increased correlations presage regulation failure. We also show that regulating different 
properties requires that ion channels are coadjusted with different ratios, which necessitates separate 
master regulators.

Results
Adjusting an ion channel to regulate one property risks disrupting 
other properties – experiments
To test experimentally if regulating one property by adjusting one ion channel is liable to disrupt a 
second property, we disrupted the firing rate of a CA1 pyramidal neuron by blocking its voltage-
gated M-type K+ current (IM) and then we restored firing rate to its baseline value by inserting a 
virtual calcium-activated AHP-type K+ current (IAHP) using dynamic clamp, while also monitoring the 
firing pattern. Specifically, the neuron was stimulated by injecting irregularly fluctuating (noisy) current 
under four conditions (Figure 2A, B): at baseline (blue), after blocking native IM (black), and again after 
introducing virtual IM (cyan) or virtual IAHP (red). Adding virtual IM demonstrates that we can replace a 
native current with an equivalent virtual current; compensation was modeled by inserting a distinct 
current with functional overlap, namely IAHP (see Figure 1). Inserting virtual IM or virtual IAHP reversed 
the depolarization (Figure  2C), spike amplitude attenuation (Figure  2D), and firing rate increase 
(Figure 2E) caused by blocking native IM. Replacing native IM with virtual IM did not affect firing pattern, 
quantified as the coefficient of variation of the interspike interval (CVISI), whereas virtual IAHP reduced 
CVISI (Figure 2F), often causing the neuron to spike at different times (in response to different stimulus 
fluctuations) than the neuron with native or virtual IM (Figure 2G). The results confirm predictions from 
Figure 1, namely that compensatory ‘upregulation’ of IAHP restored firing rate but disrupted firing 
pattern.

Few of the ion channel combinations producing the target value for 
one property also produce the target value for a second property
We proceeded with computational modeling to identify the conditions required to coregulate multiple 
properties. For our investigation, it was critical to account for all ion channels that are changing. Even 
for well characterized neurons like pyramidal cells, there is no comprehensive list of which properties 
are directly regulated and which ion channel are involved in each case. Therefore, we built a simple 
model neuron in which >1 property can be coregulated by adjusting a small number of ion channels. 
The relative rates at which ion channel densities are updated using the ‘error’ in each property differ 
between properties, meaning ion channels are coadjusted according to a certain ratio to regulate one 
property (O’Leary et al., 2014) but are coadjusted according to a different ratio to regulate a second 
property, which has some notable implications (see Discussion). We focused on regulation of indepen-
dent properties like firing rate and energy efficiency per spike – instead of energy consumption rate, 
for example, which depends on firing rate – but our conclusions do not hinge on which properties are 
considered. Target values were chosen arbitrarily.

Simulations were conducted in a single-compartment model neuron whose spikes are generated 
by a fast sodium conductance and a delayed rectifier potassium conductance with fixed densities. A 
spike-dependent adaptation mechanism, gAHP was included at a fixed density. Densities of all other 
channels were either systematically varied (and values producing the target output were selected) or 

https://doi.org/10.7554/eLife.72875
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they were adjusted via negative feedback to produce the target output (see Methods). The former 
approach, which amounts to a grid search, identifies all density combinations producing a target 
output (i.e., the solution set). The latter approach finds a subset of those combinations through a 
homeostatic regulation mechanism. Ion channels with adjustable densities included a sodium conduc-
tance (‍gNa‍) and potassium conductance (‍gK‍) that both activate with kinetics similar to the delayed 
rectifier channel, a slower-activating M-type potassium conductance (‍gM‍), and a leak conductance 
(‍gleak‍).

We began by testing whether ion channel density combinations that produce the target value for 
one property also produce a consistent value for other properties. Figure 3A shows rheobase for 
different combinations of ‍̄gNa‍ and ‍̄gK‍. The contour from point a (‍̄gNa‍ = 1.54 mS/cm2, ‍̄gK‍ = 0 mS/cm2) to 
point b (‍̄gNa‍ = 4 mS/cm2, ‍̄gK‍ = 2.95 mS/cm2) represents all combinations (i.e., the solution set) yielding 
a rheobase of 30 μA/cm2. Despite yielding the same rheobase, density combinations along the a–b 
contour did not yield the same minimum sustainable firing rate (fmin) (Figure 3B). The value of fmin 
reflects spike initiation dynamics: fmin >> 0 spk/s is consistent with class 2 excitability (Hodgkin, 1948) 

Figure 2. A compensatory change that restores firing rate disrupts firing pattern in a CA1 pyramidal neuron. (A) Rasters show spiking in a single 
CA1 pyramidal neuron given the same noisy current injection (gray) on five trials under each of four conditions: baseline (blue), after blocking native 
IM with 10 μM XE991 (black), and again after inserting virtual IM (cyan) or virtual IAHP (red) using dynamic clamp. See Methods for virtual conductance 
parameters. (B) Sample voltage traces under each condition. (C) Membrane potential differed across conditions (F3,16 = 298.49, p < 0.001, one-way 
ANOVA); specifically, it was depolarized by blocking IM (t = 18.71, p < 0.001, Tukey test) but that effect was reversed by inserting virtual IM (t = 24.56, p 
< 0.001) or virtual IAHP (t = 27.00, p < 0.001). (D) Spike amplitude also differed across conditions (F3,16 = 154.04, p < 0.001); specifically, it was attenuated 
by blocking IM (t = 20.23, p < 0.001) but that effect was reversed by inserting virtual IM (t = 13.99, p < 0.001) or virtual IAHP (t = 16.09, p < 0.001). (E) 
Firing rate also differed across conditions (F3,16 = 177.61, p < 0.001); specifically, it was increased by blocking IM (t = 18.38, p < 0.001) but that effect was 
reversed by inserting virtual IM (t = 20.85, p < 0.001) or virtual IAHP (t = 16.12, p < 0.001). (F) Regularity of spiking, reflected in the coefficient of variation 
of the interspike interval, also differed across conditions (F3,16 = 188.23, p < 0.001), but whereas blocking IM had a modest effect (t = 2.69, p = 0.048) 
and inserting virtual IM had no effect (t = 0.39, p = 1.00), inserting virtual IAHP had a large effect (t = 18.23, p < 0.001). Data are summarized as mean ± 
standard deviation (SD). Each data point represents a different trial from a single neuron. (G) Enlarged view of rasters to highlight spikes that occurred 
with native or virtual IM but not with virtual IAHP (blue shading) or vice versa (red shading) to illustrate the change in spike pattern caused by correcting the 
change in firing rate caused by blocking IM with a compensatory change in IAHP.

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical values for experimental data plotted in Figure 2.

https://doi.org/10.7554/eLife.72875
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and operation as a coincidence detector (Ratté et al., 2014a), whereas fmin≈ 0 spk/s is consistent 
with class 1 excitability and operation as an integrator, with several consequences (Figure 3—figure 
supplement 1). After adding ‍gAHP‍ to expand the stimulus range over which fluctuation-driven spikes 
occur, we plotted the firing rate driven by irregularly fluctuating (noisy) Istim for different combinations 
of ‍̄gNa‍ and ‍̄gK‍ (Figure 3C). Density combinations yielding the same rheobase did not yield equivalent 
stimulation-evoked firing rates (Figure 3D).

Having demonstrated that ion channel density combinations yielding the target value for one 
aspect of excitability (e.g., rheobase) yield differing values for other aspects of excitability (e.g., fmin 
or firing rate), we predicted that the same lack of generalization would extend to other cellular prop-
erties (e.g., energy efficiency). Spikes are energetically costly (Attwell and Laughlin, 2001) but vary 
in their energy efficiency based on the temporal overlap in sodium and potassium channel activation 
(Sengupta et al., 2010; Figure 3—figure supplement 2). Using responses reported in Figure 3C, 
we measured energy consumption rate for combinations of ‍̄gNa‍ and ‍̄gK‍ (Figure 3E). Energy consump-
tion rate increased with firing rate, as expected, but did not increase equivalently across all density 
combinations, as evident from the variation in energy consumption rate along the iso-firing rate 

Figure 3. Most ion channel combinations producing the target value for one property produce inconsistent values for other properties. (A) Color shows 
the minimum Istim required to evoke repetitive spiking (rheobase) for different combinations of ‍̄gNa‍ and ‍̄gK‍. Contour linking a and b highlights density 
combinations yielding a rheobase of 30 μA/cm2. (B) Minimum sustainable firing rate (fmin) varied along the iso-rheobase contour (see Figure 3—figure 
supplement 1). (C) Color shows firing rate evoked by noisy Istim (τstim = 5ms, σstim = 10 μA/cm2, µstim = 40 μA/cm2) for different combinations of ‍̄gNa‍ and 

‍̄gK‍. Adding spike-dependent and -independent forms of adaptation (‍̄gAHP‍ = 1.75 mS/cm2 and ‍̄gM‍ = 0.5 mS/cm2) broadened the dynamic range. Gray 
curve shows density combinations yielding a firing rate of 40 spk/s (i.e., an iso-firing rate contour; shown in red in Figures 4–6). Insets show sample 
responses to equivalent noisy stimulation. (D) Firing rate varied along the iso-rheobase contour from panel A. (E) Color shows energy consumption rate 
for different combinations of ‍̄gNa‍ and ‍̄gK‍ based on firing rates shown in panel C. Iso-firing rate contour c–d (gray line in panel C) does not align with 
energy contours. ATP consumed by the Na+/K+ pump was calculated from the total Na+ influx and K+ efflux determined from the corresponding currents. 
(F) Energy consumption rate varied along the iso-firing rate contour. (G) Color shows energy efficiency per spike for different combinations of ‍̄gNa‍ and 

‍̄gK‍. Energy efficiency was calculated as the capacitive minimum, CΔV, divided by total Na+ influx, where C is capacitance and ΔV is spike amplitude (see 
Figure 3—figure supplement 2). Density combinations along contour i–ii (dashed line) yield energy efficiency of 23.5% (shown in green in Figure 5). 
(H) Both rheobase and firing rate varied along the iso-energy efficiency contour.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ion channel combinations yielding equivalent rheobase produce different responses to noisy stimulation, reflecting fundamental 
differences in spike initiation dynamics and operating mode.

Figure supplement 2. Overlap between Na+ and K+ currents dictates energy efficiency.

https://doi.org/10.7554/eLife.72875
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contour (Figure 3F). This is due to differences in energy efficiency (Figure 3G) determined as the 
energy consumed per spike relative to the theoretical minimum (see Methods). Density combinations 
yielding equally efficient spikes yielded different stimulation-evoked firing rates and rheobase values 
(Figure 3H). One might presume that spikes are produced as efficiently as possible rather than being 
regulated to a specific value, but energy efficiency decreases propagation safety factor (Al-Basha and 
Prescott, 2019) and a target value likely emerges by balancing these competing interests (Speakman 
et al., 2011).

Adjusting an ion channel to regulate one property risks disrupting 
other properties – simulations
Like the experiment in Figure 2, we tested if restoring firing rate to its target value via compensatory 
changes in either of two ion channels (Figure 4A) after perturbing a third channel would disrupt energy 
efficiency in our model neuron. Gray circles on Figure 4B show randomly chosen combinations of ‍̄gNa‍ 
and ‍̄gleak‍ that yield a firing rate of 40 spk/s when ‍̄gK‍ = 2 mS/cm2. When ‍̄gK‍ was ‘blocked’ (abruptly 
reset to 0 mS/cm2), firing rate jumped to ~93 spk/s before being restored to 40 spk/s via feedback 
control of either ‍̄gNa‍ (pink) or ‍̄gleak‍ (cyan) (Figure 4C). As ‍̄gNa‍ or ‍̄gleak‍ converged on new, compensated 
densities, firing rate returned to its target value but energy efficiency was affected in opposite ways 
(Figure 4D). If energy efficiency is also regulated, then ‍̄gNa‍ and ‍̄gleak‍ must be coadjusted in a way that 
restores firing rate without disrupting energy efficiency.

Geometrical explanation for the relationship between single- and 
multioutput solutions
Next, we sought a geometrical explanation for how to coadjust >1 ion channel to coregulate >1 
property. The top panel of Figure 5A shows all combinations of ‍̄gNa‍ and ‍̄gK‍ (nin = 2) yielding the target 
value for firing rate (red) or energy efficiency (green) (nout = 1). Like in Figures 3 and 4, the solution 
set for each property corresponds to a curve. The multioutput solution set for firing rate and energy 
efficiency (nout = 2) corresponds to where the two single-output solution sets intersect, which occurs 
at a point – only one density combination yields the target values for both properties, meaning the 

Figure 4. Ion channel changes mediating the same effect on firing rate can oppositely affect energy efficiency. (A) 
Schematic shows how a difference in firing rate from its target value creates an error that is reduced by updating 

‍̄gNa‍ or ‍̄gleak‍. (B) Iso-firing rate contours for 40 spk/s are shown for different combinations of ‍̄gNa‍ and ‍̄gleak‍ with ‍̄gK‍ at 
baseline (2 mS/cm2, dashed red curve) and after ‍̄gK‍ was ‘knocked out’ (0 mS/cm2, solid red curve). When ‍̄gK‍ was 
abruptly reduced, starting models (gray dots) spiked rapidly (~93 spk/s) before firing rate was regulated back to 
its target value by compensatory changes in either ‍̄gNa‍ (pink) or ‍̄gleak‍ (cyan). Models evolved in different directions 
and settled at different positions along the solid curve. (C) Trajectories show evolution of ‍̄gNa‍ and ‍̄gleak‍. Trajectories 
are terminated once target firing rate is reached. Sample traces show responses before (gray) and immediately 
after (black) ‍̄gK‍ was reduced, and again after compensatory changes in ‍̄gNa‍ (pink) or ‍̄gleak‍ (cyan). (D) Distributions of 
energy efficiency are shown before (gray) and after firing rate regulation via control of ‍̄gNa‍ (pink) or ‍̄gleak‍ (cyan).

https://doi.org/10.7554/eLife.72875
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multioutput solution is unique. But if another conductance like gleak is adjustable (nin = 3), the curves 
in 2D parameter space (top panel) transform into surfaces in 3D parameter space (bottom panel) and 
those surfaces intersect along a curve – many density combinations yield the target values for both 
properties, meaning the multioutput solution is degenerate. The same patterns are evident for firing 
rate and input resistance (Figure 5B) or energy efficiency and input resistance (Figure 5C). Figure 5D 
shows that if all three properties – firing rate, energy efficiency and input resistance – are regulated 
(nout = 3), the multioutput solution set is empty for nin = 2 (i.e., the three curves do not intersect at a 
common point [top panel] unless ‍̄gleak‍ is reset to 1.95 mS/cm2 [inset]) and is unique for nin = 3 (bottom 
panel). From this, we conclude that robust regulation of n properties requires >n adjustable ion chan-
nels even if each ion channel contributes to regulation of >1 property. This is like a system of linear 
equations, which is said to be underdetermined if unknowns (inputs) outnumber equations (outputs) 
(see Discussion).

In all simulations involving homeostatic regulation, properties were regulated to within certain 
bounds of the target rather than to a precise value, despite how solution sets are depicted. When 
tolerances are depicted, single-output solution sets correspond to thin strips (rather than curves) 
or shallow volumes (rather than surfaces) in 2D and 3D parameter space, respectively (Figure 5—
figure supplement 1). The width, depth, etc. are proportional to the tolerance. How does this impact 
multioutput solutions? Thin 2D strips intersect at a small patch (unlike curves intersecting at a point) 
but that patch in 2D parameter space (Figure 5—figure supplement 1A) is unlike the long 1D curve 
formed by broad 2D surfaces intersecting in 3D parameter space (see bottom panels of Figure 5). 
Likewise, shallow 3D volumes intersect at a narrow tube (unlike surfaces intersecting at a curve) but 
that tube in 3D parameter space (see Figure 5—figure supplement 1B) is unlike the broad 2D surface 

Figure 5. A degenerate solution for n properties requires at least n + 1 adjustable ion channels. Curves in top panels depict single-output solutions sets 
based on control of ‍̄gNa‍ and ‍̄gK‍ (nin = 2); ‍̄gleak‍ = 2 mS/cm2. Surfaces in bottom panels depict single-output solution sets based on control of ‍̄gNa‍, ‍̄gK‍, and 

‍̄gleak‍ (nin = 3). Intersection (yellow) of single-output solutions at a point constitutes a unique multioutput solution, whereas intersection along a curve (or 
higher-dimensional manifold) constitutes a degenerate multioutput solution. (A) Curves for firing rate (40 spk/s) and energy efficiency (23.5%) intersect 
at a point whereas the corresponding surfaces intersect along a curve. Solutions for firing rate and input resistance (0.65 kΩ cm2) (B) and for energy 
efficiency and input resistance (C) follow the same pattern as in panel A. (D) For nin = 2 (top), curves for firing rate, energy efficiency and input resistance 
do not intersect at a common point unless ‍̄gleak‍ is reset to 1.95 mS/cm2 (inset). For nin = 3 (bottom), the three surfaces intersect at the same point as in 
the inset. See Figure 5—figure supplement 1 for the effects of tolerance on solution sets.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Increasing tolerance does not increase the dimensionality of multioutput solution sets the same way as increasing nin.

https://doi.org/10.7554/eLife.72875
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formed by deep 3D volumes intersecting in 4D parameter space. In other words, increasing tolerance 
does not increase solution space dimensionality the same way as increasing nin.

The need for ≥n adjustable channels to regulate n properties has been shown before (Olypher 
and Prinz, 2010; Olypher and Calabrese, 2007; Foster et al., 1993) and may be obvious to some 
for mathematical reasons, but the relationship has some important implications (e.g., for parameter 
estimation Sarkar and Sobie, 2010). The implications for homeostatic regulation have not been thor-
oughly explored, thus prompting the next steps of our study.

The dimensionality of solution space affects ion channel correlations
We predicted that the dimensionality of solution space – point (0D), curve (1D), surface (2D), volume 
(3D), etc. – affects ion channel correlations by limiting the degrees of freedom. To explore this, we 
measured ion channel correlations within single- and multioutput solution sets found through homeo-
static regulation. Figure 6A shows all combinations of ‍̄gNa‍ and ‍̄gK‍ (nin = 2) producing the target firing 
rate (nout = 1). Correlation between ‍̄gNa‍ and ‍̄gK‍ is high because homeostatically determined solutions 
are constrained to fall along a curve; under those conditions, variation in one channel is offset solely 
by variation in the other channel, and all covariance is thus captured in a single pairwise relationship. If 

‍̄gM‍ is also allowed to vary (nin = 3), homeostatically determined solutions spread across a surface and 
pairwise correlations become predictably weaker (Figure 6B) since variation in one channel can be 
offset by variation in two other channels, and covariance is diluted across >1 pairwise relationship. If 
additional channels are allowed to vary (nin ≥ 4), solutions distribute over higher-dimensional manifolds 
and pairwise correlations further weaken (Figure 6C). However, if firing rate and energy efficiency are 

Figure 6. Dimensionality of solution space affects ion channel correlations. (A) Starting from a normally distributed cluster of ‍̄gNa‍ and ‍̄gK‍ (white dots) 
yielding an average firing rate of 73 spk/s, ‍̄gNa‍ and ‍̄gK‍ (nin = 2) were homeostatically adjusted to regulate firing rate (nout = 1) to its target value of 40 
spk/s. Gray lines show trajectories. Because solutions (gray dots) converge on a curve, the pairwise correlation between ‍̄gNa‍ and ‍̄gK‍ is predictably 
strong. Scatter plots show solutions centered on the mean and normalized by the standard deviation (z-scores). Correlation coefficient (R) is shown in 
the bottom right corner of each scatter plot. (B) Same as panel A (nout = 1) but via control of ‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍ (nin = 3). Homeostatically found solutions 
converge on a surface and ion channel correlations are thus weaker. (C) If ‍̄gleak‍ is also controlled (nin = 4), solutions converge on a hard-to-visualize 
volume (not shown) and pairwise correlations are further weakened. (D) Schematic shows how errors for two regulated properties are combined: 
the error for each property is calculated separately and is scaled by its respective control rate τ to calculate updates, and all updates for a given ion 
channel (i.e., originating from each error signal) are summed. (E) Same as panel B (nin = 3), but for regulation of firing rate and energy efficiency (nout = 
2). Homeostatically found solutions once again converge on a curve (yellow), which now corresponds to the intersection of two surfaces; ion channel 
correlations are thus strong, like in panel A. (F) If nin is increased to four while nout remains at 2, solutions converge on a surface (not shown) and ion 
channel correlations weaken.

https://doi.org/10.7554/eLife.72875
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both regulated (nout = 2; Figure 6D), homeostatically determined solutions are once again constrained 
to fall along a curve when nin = 3, and pairwise correlations strengthen (Figure 6E). Increasing nin to 
four while keeping nout at two caused correlations to weaken (Figure 6F). These results confirm the 
predicted impact of solution space dimensionality on ion channel correlations.

O’Leary et al., 2013 demonstrated how the relative rates at which different ion channel densi-
ties are controlled impact their correlation. This is reproduced in Figure 7A, where, from the same 
initial conditions (density combinations), homeostatic control with different relative rates (shown in 
pink and cyan) produces solutions with different correlations. Relative regulation rates can affect not 
only the strength of pairwise correlations, but also the sign (compare correlation between ‍̄gNa‍ and 

‍̄gM‍). However, if firing rate and energy efficiency are both homeostatically regulated, correlations 
strengthen (consistent with results from Figure 6) and become independent of the relative regulation 
rates because solutions are limited to a lower-dimensional solution space (Figure  7B). Recall that 
dimensionality of the multioutput solution set corresponds to nin − nout. For relative regulation rates to 
influence ion channel correlations, homeostatically determined solutions must fall on a solution mani-
fold with dimensionality >1, but not >>1 lest pairwise correlations be diluted.

However, correlations produced through the homeostatic regulation mechanism described by 
O’Leary et al., 2013, which is essentially the same mechanism used here, were recently shown to 
be sensitive to noise (Franci et  al., 2020). This occurs because this regulation mechanism brings 
conductance densities to the solution manifold (by minimizing the error signal) but cannot control how 
solutions drift on the manifold (since the error signal is 0 everywhere on the manifold). Solutions do 
not drift in the absence of noise but, of course, noise is ubiquitous in biological systems and its effects 
must be considered. Accordingly, we reran simulations from Figures 6 and 7 with noise added to the 
conductance densities. After a few hundred noise-update iterations, solutions spread across the avail-
able solution space, which corresponds to a surface when only firing rate is regulated (Figure 8A, top). 

Figure 7. Effect of relative regulation rates on ion channel correlations depends on the dimensionality of solution 
space. (A) Homeostatic regulation of firing rate via control of ‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍. Same as Figure 6B, but for two 
new sets of regulation rates (see Supplementary file 1). Solutions found for each set of rates (pink and cyan) 
approached the surface from different angles and converged on the surface with different patterns, thus producing 
distinct ion channel correlations, consistent with O’Leary et al., 2013. (B) Same as panel A (nin = 3), but for 
homeostatic regulation of firing rate and energy efficiency (nout = 2). Solutions converge on a curve (yellow), giving 
rise to virtually identical ion channel correlations regardless of regulation rates.

https://doi.org/10.7554/eLife.72875
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The distribution of solutions can produce correlations (Figure 8A, bottom). Lower and upper bounds 
on conductance densities shape the solution space and influence correlations (Figure  8—figure 
supplement 1A). Correlations also depend on how solutions distribute across the solution space, 
which depends on regulation rates (Figure 8—figure supplement 1B, C), which means correlations 
can still depend on regulation rates under noisy conditions, but correlations are not the same as in 
the absence of noise (Figure 8B). When firing rate and energy efficiency were regulated, noise caused 
solutions to spread across the intersection (Figure  8C) but correlations were relatively unaffected 

Figure 8. Noise can affect ion channel correlations depending on the dimensionality of solution space. (A) Starting from solution sets in Figure 6B, 

‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍ had noise added to them and were then updated by homeostatic regulation (using regulation rates from Figure 6) to correct the 
noise-induced disruption of firing rate. Conductance density combinations are depicted before and after 50, 200, 1000, or 3000 noise-update iterations 
(left to right). Noise caused solutions to spread across the surface (top). Some solutions (number in italics) drifted beyond the illustrated region but 
this is prevented by imposing an upper bound (Figure 8—figure supplement 1A). Ion channel correlations reflect the available solution space; for 
example, changes in ‍̄gNa‍ and ‍̄gK‍ are limited by ‍̄gM‍ remaining positive (dashed green line), while changes in ‍̄gNa‍ and ‍̄gM‍ are limited by ‍̄gK‍ remaining 
positive (dashed purple line). How solutions distribute within that space depends on regulation rates, and also affects correlations (Figure 8—figure 
supplement 1B, C). Conductance density distributions and pairwise correlations (bottom) were not centered on the mean or normalized by standard 
deviation (unlike in other figures) in order to visualize how distributions evolve over iterations. (B) Comparison of regression lines from Figure 6 (gray) 
and 7 (pink, cyan) without noise (top) and with noise (bottom). Correlations are affected by regulation rates in both conditions, but not in the same way. 
(C) Same as panel A but for regulation of firing rate and energy efficiency. Solutions spread along the intersection of the two surfaces, but the spread is 
bounded by one or another conductance density reaching 0 mS/cm2. Correlations slightly increase under noisy conditions (compare with Figure 6).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Correlations depend on the solution manifold’s shape and how solutions distribute across it.

https://doi.org/10.7554/eLife.72875
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since they are limited by the low dimensionality of this solution space. Spread was bounded by one 
or another conductance density reaching 0 mS/cm2. Franci et al., 2020 proposed another regulatory 
scheme in which an attractive subspace emerges through cooperative molecular interactions; correla-
tions created by fluctuations along that subspace are robust to noise. That scheme should preclude 
correlations from arising as in Figure 8A because solutions are prevented from spreading across the 
solution space; conversely, a low-dimensional solution space like in Figure 8C may prevent correla-
tions unless the attractive subspace arising from molecular interactions aligns with the solution space. 
Further work is required to explore these regulatory mechanisms and how they interact.

The dimensionality of solution space affects the success of homeostatic 
regulation
Beyond affecting the ion channel correlations that emerge through homeostatic regulation, we 
predicted that the dimensionality of solution space affects whether multiple properties can be 
successfully regulated to their target values. Figure 9A shows an example in which coadjusting ‍̄gNa‍, 

‍̄gK‍, and ‍̄gM‍ successfully regulates firing rate. Figure 9B shows successful regulation of energy effi-
ciency by coadjusting the same three channels. Using the same initial conditions and relative regu-
lation rates as above, the system failed to coregulate firing rate and energy efficiency (Figure 9C). 
Notably, coordinated regulation of both properties was achieved using other relative regulation rates 
(see Figures 6C and 7B) or using the same relative rates but starting from different initial conditions 
(not shown), suggesting that low-dimensional solutions are less accessible (i.e., a smaller set of rela-
tive regulation rates succeed in finding the solution space). This may be a challenge for the Franci et 
al. regulation model if molecular interactions create an attractive subspace that does not align with a 
low-dimensional solution space.

Figure 10 shows additional examples of regulating firing rate and energy efficiency by coadjusting 

‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍. In these simulations, firing rate is regulated to a precise target value whereas energy 

Figure 9. Low-dimensional solutions can be hard for homeostatic regulation to ‘find’. (A) Homeostatic regulation of firing rate (nout = 1) via control of 

‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍ (nin = 3), like in Figures 6B and 7A but using a different set of regulation rates (see Supplementary file 1). Solutions converged onto 
the iso-firing rate surface (top panel) and firing rate was regulated to its target value in <30 iterations (bottom panel). (B) Same as A (nin = 3) but for 
homeostatic regulation of energy efficiency (nout = 1). Solutions converged on the iso-energy efficiency surface (top panel) and energy efficiency was 
regulated to its target value in ~10 iterations (bottom panel). (C) Homeostatic regulation of firing rate and energy efficiency (nout = 2) via control of the 
same ion channels (nin = 3) using the same relative rates and initial values as in panels A and B. Neither firing rate (red trajectories) nor energy efficiency 
(green trajectories) reached its target value. Conductance densities were capped at 4 mS/cm2 but this does not account for trajectories not reaching 
their target. Noise was not included in these simulations.

https://doi.org/10.7554/eLife.72875
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efficiency is maintained above a lower bound; the single-output solution set for energy efficiency thus 
corresponds to a volume rather than a surface for nin = 3. For energy efficiency ≥22%, homeostatically 
determined solutions converge on the iso-firing rate surface without regulation of energy efficiency 
having much effect (Figure 10A). For energy efficiency ≥27%, solutions initially converge onto part of 
the iso-firing rate surface that sits outside the targeted energy efficiency volume, but without energy 

Figure 10. The outcome of homeostatic regulation depends on if and how single-output solution sets intersect. Homeostatic regulation of firing rate 
and energy efficiency (nout = 2) via control of ‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍ (nin = 3). For these simulations, energy efficiency was maintained above a lower bound 
rather than being regulated to a specific target value; accordingly, the single-output solution set for energy efficiency corresponds to a volume (green) 
rather than a surface. (A) For energy efficiency ≥22%, homeostatically determined solutions converge on the iso-firing rate surface (red) in a region 
sitting within the green volume (top panel). The rate of convergence and resulting ion channel correlations are shown in the middle and bottom panels, 
respectively. (B) For energy efficiency ≥27%, solutions initially converge on the red surface in a region outside the green volume, but trajectories then 
bend and proceed across the red surface until that surface reaches the green volume. Because solutions converge on a curve, ion channel correlations 
are stronger than in A, where solutions distributed across a surface. (C) For energy efficiency ≥30%, the red surface and green volume do not intersect. 
Consequently, solutions settle between the two single-output solution sets (top panel) without either property reaching its target (middle panel). The 
outcome represents the balance achieved by the opposing pull of control mechanisms regulating different properties, and depends entirely on ‍̄gNa‍ 
since ‍̄gK‍ and ‍̄gM‍ cannot become negative (bottom panel). Noise was not included in these simulations.

https://doi.org/10.7554/eLife.72875
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efficiency requirements being met, solutions then move across the surface until reaching the inter-
section with the iso-energy efficiency volume (Figure 10B). By converging on the intersection, which 
is a curve, ion channel correlations are stronger than in Figure  10A. In other words, ion channel 
correlations increase as single-output solution sets start to disconnect, meaning increased correlations 
presage regulation failure; in general, this is consistent with the impact of increasing constraints (see 
Figure 8), which go hand in hand with decreasing degrees of freedom. For energy efficiency ≥30%, 
the iso-firing rate surface and targeted energy efficiency volume do not intersect and solutions thus 
proceed to a point between the two single-output solution sets constrained by ‍̄gK‍ and ‍̄gM‍ reaching 0 
mS/cm2 (Figure 10C). In this last example, neither property is optimally regulated but the outcome is 
a reasonable compromise. Regulation might have failed outright if, in the absence of an upper bound, 
ion channel densities increased (wound-up) without properties ever reaching their target values. This 
highlights that coregulation of multiple properties might fail or find suboptimal solutions not because 
single-output solutions do not exist, but because even large single-output solution sets might not 
intersect, meaning no multioutput solution exists.

Discussion
This study has identified conditions required for a neuron to coregulate >1 property. Being able to 
produce the same output using diverse ion channel combinations ensures that single-output solution 
sets are large. This is critical because of the many ion channel combinations that produce the desired 
output for one property, few also produce the desired output for other properties (Figure 3), which 
means ion channel adjustments that regulate one property are liable to disrupt other properties due 
to ion channel pleiotropy (Figures 2 and 4). Indeed, the multioutput solution set corresponds to the 
intersection between single-output solution sets and the dimensionality of the multioutput solution 
corresponds to the difference between the number of adjustable ion channels (nin) and the number 
of regulated outputs (nout) (Figure 5). Coregulation of n properties requires at least n adjustable ion 
channels for a unique solution, and at least n + 1 channels for a degenerate solution. This constraint is 
not alleviated by pleiotropy, but nin would need to exceed nout by an even wider margin if ion channels 
were not pleiotropic. Moreover, channels must be coadjusted with different ratios to regulate different 
properties, which constrains how feedback loops are organized (see below). These important issues 
get overlooked if regulation of each property is considered in isolation.

With respect to the number of channels required to coregulate a certain number of properties, a 
direct analogy can be made with a system of linear equations. Each unknown constitutes a degree 
of freedom and each equation constitutes a constraint that reduces the degrees of freedom by one. 
The system is said to be overdetermined if equations outnumber unknowns, and underdetermined if 
unknowns outnumber equations. An underdetermined system can have infinite solutions. Degeneracy 
is synonymous with underdetermination, which highlights that degeneracy depends not only on ion 
channel diversity, but also on those channels not having to coregulate ‘too many’ properties. Extra 
degrees of freedom broaden the range of available solutions, meaning a good solution is liable to 
exist over a broader range of conditions. On the other hand, if constraints outnumber the degrees of 
freedom, the system becomes overdetermined and solutions disappear (e.g., Figure 5D), which can 
cause regulation to fail (see below). One might reasonably speculate that ion channel diversity has 
been selected for because it enables the addition of new functionality (e.g., excitability) without the cell 
becoming overdetermined, lest pre-existing functions (e.g., osmoregulation) become compromised.

There are notable similarities and differences between a neuron adjusting its ion channel densities 
to regulate properties and a scientist trying to infer conductance densities based on the measured 
values of those properties (i.e., fitting a model to experimental data). Fitting a model with n param-
eters to many outputs (e.g., firing rate and input resistance and rheobase and spike height) is more 
difficult but yields better parameter estimates than fitting the same model to just one output (Foster 
et al., 1993), just as regulating more properties makes the solution set smaller. But how good are 
those parameter estimates? Assuming there is no measurement noise, can one confidently infer the 
true conductance densities in a particular neuron by measuring and fitting enough properties? Degen-
eracy makes solving this inverse problem difficult, if not impossible (Sarkar and Sobie, 2010; Aster 
et al., 2013). The neuron solves the forward problem, producing a firing rate, input resistance, etc. 
based on its channel density combination. That combination is determined by negative feedback 
but the precise densities are unimportant so long as the combination produces the target values for 
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all regulated properties (which happens for every 
density combination in the multioutput solution 
set). As conditions change, the multioutput solu-
tion will evolve and negative feedback will adjust 
densities accordingly. A neuron needs to regulate 
its properties but does not do so by regulating 
its conductance densities to particular values; in 
that respect, a neuron does not solve an inverse 
problem. (Convergence of conductance densities 
to the same ‘attractive’ set regardless of initial 
conditions, or after a perturbation, may suggest 
otherwise [Franci et  al., 2020], but may reflect 
other, unaccounted for constraints like regula-
tion of another property.) Neurons have evolved 
under selective pressure to be degenerate (see 
above), not parsimonious, contrary to how most 
models are constructed.

Previous studies using grid searches to explore 
degeneracy have tended to apply selection 
criteria simultaneously, finding the ‘multioutput’ 
solution set in one fell swoop. In contrast, we 
considered one criterion (property) at a time in 
order to find each single-output solution set, 
which we then combined to find the multioutput 
solution. The former approach is akin to aggre-
gating several error functions to create a single-
objective problem, whereas the latter resembles 
multiobjective optimization. Nevertheless, past 
studies have observed that certain parameter 
changes (in a particular direction through param-
eter space) dramatically affect some properties 
but not others (Drion et  al., 2015; Goldman 
et  al., 2001), consistent with manifolds repre-
senting the single-output solution sets for sensi-
tive and insensitive properties lying orthogonal 
to one another in parameter space. The effects 
of solution dimensionality on ion channel correla-
tions and regulation failure (see below) highlight 
the value of a multiobjective perspective, which 
implicitly recognizes that there are multiple properties, each with its own feedback loop, even if those 
feedback loops intersect. Our results show that coregulating many properties using a common set 
of ion channels is feasible only if enough different channels are involved. Indeed, for coadjustments 
to work, channels must differ from each other in how they affect each property (see Figure 1), which 
emphasizes the distinction between degeneracy and redundancy.

Our results also highlight the need for >1 ‘master regulator’ because regulation of each prop-
erty requires that ion channels are coadjusted with different ratios (Figure 11). O’Leary et al., 2014 
argued in favor of a single master regulator, but that was predicated on using a single factor, namely 
global calcium, to encode the error signal; because a single factor cannot reach two different targets 
(i.e., simultaneously minimize two errors), it cannot support two master regulators. But local (Bootman 
et al., 2001) or kinetically distinct (Liu et al., 1998) variations in calcium could encode >1 error signal 
if the calcium sensors coupling intracellular calcium to gene expression or channel modulation are 
spatially segregated or operate with different filter properties. Beyond calcium, evidence points to 
firing rate homeostasis being activity independent (MacLean et al., 2003), using membrane potential 
as feedback (Santin and Schulz, 2019), or involving dual feedback loops (Kulik et al., 2019). Further-
more, the AMP:ATP ratio is used to track energy level (Hardie, 2014; Garcia and Shaw, 2017) and 

Figure 11. Each error signal must be able to coadjust 
channels with different ratios. Cartoons depict 
regulation of two properties (A and B) via control of 
three ion channels (X, Y, and Z). Channel levels are 
homeostatically adjusted to minimize the difference 
(error) between each property and its target value. The 
error signal divided by each channel’s regulation time 
constant (τ) dictates the magnitude of the change in 
that channel (represented by length of curved arrows 
in panel B). (A) The set of regulation time constants 
define a ‘master regulator’ (black dial) that coadjusts 
ion channels according to a certain ratio. Convergence 
of error signals at or before the master regulator limits 
how ion channels are coadjusted. (B) An additional 
master regulator (red dial) is needed to enable error 
B to coadjust channels with a different ratio than error 
A. Conditions like in panel B were required for all 
coregulation simulations (see Figure 6C). Different 
coadjustment ratios are required to regulate each 
property because of the different way each ion channel 
affects each property (see Figure 1). Note that master 
regulators may be more distributed than depicted here, 
with each regulation time constant τi,j likely reflecting 
the net effect of regulating multiple (transcriptional, 
translational, etc.) processes. The positive molecular 
regulatory network proposed by Franci et al., 2020 
involves additional feedback mechanisms not easily 
depicted in this sort of cartoon.

https://doi.org/10.7554/eLife.72875


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Yang et al. eLife 2022;11:e72875. DOI: https://doi.org/10.7554/eLife.72875 � 15 of 22

free amino acids can also be sensed (Efeyan et al., 2012). This is just the tip of the iceberg. Rather 
than error signals being encoded by a single factor like calcium, we favor the notion of a multi-input/
multioutput system (Papin and Palsson, 2004) in which factors combine to encode multiple error 
signals. Take mTOR (mechanistic target of rapamycin) for example; it is modulated by diverse factors 
and, in turn, modulates many processes including transcription, translation and protein degradation 
(Switon et  al., 2017). The regulation model proposed by Franci et  al., 2020 provides additional 
insights. These issues require more investigation but, for now, our results argue that coregulation of 
multiple properties is incompatible with the amalgamation of error signals or certain control steps. 
The analogy with single- and multiobjective optimization (see above) seems apropos. Critically, nin 
exceeding nout will not guarantee solutions if degrees of freedom are reduced by bottlenecks else-
where in the feedback loops.

Ion channel correlations have been studied in simulations (O’Leary et al., 2014; Mukunda and 
Narayanan, 2017; Taylor et  al., 2009; Jain and Narayanan, 2020; O’Leary et  al., 2013; Franci 
et al., 2020; Soofi et al., 2012; Hudson and Prinz, 2010; Ball et al., 2010) and experiments (Zhao 
and Golowasch, 2012; Temporal et al., 2014; Schulz et al., 2006; Tobin et al., 2009; Schulz et al., 
2007; Khorkova and Golowasch, 2007). These correlations have been ascribed to the coregulation 
of ion channels. The relative rates with which different conductance densities are controlled dictate 
the direction in which trajectories move through parameter space, which in turn dictates how trajec-
tories approach and distribute across the solution manifold (O’Leary et al., 2013). Our results are 
consistent with that explanation (Figure 7), notwithstanding noise effects (see below), but they also 
highlight the importance of manifold dimensionality: Correlations are stronger but are insensitive to 
relative regulation rates if trajectories reach a 1D manifold (curve) rather than a higher-dimensional 
manifold (surface, volume, etc.) (Figure 6). Under noisy conditions, correlations reflect the available 
solution space and how solutions drift across it, which depends on regulation rates (Figure 8). The 
cooperative molecular interactions proposed by Franci et al., 2020 can produce correlations in a 
high-dimensional solution space, but may be prevented from doing so by a low-dimensional solution 
space. Notwithstanding molecular interactions, the existence of pairwise correlations suggests that 
the dimensionality of solution space (=nin − nout) is relatively low. This may be surprising since nin is 
high, but makes sense if nout is also high; in other words, there are many channels but they are respon-
sible for regulating many properties. Though nout is constrained by nin (i.e., the number of regulated 
properties cannot exceed the number of adjustable ion channels), neurons might take advantage of 
regulating as many properties as their ion channel diversity safely allows, leading to a relatively low-
dimensional solution space (as nout approaches nin).

Homeostatic regulation can fail for different reasons. If there are no solutions (i.e., the solution 
set is empty), negative feedback cannot regulate a property to its target values. A multioutput solu-
tion set can be empty because single-output solution sets do not intersect (Figure 10C), meaning 
regulation of different properties to their respective target values is incompatible. Regulation can 
also fail because negative feedback fails to converge on available solutions (Figure 9C). Notably, a 
multioutput solution set may become less accessible (lower dimensional) as single-output solution 
sets start to separate (Figure 10B), and may foreshadow the eventual disjunction of those solution 
sets (Figure 10C). Regulation can also fail because feedback signaling is compromised. These failure 
modes are not mutually exclusive; for example, a system might reach less accessible solutions if regu-
lation rates are normally flexible but might fail to reach those solutions if regulation rate flexibility is 
reduced. Cooperative molecular interactions (Franci et al., 2020) are notable in this regard, insofar 
as they would tend to constrain regulation and thus influence failure modes. Failed homeostatic regu-
lation may have similar consequence regardless of how the failure occurs, consistent with the emer-
gence of common disease phenotypes despite vastly different underlying pathologies (Ramocki and 
Zoghbi, 2008), but subtle differences in exactly how the failure transpires may provide important 
clues to help pinpoint the underlying mechanism(s).

In conclusion, neurons can coregulate multiple properties by coadjusting ion channels. Despite 
reusing channels to regulate more than one property, many channels are required to coregulate many 
properties and feedback loops must allow for coadjustments with different ratios. This may account 
for why evolution has yielded such diverse channels and why their transcriptional regulation has 
become so complicated (Gabel et al., 2015). Given how difficult it is to study regulation of any one 
property, studying the coregulation of multiple properties seems truly daunting, especially if feedback 
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loops intermingle and error signals involve combinatorial codes. But if that is indeed the case, then 
accounting for the coregulation of multiple properties may be crucial for appreciating design features 
that might otherwise elude us.

Methods
Slice electrophysiology
All procedures were approved by the Hospital for Sick Children Animal Care Committee. Using the 
same procedures and equipment previously described (Khubieh et al., 2016), coronal slices of hippo-
campus were prepared from an adult mouse and a CA1 pyramidal neuron was recorded using whole-
cell patch clamp. A junction potential correction of −9 mV was applied to the recorded membrane 
potential. A noisy stimulus was generated through an Ornstein–Uhlenbeck process (see Equation 7) 
with τstim = 5 ms, μstim = 60 pA, and σstim = 10 pA; the same stimulus was replayed on each trial. Native 
IM was blocked by bath application of 10 µM XE991 (Tocris). The block was continued throughout 
dynamic clamp experiments. Virtual IM and IAHP were modeled as per Equation 6 (with τz = 100 ms, βz 
= –35 mV, and γz = 4 mV for IM, and τz = 600 ms, βz = 0 mV, and γz = 1 mV for IAHP) and were applied 
using the dynamic clamp capabilities of Signal v6 (Cambridge Electronic Design). The density of each 
virtual conductance was adjusted to produce the desired firing rates (‍̄gM‍ = 10 nS, ‍̄gAHP‍ = 120–150 nS).

Neuron model
Our base model includes a fast-activating sodium conductance (‍gfast‍) and a slower-activating potas-
sium conductance (‍gslow‍) which together are sufficient to produce spikes. Other conductances were 
added to modulate excitability.
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where V is voltage and m changes instantaneously with V whereas other gating variables change 
more slowly. The spike-generating conductances ‍gfast‍ and ‍gslow‍ were modeled using a Morris–Lecar 
formalism (Rho and Prescott, 2012), with C = 2 µF/cm2, ENa = 50 mV, EK= −100 mV, Eleak = −70 mV, 
φw= 0.15, ‍̄gfast‍ = 20 mS/cm2, ‍̄gslow‍ = 20 mS/cm2, ‍̄gleak‍ = 2 mS/cm2, βm = −1.2 mV, γm = 18 mV, βw = 
−10 mV, and γw = 10 mV. A generic sodium conductance (‍gNa‍) and potassium conductance (‍gK‍) were 
modeled using Hodgkin–Huxley formalism as described by Ratté et al., 2014b

	﻿‍ INa,K = ḡNa,Kn
(
V − ENa,K

)
,‍� (2)

	﻿‍
dn
dt = α

(
1 − n

)
− βn,‍� (3)

	﻿‍
α = kα

(
V−Vα

)

e
(

V− Vα
sα

)
−1

,
‍�

(4)

	﻿‍ β = kβe
(

V− Vα
sα

)
,‍� (5)

where Vα,β = −24 mV, sα,β = −17 mV, and kα,β = 1 ms−1. Note that ‍gNa‍ and ‍gK‍ differ only in their reversal 
potentials. Channels approximating a calcium-activated potassium conductance (‍gAHP‍) and an M-type 
potassium conductance (‍gM‍) were modeled as described by Prescott and Sejnowski, 2008

	﻿‍
dz
dt =

{
1

1+e
(
βz−V
γz

) − z
}

/τz,
‍�

(6)

where τz= 100 ms, γz = 4 mV, and βz = 0 mV or −35 mV for ‍gAHP‍ and ‍gM‍, respectively. Maximal 
conductance densities for ‍gleak‍, ‍gNa‍, ‍gK‍, and ‍gM‍ were systematically varied or adjusted by a homeo-
static feedback mechanism (see below). Any other parameters that differ from the sources cited above 
are reported in the relevant figure legends. Injected current Istim was applied as either a constant step 
or as noisy fluctuations modeled with an Ornstein–Uhlenbeck process

	﻿‍
dIstim

dt = Istim−µstim
τstim

+ Sσstim√
dt

N
(
t
)

,
‍� (7)
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where τstim is a time constant that controls the rate at which Istim drifts back toward the mean μstim, and 
N (t) is a random number drawn from a normal distribution with 0 mean and unit variance that is scaled 
by Sσstim, where a scaling factor S = √2/τstim makes the standard deviation σstim independent of τstim. All 
simulations were conducted in MATLAB using the forward Euler integration method and a time step 
of 0.05–0.1 ms.

Energy calculations
Energy consumption rate was calculated as in Hasenstaub et al., 2010 Briefly, models were stim-
ulated with a fast fluctuating stimulus (µstim = 40 µA/cm2, σstim = 10 μA/cm2). Sodium and potassium 
current through all channels was integrated for 1 s to determine the charge for each ion species, which 
was then converted to ion flux based on the elementary charge 1.602 × 10−19 C. Based on the 3:2 
stoichiometry of the Na+/K+ pump, we divided the number of sodium and potassium ions by 3 and 
2, respectively, and used the maximum of those two values as the energy consumption rate (in ATP/
cm2 s). Energy efficiency was calculated as the ratio between capacitive minimum and total Na+ flux 
during an action potential (Sengupta et al., 2010). Briefly, voltage was reset to −40 mV to evoke a 
single spike in all models. Models were treated as pure capacitors to calculate the minimum capacitive 
current as CΔV, where C is the capacitance and ΔV is the difference between the resting membrane 
potential and the spike peak.

Grid search
Models were tested with conductance density combinations chosen from a 100 × 100 or 30 × 30 × 
30 grid for 2D and 3D plots, respectively. To depict each single-output solution set, all models with 
outputs within a range (tolerance) of the target value (±3  spk/s for firing rate, ±0.25% for energy 
efficiency, and ±0.003 kΩ cm2 for input resistance) were selected and a curve or surface was fit to 
those successful models. The same tolerances were implemented in the homeostatic learning rule 
(see below) to minimize ringing. Tolerances are illustrated in Figure 5—figure supplement 1 but were 
not shown in other figures for sake of clarity.

Feedback control
We used a homeostatic learning rule similar to O’Leary et al., 2014; O’Leary et al., 2013 with two 
notable differences: (1) we did not use intracellular calcium or other biological signals (e.g., AMP:ATP 
ratio) as intermediaries for our error signals and (2) the error for each output was determined as 
the difference between the current and target values at the end of each iteration, and conductance 
densities were adjusted before the start of the next iteration, rather than updating and feeding back 
error signals in ‘real time’. The separation between fast and slow (regulatory) timescales justifies the 
former approach. For each conductance ‍̄gi‍, error was divided by the regulation time constant (τi) and 
added to the conductance (see Figure 4A). For coregulating >1 property, we used the sum of scaled 
errors to update conductance densities (see Figure 6D). A single run consists of a maximum of 200 
iterations, during which a model must reach and maintain its regulated property within the tolerance 
for five consecutive iterations. All models that reached the target output(s) did so in well under 100 
iterations; regulation was deemed to have failed for models not reaching their target output(s) within 
200 iterations. Conductance densties during the last five iterations were averaged and reported as 
the final value. See Supplementary file 1 for the initial conductance densities and regulation time 
constants used for each figure.

Conductance noise
For simulations in Figure 8, noisy variations in each conductance density, ‍̄gNa‍, ‍̄gK‍, and ‍̄gM‍, was applied 
by adding a random number drawn from a Gaussian distribution with a mean of 0 and a standard 
deviation of 0.05 mS/cm2. Noise was independent for each conductance. After applying noise, the 
simulation was run, errors were calculated, and conductance densities were updated according to 
the feedback control described above; this qualifies as one noise-update iteration. Up to 3000 noise-
update iterations were run. If the addition of noise caused a conductance density to become negative, 
the density was reset to 0 mS/cm2 before applying feedback control. Where indicated, conductance 
density was likewise reset to 4 mS/cm2 if noise caused it to increase above that value.

https://doi.org/10.7554/eLife.72875
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Code availability
All computer code is available at http://modeldb.yale.edu/267309 and at http://prescottlab.ca/​
code-for-models.
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