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Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to
highlight the importance of studying the disease interface between species. One Health
approaches recognise the interdependence of human and animal health and the
environmental interplay. Improving the understanding and prevention of zoonotic
diseases may be achieved through greater consideration of these relationships,
potentially leading to better health outcomes across species. In this review, special
emphasis is given on the emerging and outbreak pathogen Crimean-Congo
Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We
discuss the efforts undertaken to better understand CCHF and the importance of
integrating veterinary and human research for this pathogen. Furthermore, we consider
the use of closely related nairoviruses to model human disease caused by CCHFV. We
discuss intervention approaches with potential application for managing CCHFV spread,
and how this concept may benefit both animal and human health.
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INTRODUCTION

Zoonotic diseases are caused by pathogens which circulate in vertebrate hosts and periodically
spillover into human populations (1). It has been estimated that over 60% of pathogenic species in
humans originally arose from animal populations (2). In the 21st century alone, several zoonotic
pathogens have caused epidemics such as SARS (3) and MERS coronaviruses (4), avian influenza
(5), and Ebolavirus (6, 7), as well as pandemics of swine flu (8) and the newly emerged SARS-CoV-2
(9), which alone has caused an estimated 2.25 million deaths up to February 2021 (10).

While it is difficult to estimate the continuous economic burden of zoonotic disease, localised
epidemics and worldwide pandemics can induce instant and deep economic shock which has
important secondary impacts on global health outcomes. The 2015 MERS outbreak in South Korea
infected 186 confirmed individuals and caused a total of 36 deaths, with the overall economic
damage to South Korea approximated at USD$8.5 billion (0.6% GDP) (11, 12). Estimates for the
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larger 2002-2003 SARS epidemic place the economic costs at $3.7
billion (2.6% GDP) in the Hong Kong epicentre (13, 14), while
the recent COVID-19 pandemic economic impact may be
greater with estimates for the second quarter alone of 2020
showing a 2% fall in GDP worldwide (15).

Economic damage can directly cause human mortality,
particularly in low- or middle-income countries where the
healthcare systems may be less robust. The 2014-2016
Ebolavirus epidemic resulted in approximately 11,000 direct
deaths (7), but the subsequent overwhelming of the healthcare
systems in Guinea, Sierra Leone, and Liberia caused an estimated
10,000 further deaths (16). Avian influenza virus strains can
cause fatal disease in humans and introduction into Indonesia in
2009 caused devastation to livelihoods as a result of culling 11
million poultry. The subsequent closure of 30% of the country’s
farms created severe disparities in education and nutrition in the
worst affected communities (17).

Human activities, such as accelerated deforestation,
encroachment into natural animal habitats, or climate change
(18), exponentially increase the likelihood of exposure and
spillover of novel zoonotic pathogens (19). Due to their
potential impact to human health, the WHO and other
healthcare agencies have identified pathogens of concern with
epidemic or pandemic potential (Table 1). The list represents
zoonotic diseases that have caused or may lead to outbreaks, and
many lack effective and timely control measures that are crucial
for preserving human and animal health.

The One Health approach acknowledges the interdependent
relationship between human and animal health, together with
our shared environment. The need to increasingly consider all
parts of the ecosystem arose as a result of global concerns
including antimicrobial resistance and the prevalence of
emerging infectious diseases transmitted between animals and
humans (36). One Health approaches aim to address such issues
using control measures that are ultimately rooted in achieving
better veterinary and human health outcomes. Control measures
can include detailed epidemiology facilitating identification of
transmission routes, disease surveillance, or more overt strategies
such as the development of therapeutic and preventative
healthcare measures (37). A conceptual framework
encompassing a One Health strategy requires concerted inter-
disciplinary efforts from many professions including social
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science, healthcare and epidemiology. This level of
collaboration is necessary to scale solutions from local to
national to global levels to help manage the spread of zoonotic
diseases (38).

An identified zoonotic disease of concern, Crimean-Congo
Haemorrhagic Fever (CCHF), is a tick-borne disease caused by
CCHFV, which affects humans and can cause severe
haemorrhagic symptoms with fatal outcomes (39). As noted in
Table 1, numerous vertebrates can act as reservoirs of CCHFV to
help maintain the virus. Reservoir animals can experience
transient viremia and may develop antibody responses towards
CCHFV, but no clinical disease is observed (40). As such, further
work is needed to identify the main drivers of disease
underpinning pathogen transmission.

In this review we discuss the value of integrating veterinary
and human research in the field of CCHF by discussing findings
from recently developed animal models and underlining the
benefit of exploring closely related nairoviruses such as Nairobi
Sheep Disease Virus (NSDV) and Hazara Virus (HAZV). In
addition, we address current vaccine candidates for preventing
CCHF and a range of approaches that could be key aspects to
One Health approaches to combat CCHF.
CRIMEAN-CONGO
HAEMORRHAGIC FEVER

The control and management of zoonotic diseases, such as
CCHF, relies heavily on knowledge of the disease. Frequently
the causes and impacts of zoonoses are complex and poorly
understood (41). Animal reservoirs of CCHFV encompass
domestic ungulates, while small mammal and bird populations
are thought to play a role in immature tick maintenance and
CCHFV transmission (42, 43). For a successful One Health
approach, it is crucial that sufficient understanding is acquired
on animal reservoirs, amplifying hosts and transmission patterns
to adequately understand both human and animal disease, while
considering CCHFV maintenance and circulation in ticks (44).
Attainment of greater knowledge in these areas will support the
implementation of control measures, such as prophylactic
vaccines for human or animal use (45).
TABLE 1 | WHO Blueprint Diseases and their principal mammalian reservoirs.

WHO Blueprint Disease (20) Mammalian reservoir(s)

COVID-19 (recently added) Fruit bats (speculative) (21), pangolin (speculative) (22)
Crimean-Congo Haemorrhagic Fever (CCHF) Cattle (23), goats (24), sheep (23), camels (25), horses (26), donkeys (27)
Ebola virus disease Fruit bats (28)
Marburg virus disease Fruit bats (29)
Lassa fever Multimammate mouse (Mastomys natalensis) (30)
MERS coronavirus disease Bats, alpacas, camels (31)
SARS coronavirus disease Horseshoe bats, palm civets (32)
Nipah virus disease Flying foxes (33), pigs (33)
Rift Valley Fever Sheep, goats, cattle (34)
Zika Rhesus monkeys, sheep, goats, cows, horses, bats, carabaos, orangutans (35)
Disease X (future disease outbreak of unknown origin) Unknown
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CCHFV is maintained through a tick-vertebrate-tick
transmission cycle (46, 47). Ticks require a blood feed on small
vertebrates to progress in their life cycle from larvae to nymph,
and then feeding on large mammals, such as cattle and sheep, to
progress from nymph to adult tick (47). Though their role is not
fully understood, flighted birds can carry ticks and are thought to
contribute to the expansion of tick populations to other
territories (43, 48, 49). CCHFV is contracted through two
major routes. The first is through direct contact with infected
ticks, either through the bite of an infected tick (44) or tick
pulverisation on open wounds exposing an individual to the
virus (50). The second transmission route is contact through an
open wound with the blood or bodily fluids of an infected person
or animal. High risk occupations for CCHFV infection include
veterinarians, farmers, and abattoir workers in endemic areas
that are in close proximity to livestock (50–52). Human-to-
human transmission can occur following close contact with
infected individuals, posing considerable risk for nosocomial
outbreaks (53–55).

CCHF is one of the most widespread tick-borne diseases (42).
Cases in humans are frequently reported in countries across Asia,
Africa and Europe (39) and CCHFV is increasingly being
identified in new geographical regions (56, 57). Human
infections can range in severity from subclinical or mild
disease with non-specific symptoms, to severe disease which
can cause fatal haemorrhagic disease (54). The mortality rate
during annual outbreaks is estimated to be between 5-30% (39,
46). There are potential differences in CCHF severity between
CCHFV endemic geographical regions and it is thought that
many human CCHF cases remain subclinical which affect
calculated mortality rates (58). A sero-epidemiological survey
in Turkey estimated that 88% of CCHFV infections were
subclinical but it is unclear if similar asymptomatic rates occur
in other endemic countries (59).

Controlling and curbing CCHFV circulation represents a
public health priority, especially in countries where the virus is
endemic. Better understanding of disease is needed to accelerate
therapeutic and interventional treatments. Animal models are
critically important in underpinning our knowledge of disease
dynamics and progression. As discussed in the following section,
understanding of CCHF can be supported through the study of
animal models and closely related nairoviruses.

Animal Models of CCHFV Infection
CCHFV is typically studied in BSL-4 conditions due to the high
risk of severe or fatal haemorrhagic disease in humans, as at
present there are no therapeutics or vaccines available (60).
Mouse and non-human primate (NHP) models exist for
studying CCHFV pathogenesis in these high containment
settings. There are a limited number of CCHFV mouse models
due to the need to supress or pre-empt the immune system, as
infection of immunocompetent mice with CCHFV does not
result in overt disease (61). Historically, the first model
involved new-born mice, but it was considered inadequate as
pathogenesis in new-born mice involved severe damage to the
central nervous system (46), a pathology not representative of
Frontiers in Immunology | www.frontiersin.org 3
human disease. Typical murine models involve knock-out of
IFN-I receptor (61, 62) or STAT1 (63) targeting the type-I
interferon (IFN-I) response. The same phenotype can be
induced in immunocompetent mice by treatment with
antibodies against IFN-1 that block IFN-1 signalling prior to
CCHFV infection (64). Such knock-out models have been useful,
as some of the main clinical symptoms and disease pathogenesis
of CCHF manifest, particularly infection of the liver and spleen,
within 4-5 days of inoculation (61–63). These animal models
have been informative in determining viral tropism and have
been used to assess vaccine candidates (65, 66).

Development of NHP models of infection are often considered
a pinnacle of replicating human infections in an animal model.
However, disease pathology can differ across NHP species for
many emerging pathogens, requiring infection studies on a
breadth of species to determine a suitable model. For CCHFV,
cynomolgus macaques are a suitable model of infection mimicking
human disease (67). In cynomolgus macaques, disease pathology
appears to be similar to that of humans, with all infected animals
developing mild to severe disease, and a proportion of infections
displaying a lethal outcome (67). A larger immunocompetent
animal model of infection, such as a NHP model, is generally
deemed crucial to assess vaccines and therapeutics against
CCHFV infection, however, they are more expensive than small
animal knock-out models.

CCHFV Analogues for Understanding
Orthonairovirus Pathogenicity
In order to overcome the difficulties of studying pathogens that
cause severe disease in humans, researchers frequently use
animal–specific pathogens that have a close phylogenetic
relationship and pathology profile to those that cause the
disease of interest in humans (68).

NSDV, known as Ganjam virus in India, is an Orthonairovirus,
closely related to CCHFV (69). NSDV causes Nairobi Sheep Disease
(NSD), first described in Kenya during a 1917 outbreak of severe
haemorrhagic gastroenteritis in sheep that were relocated from a
NSDV-free area to one where NSDV circulated (70). Since then,
outbreaks of NSDV have been observed infrequently in sheep
and goats.

Like CCHFV, NSDV is also transmitted by ticks. The main
symptoms of small ruminant NSDV infection are a febrile illness
with diarrhoea, followed by haemorrhages withmortality rates up to
90% (71–73). However, NSDV has a low level of zoonotic potential
with evidence of human infection rarely documented (74, 75).

There are a number of analogues between NSDV infection of
sheep and CCHFV infection of humans, represented in Table 2.
Individuals and animals generally undergo a febrile illness, followed
by a haemorrhagic phase in the same organs, predominantly the
gastrointestinal tract; both produce leukopenia and injury of the
liver and spleen (85). Infection of susceptible hosts with NSDV or
CCHFV induces a similar pro-inflammatory immune reaction (71,
86) as well as a long-lasting antibody response (52, 87). NSDV
infects more organs than CCHFV, and death from NSDV typically
occurs within 10 days post infection (72, 73), compared to 5-14 days
following onset of illness in CCHFV infection (46).
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The major advantage of using NSDV infection in small
ruminants as a model for CCHFV infection over the current
mouse models is the ability to study lethal Orthonairovirus
infection in an immuno-competent organism. The limitation
of NSDV is that the virus is of a different species to CCHFV, with
a different host tropism. However, the close phylogenetic
relationship between NSDV and CCHFV increases the chance
that results may be translatable, and the similarities in
haemorrhagic pathogenesis suggest that NSDV infection can
be used to investigate systemic and immunological effects of
Orthonairovirus infection, at a lower risk to human health
compared to using NHP models of CCHFV.

HAZV is another nairovirus that may be used as a model of
CCHFV infection. Discovered in Pakistan in Ixoxid ticks (88),
HAZV can be handled in BSL-2 facilities and is non-pathogenic
to humans, unlike CCHFV (88, 89). Significantly, HAZV is
considered the virus most closely related to CCHFV; HAZV is
in the same sero- (90) and genogroup (76) as CCHFV and there
is a high level of structural homology between the nucleoprotein
of CCHFV and HAZV (91, 92).

Researchers have used HAZV infection for pre-clinical
investigations, such as in vitro assays to assess the effects of the
therapeutic agent ribavirin in combination with other treatments at
preventing HAZV infection (93). Ribavirin is commonly prescribed
for treating CCHFV (94) and therapeutics which show efficacy
against HAZV have been speculated to be effective against CCHFV
(93). Parallels between the pathology of CCHFV and HAZV
infection have also been observed in immunocompromised
mouse models. Infection of IFN-1 knock-out mice with HAZV
resulted in lethal disease in all mice (95). The pathology, mortality,
and clinical signs were highly similar to those induced by CCHFV
infection in the same immunocompromised mouse strains (96). In
contrast, wild-type mice were not susceptible to HAZV or CCHFV
infection (95).

The close similarity of HAZV with CCHFV has also led to the
suggestion to use HAZV to investigate nairoviral infections in
the amplifying hosts of CCHFV, namely sheep, goats, and cattle
(97). Experimental challenge of domestic animals, including
sheep and cattle, with HAZV does not cause symptomatic
disease, and HAZV replication was also not observed in sheep
or cattle during a recent challenge study (97). Viremia has been
observed upon HAZV challenge in a number of other animals
including rhesus monkeys and donkeys (98).
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As HAZV does not cause overt disease in human or animals,
unlike CCHFV and NSDV respectively, HAZV cannot be used to
investigate the haemorrhagic pathogenesis observed in human
CCHFV infection. A second limitation of HAZV as a model for
CCHFV is the lack of natural infection reported in domestic
animals and an unknown host species, which limits corollaries
being drawn regarding transmission modes or model studies.

Due to the high levels of homology between HAZV and
CCHFV, HAZV could provide a viable model virus to study the
molecular biology and pathogenicity of CCHFV. HAZV may also
be used for the screening of preventative or therapeutic measures
that could be translatable for CCHFV, with the use of HAZV
precluding the need for experimentation in BSL-4 containment.
CONTROLLING ZOONOTIC
TRANSMISSION OF CCHFV

Despite the presence of CCHFV across a large geographical
range and the severity of outbreaks, it is difficult to estimate the
disease burden due to the low level of active CCHF surveillance
and reliance on passive surveillance with high levels of under-
reporting. There is also limited diagnostic capability in many
endemic regions, with the uncertain frequency of subclinical
infections adding to this issue. As a result, it has been suggested
that the burden of CCHF disease is greater than estimated from
official case reports (99, 100). Asymptomatic infections may be
common and mild disease can present as non-specific febrile
symptoms (101). The awareness of CCHF disease and symptoms
is low among physicians and veterinarians even in endemic
countries (102), and increasing the awareness of CCHF clinical
symptoms among physicians and veterinarians is the first step
towards improving access to diagnosis for mild cases, and to
prevent nosocomial outbreaks (103).

Implementation of better diagnostic frameworks to improve
surveillance strategies for CCHFV infections is an important
aspect for a comprehensive One Health approach for disease
management (Table 3). A key part of this strategy is the use of
rapid laboratory diagnosis for humans by reverse transcription
polymerase chain reaction (RT-PCR), a highly sensitive tool to
detect CCHFV RNA in individuals (104). Crucially, there are not
always laboratory facilities equipped to perform PCR and
TABLE 2 | Features of Crimean-Congo Haemorrhagic Fever Virus and Nairobi Sheep Disease virus.

Feature CCHFV NSDV

Virus structure Enveloped negative sense ssRNA virus with tripartite genome (76) Enveloped negative sense ssRNA virus with tripartite
genome (76)

S segment amino acid sequence
similarity

62-63% (77)

Vector Ixoxid ticks, predominantly Hyalomma genus (78) Ixoxid ticks, predominantly Rhipicephalus and Haemophilus
genus (69)

Clinical Disease Humans (79) Sheep and goats (69)
Mortality 5-30% (46) 90% (80)
Symptoms in susceptible host Fever, myalgia, headache, nausea, soft tissue haemorrhage, epistaxis,

hematemesis (81)
Fever, diarrhoea, gastro-intestinal haemorrhage, soft tissue
haemorrhage (71)

Tissue pathology Isolated in lung, liver, and spleen (82, 83) Isolated in lung, liver, spleen, and intestines (84)
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diagnose CCHF in less developed rural areas, or they may lack
the capacity needed during outbreaks (105). This can result in
distant reference laboratories being relied upon, delaying
diagnosis (100). The lack of specific clinical presentation also
adds difficulty to seeking diagnosis. Improved diagnostic
capacity and accessibility in both clinical and field-based
settings by the establishment or improvement of regional
laboratories in endemic areas would allow earlier detection of
positive cases and pre-emptive interventions to be undertaken
(106). Increased clinical diagnosis would also identify more
asymptomatic and mild cases and improve the estimation of
CCHF disease burden.

Active CCHF surveillance is also vital, as has been displayed
by the increasing frequency of serological studies to detect anti-
CCHFV antibodies in human populations (99, 107). The data
from these sero-surveillance investigations have provided a key
insight into the seroprevalence of populations and can be used to
evaluate potential risk of exposure in endemic areas (44).
Interpretation of such studies should be considered with
caution as is that the serological methodologies are often
inconsistent and accuracy is not always quantified (58).
Additionally, seroprevalence measurement does not resolve the
missing CCHF knowledge regarding incidence of subclinical
infections versus symptomatic disease. Serological studies in
both domestic and wild animal species, as well as surveying
distribution and viral presence in tick species, should also be
integrated into CCHF surveillance strategies (47, 108). Assessing
CCHFV in the amplifying and natural hosts can increase the
understanding of the geographical spread of CCHFV and
provide estimates of circulating viral quantities, though there is
additional complexity to animal and tick surveillance (99, 109).
Establishment of CCHF surveillance programmes could
determine potential levels of risk to human populations in
endemic areas by monitoring the prevalence of virus in
humans, animals, or tick vectors and this may identify where
disease management interventions could be most useful.

CCHF impacts human health, with hundreds of cases
officially reported each year and an obvious need for improved
control measures including preventative vaccinations or
therapeutic treatments (Table 3). There are currently no
CCHFV vaccines licenced for widespread usage (110),
although one has been licenced in Eastern Europe which uses
an inactivated virus platform (111). Studies investigating the
immune response to this formalin inactivated vaccine have
Frontiers in Immunology | www.frontiersin.org 5
demonstrated that after four doses, low levels of neutralising
antibodies are induced (112). Multiple other vaccine candidates
for CCHFV have been developed using a wide range of platforms
to deliver vaccine antigens (113–116). For example, two doses of
a protein-based subunit CCHFV vaccine that targeted Gn and Gc
of the glycoprotein precursor achieved neutralising antibody
responses, but did not confer protection in mouse challenge
models (117). A DNA vaccine expressing the CCHFV full-length
glycoprotein induced humoral and cellular immunity and was
protective after two doses in mouse challenge models (118). Viral
vectored vaccines that used the MVA vector to deliver full length
glycoproteins as immunogens against CCHFV also induced
humoral and cellular responses; the vaccine was 100%
protective against CCHFV in immunocompromised mouse
models (119). Efforts are now needed to test and then translate
putative vaccine candidates into veterinary and human vaccines
which can protect against CCHFV (120). It is likely that these
medicinal interventions would be stockpiled in endemic
countries and used in outbreak situations as has been
suggested for other outbreak pathogens such as Nipah or
MERS coronavirus (121).

While immunising livestock and poultry against infectious
pathogens is an economically important practise to avoid
disruption to the food and textiles industry (122), vaccination
of farmed animals against diseases can also reduce the likelihood
that zoonotic pathogens will be transmitted to humans (123,
124). There are, however, barriers to the development of effective
CCHFV vaccines for use in veterinary settings (Table 3). There
are no economic incentives for farmers, livestock producers or
agri-industry to vaccinate against CCHFV. Without an
appreciable level of disease in animal hosts, and the
accompanying loss of income to those working with animals,
the incentive to vaccinate animal reservoirs purely for the benefit
of human health may be limited. As such, outside investment
may be needed to incentivise this approach. Alternatively
combining vaccines that combat impactful veterinary
pathogens with a vaccine against CCHFV may persuade key
stakeholders to implement vaccination regimens.

Further methods may be considered to manage CCHFV in
animal reservoirs. Targeting the disease vector is common in
reducing arbovirus transmission (125) and therefore reservoir
livestock can be treated with acaricidal agents to remove ticks
(Table 3) (126). Unlike with vaccination against CCHFV,
treatment of ticks offers direct benefits to animal health (127).
TABLE 3 | The different control measures that may facilitate a CCHF One Health approach and the current status or challenges for their implementation.

Control measure strategy Current status

Immunisation of humans • Limited licensure of one inactivated vaccine in Eastern Europe
• Multiple vaccine candidates show promise in pre-clinical studies
• No published assessment of candidates in human trials

Immunisation of animals • Multiple vaccine candidates show promise in pre-clinical studies
• Lack of disease burden means a lack of economic incentive to vaccinate

Tick control • Acaricidal agents known to be effective at reducing vector-borne disease rates
• Environmental implications and logistical issues of widespread usage

Diagnostic, education, and surveillance • PCR available but often limited in capacity or inaccessible
• Sero-surveillance rates increasing (44)
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However, the acaricidal agents can contaminate animal products
(128), and annual deaths from organophosphates greatly
outnumber those from CCHFV (126) . Due to the
environmental implications of acaricide usage (129), it would
not be feasible to apply acaricides across the large areas needed to
supress wild tick populations. Furthermore, the eradication of
ticks across large regions of lands would negatively affect the
ecosystem, causing unspecified environmental damage (130).
While likely to be insufficient alone, careful control of ticks in
livestock would be a valuable tool alongside vaccination to
reduce CCHFV infections in humans.
CONCLUSION

To mitigate the risk and impact posed by CCHF it is vital that
sufficient knowledge on human infection and the interplay with
the animal reservoir is delineated. Though limited in the past, the
increasing availability of animal models has supported the study
of CCHF as a disease and the causative agent CCHFV. These
models are already playing a significant role assessing the
preclinical efficacy of CCHF vaccines. Similarly, the study of
closely related nairoviruses such as NSDV and HAZV that are
non-pathogenic to humans can further advance our
understanding of CCHFV, due to the similarities of the virus
infection and subsequent disease. These closely related
pathogens can represent valuable models for CCHFV infection,
though all research must be viewed with the caveat that there are
differences between CCHFV and the model pathogens which
must be taken into account.

CCHF has historically been overlooked as a disease of impact
due to being largely under reported in humans and the
asymptomatic nature of CCHFV in animal reservoirs that
Frontiers in Immunology | www.frontiersin.org 6
enables the virus to circulate undetected. There is little
incentive for treatment of animals or surveillance until
zoonotic transmission occurs. Without co-ordinated rapid
diagnostic testing in tandem with sero-surveil lance
mechanisms, the first evidence of circulation is frequently after
zoonotic transmission, with those working closely with animals
put at considerable risk with no foreknowledge (50).

Given the high mortality rates seen during sporadic (but now
almost annual) outbreaks of CCHF, better management
approaches are essential in countries where CCHFV is
endemic and significant health risks exist. This is urgently
needed due to the potential for increased incidence of CCHF
cases and growing geographical distribution of Hyalomma ticks
resulting from environmental changes. There are obvious
challenges to alleviating the threat of CCHFV, but ultimately,
implementation of a One Health approach to CCHFV
management and control while focusing on integrating human
and veterinary studies would be of huge benefit to human health.
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