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Abstract

The mapping of molecular inputs to their molecular outputs (input/output, I/O mapping) is an

important characteristic of gene circuits, both natural and synthetic. Experimental determi-

nation of such mappings for synthetic circuits is best performed using stably integrated

genetic constructs. In mammalian cells, stable integration of complex circuits is a time-con-

suming process that hampers rapid characterization of multiple circuit variants. On the other

hand, transient transfection is quick. However, it is an extremely noisy process and it is

unclear whether the obtained data have any relevance to the input/output mapping of a cir-

cuit obtained in the case of a stable integration. Here we describe a data processing work-

flow, Peakfinder algorithm for flow cytometry data (PFAFF), that allows extracting precise

input/output mapping from single-cell protein expression data gathered by flow cytometry

after a transient transfection. The workflow builds on the numerically-proven observation

that the multivariate modes of input and output expression of multi-channel flow cytometry

datasets, pre-binned by the expression level of an independent transfection reporter gene,

harbor cells with circuit gene copy numbers distributions that depend deterministically on

the properties of a bin. We validate our method by simulating flow cytometry data for seven

multi-node circuit architectures, including a complex bi-modal circuit, under stable integra-

tion and transient transfection scenarios. The workflow applied to the simulated transient

transfection data results in similar conclusions to those reached with simulated stable inte-

gration data. This indicates that the input/output mapping derived from transient transfection

data using our method is an excellent approximation of the ground truth. Thus, the method

allows to determine input/output mapping of complex gene network using noisy transient

transfection data.

Author summary

One of the key features of a gene circuit is its input/output behavior. A few earlier publica-

tions attempted to develop methods to extract this behavior using transient transfection of

circuit components in mammalian cells. However, the hitherto developed methods are

only suitable for circuit with monomodal output distribution. Moreover, the relationship
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between the extracted I/O mapping and the "ground truth" that would have obtained with

stably-integrated circuits, has not been addressed. Here we explore cell populations easily

identifiable in flow cytometry data, namely, the peaks of fluorescent readout distribution

in cells binned by the common expression value of the transfection reporter, or marker,

gene. Using numerical simulations, we find that the distribution of circuit copy number

in these cells deterministically depends on marker fluorescence in the noise-dependent

manner. Moreover, we find that this is true also in the case of bi-modal output distribu-

tion. Using the peaks of input and output distributions, we are able to reconstruct the I/O

mapping of the circuit and relate it to the I/O mapping of the stably-integrated circuit.

The reconstruction is enabled by a new computational method we call PFAFF. The

method is extensively validated with forward-simulated flow cytometry data from stable

and transient transfections, with up to seven different circuits. The results show excellent

correlation between the I/O behavior extracted by PFAFF from simulated transient trans-

fection data, and the data simulated for stably integrated circuit.

Introduction

Many synthetic gene circuits fall into the category of information-processing systems that con-

vert molecular inputs to molecular outputs according to a specific relationship [1], often called

a “program”. A typical design-build-test cycle of a synthetic gene circuit requires that an

input/output (I/O) relationship be characterized in order to confirm circuit function. Direct

characterization is possible when both the input(s) and the output(s) can be measured simulta-

neously in single cells. Using fluorescent reporters, it is possible to obtain the collection of sin-

gle-cell data points of the type [input; output], including for natural regulatory pathways,

either by direct observation using staining, or by creating synthetic analogs of natural circuits

furnished with fluorescent reporters [2–8]. It has emerged that the output forms a distribution

at a single cell level for each input [8–10], resulting in a two-dimensional probability distribu-

tion for the entire I/O relationship, rather than a curve, due to cell-to-cell variation in parame-

ter values. Nevertheless, after averaging, these noisy data sets usually collapse to Hill functions

or to multimodal, two-value functions [11].

Characterization of a circuit that is stably integrated in a cell genome or on replicating

fixed-copy episomal vectors is usually straightforward, provided that the inputs and the out-

puts can be measured. Thus, till now most of characterized input/output behaviors were

obtained in bacteria or yeast, where genome manipulation is relatively facile. However, obtain-

ing such “ground truth” information in mammalian cells has lagged behind, because it is still

very labor-intensive to establish stably integrated multi-gene circuits. Further, properly exe-

cuted characterization requires multiple accompanying control circuits to serve as baseline,

thus requiring that not one but multiple stable cell lines be developed. Even though technolo-

gies such as transposon [12,13] and viral delivery [14,15], targeted integration via Zinc finger

nucleases (ZFNs) [16], transcription activator-like effector nucleases (TALENs) [17] or clus-

tered regularly interspaced short palindromic repeats (CRISPR)/Cas9 [18,19] are available

today, they are still time consuming even in simple cases and become more challenging with

the increase in circuit size. Integration locus-specific effects further complicate the

characterization.

Transient transfection of gene circuits is a widespread alternative to stably-integrated cir-

cuit characterization in mammalian cells [20–24]. Multiple plasmids, each carrying a single

gene, can be co-delivered, leading to correlated gene copy numbers in individual cells. The
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expression of gene products in dividing cell cultures typically reaches quasi-steady-state two to

three days post transfection, and decreases on days four to six due to plasmid dilution [24,25].

The advantage of the transient transfection is that the genome integration-specific effects can

be ignored; likewise, secondary effects that often result from having a few genes close to each

other on the genome do not play a role because each gene is encoded on a separate plasmid.

On the other hand, transient transfections are extremely noisy due to large copy number varia-

tion (1–150 transcriptionally-active gene copies per cell [6]), which makes direct interpretation

of the resulting datasets impossible. Accordingly, the standard analysis applied to transient

transfection data is at the cell population level, with average values of inputs and outputs

reported for entire cell populations (see, Schreiber et al. [26] as a representative case). This

works sufficiently well for logic gene circuits that are often characterized at the extremes of

their input values. Progress towards deriving continuous input/output relationship using tran-

sient transfection data has been made in the past [6,27–29]. However, these methods were

designed to extract monomodal input/output curves and are thus unsuitable for bi- or multi-

modal circuits. Moreover, there has been very little computational or experimental validation

of these results, in particular, how they compare to stably-integrated systems, and to what the

different input/output curves correspond.

We sought to develop a data analysis strategy that would determine input/output relation-

ships from transient transfection data and be applicable to all steady-state networks, including

those with bi-modal or bi-stable behavior. We also sought to understand what exactly consti-

tutes a comparable "stable integration" scenario for the information extracted from raw tran-

sient transfection data. Accordingly, we first investigate the gene copy number distributions in

cell populations that are easily identifiable in flow cytometry-like datasets. We address the

question numerically and find a number of important reproducible trends that make it possi-

ble to draw reliable and interpretable conclusions from data obtained in transient transfec-

tions, and map them back to their stable-integration counterparts. In order to validate the

method, we perform in-silico experiments by simulating flow cytometry data expected in a

transient transfection using dynamic circuit models. At the same time, we use the exact same

models and parameter values to simulate the input/output relationship for the case of stable

genomic integration. With this approach, we are able to evaluate whether our workflow, when

applied to transient transfection data, results in an input/output behavior that is similar to the

input/output behavior one would expect for a stable integration.

As benchmarks, we focus on three-node gene network motifs that have been extensively

studied earlier [30,31]. We find excellent correspondence between the results of our processing

pipeline and the ground truth of the stable integration. Importantly, we are able to capture

multi-value, bi-modal responses. Therefore, the method described here can be used to analyze

transient transfection data and draw conclusions about the underlying input/output mapping

in complex gene circuits, without the need to construct stable cell lines.

Results

Statistical framework for transient transfection

In what follows, we define a gene circuit as a set of N genes

g ¼ ½g1; g2; . . . ; gN � ð1Þ

and their corresponding gene products

G ¼ ½G1;G2; . . . ;GN � ð2Þ
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in which a subset of components

I ¼ ½I1; I2; . . . ; IQ� � G ð3Þ

is defined as input and a subset of components

O ¼ ½O1;O2; . . . ;OP� � G ð4Þ

is defined as output.
Further, consider a cell that harbors a gene circuit, either in a stably-integrated or tran-

siently-delivered fashion, such that a gene gi is present in ki copies in that cell, and the entire

set of copy numbers is a vector

k ¼ ½k1; k2; . . . ; kN � ð5Þ

Hereafter, we consider only interactions between circuit components that have been inten-

tionally engineered (i.e., chromatin-related effects do not interfere with circuit function in the

stable case), and assume that the biochemical parameters describing individual interactions do

not change between stably integrated and transiently-delivered components. Even though

individual cells in a population of stable clones may behave differently, e.g., through stochastic

effects [32], we expect the aggregate statistics of different clones containing identical circuit

copy number to be similar to the aggregate statistics of cells transiently transfected with the

same circuit copy number. Therefore, when considering stable clones, we imply an idealized

"averaged" clone in which the integrated circuit is governed by the same parameters as the

transiently transfected circuit. It then follows that if we apply the same input I to a population

of cells that all harbor the circuit with the copy number vector k, and allow the cells to arrive at

a steady state in the stable case and to the quasi-steady state in the transient case (see S1 Text

“In-silico time-courses”), then the outputs O will form the same statistical distribution, which

can be mono- or multimodal [33], in both cases. Reporting the distribution of O for various

inputs I would conclude the characterization of a stably-integrated circuit, because all cells har-

bor the exact same vector k, which can be engineered or experimentally determined post fac-
tum after clonal isolation.

In the transient transfection experiment, while the values of I and O could be collected for

individual cells, the underlying values of k are unknown because the process of transient deliv-

ery is extremely noisy. The only way to derive useful data from transient transfections is to

deduce, at least for a subset of cells, their k values, and group together data from cells with sim-

ilar values of k. If this can be accomplished, the input and output values measured in these

cells will be similar to the values one would have obtained with a circuit stably integrated at k
copies. Below, we develop a statistical description of a transient co-transfection process, which

leads us to identify cells residing in binned modes of input and output distributions as cells for

which the copy number vector k can be estimated.

We start with the statistical description of a multi-plasmid co-transfection of N constitu-

tively expressed and mutually independent genes g1,g2,. . .,gN, generating (fluorescent) protein

products O1,O2,. . .,ON. Note that there is no input in this system, so every protein product can

be called an “output”. Available data [6] suggest that experimentally-observed distributions of

a protein level expressed from a constitutive promoter are lognormal. The mean of the distri-

bution is proportional to the gene copy number ki with the promoter-dependent global pro-

portionality coefficient βi being independent of ki; the standard deviation σi of the log-

transformed protein level distribution may, in principle, depend on a copy number, but we

assume it to be constant in the following equations. Let us define a random variable Yi as the
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log-transformed protein output of the gene gi.

Yi ¼ ln Oi ð6Þ

Yi is distributed normally and its mean/mode μi, and standard deviation, σi, relate as follows

to the mean of the underlying pre-transformed distribution

E Oi½ � ¼ biki ¼ exp mi þ
s2
i

2

� �

ð7Þ

and therefore

mi ¼ ln bikið Þ �
s2
i

2
ð8Þ

The conditional probability density function (pdf) of Yi given a gene copy number ki and

parameter βi is then described by

p Yijkið Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

i

p exp �
Yi � lnðbikiÞ þ

s2
i

2

� �2

2s2
i

0

B
@

1

C
A ð9Þ

For a vector of gene copy numbers k = [k1,k2,. . .,kN], a conditional multivariate pdf of the

log-transformed protein expression values Y = [Y1,Y2,. . .,YN], provided that each gene gener-

ates its own protein output independently of each other, is described by a multivariate normal

distribution without covariances (for simplicity, we assume σi to be the same for all genes and

use a symbol σ in what follows):

pY Yjkð Þ ¼ pY Y1;Y2; . . . ;YN½ �jkð Þ ¼
QN

i¼1
pðYijkiÞ ¼

1

sN
ffiffiffiffiffiffiffiffi
2pN
p exp �

PN
i¼1

Yi � lnðbikiÞ þ s2

2

� �2

2s2

 !

ð10Þ

To describe the distribution of gene copy numbers in a transient transfection, we introduce

an independent parameterm that we call “multiplicity of transfection”. Indeed, there is no

experimental data that concerns the probability distribution of genes in a co-transfection, and

it likely depends on the exact transfection protocol. Therefore, we make a baseline assumption

about the pdf of the gene copy number vector k as a multivariate normal distribution without

covariance that depends on the multiplicity of transfection. The standard deviation of each

gene copy number distribution scales linearly with multiplicity, with the scaling factor ε.

To account for gene combinations that deviate from an equimolar ratio, a parameter ai
describes the relative abundance of a gene. In this case, one gene is assigned as the "reference"

with ai = 1.

pgðkjmÞ ¼ pg k1; k2; . . . ; kN½ �jmð Þ ¼
1

ðεmÞN
ffiffiffiffiffiffiffiffi
2pN
p QN

i¼1
ai
exp �

PN
i¼1

ðki � aimÞ
2

2ðεaimÞ
2

 !

ð11Þ

Lastly,m itself can be distributed non-uniformly according to its pdf p(m). Distributions

such as Poisson [34], Gamma [35], lognormal [36] or even a combination of them [37], have

been used to describe the process of DNA or viral vector delivery to cells. For transient
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lipofection of DNA, lognormal distributions approximate experimental data well, and therefore

p mð Þ ¼ LN mm; smð Þ ¼
1

msm
ffiffiffiffiffiffi
2p
p exp �

ðlnðmÞ � mmÞ
2

2sm
2

� �

ð12Þ

One of the genes and its protein product is assigned the role of, respectively, a reference

gene and a reference protein (sometimes called “transfection marker”); let us assume it is k1,

with gene product O1 and its log-transformed counterpart Y1. Thus, by definition a1 = 1. To

derive the conditional marginal pdf p(Yi|Y1), which is the probability to find the value Yi of the

log-transformed protein Oi expression in a cell in which the log-transformed reference protein

expression equals Y1, we first drop irrelevant variables from Eq 10 to evaluate joint probability

distribution of log-transformed protein levels [Yi,Y1] given the underlying gene copy numbers

[ki,k1]:

p ½Yi;Y1�j½ki; k1�ð Þ ¼
1

s2
ffiffiffiffiffiffiffi
2p2
p exp �

Yi � lnðbikiÞ þ s2

2

� �2

2s2
�

Y1 � lnðb1k1Þ þ
s2

2

� �2

2s2

 !

ð13Þ

In turn the gene copy numbers are conditionally dependent on the multiplicity parameter

m:

p ½ki; k1�jmð Þ ¼
1

aiðεmÞ
2
ffiffiffiffiffiffiffi
2p2
p exp �

ðki � aimÞ
2

2ðεaimÞ
2
�
ðk1 � mÞ

2

2ðεmÞ2

 !

ð14Þ

The global joint probability distribution p([Yi,Y1]) of Yi and Y1 over all values of [ki,k1] is

obtained by integrating over all values of [ki,k1]:

pð½Yi;Y1�Þ ¼ ∬pð½Yi;Y1�j½ki; k1�Þpð½ki; k1�mÞpðmÞd½ki; k1�dm ð15Þ

It is customary, as already done earlier [6,38], to bin cells that share the same Y1, the log-

transformed value of O1, because this is the only readout independent of the other compo-

nents, as it is a self-contained gene expressed from a constitutive promoter. We follow this

approach here: cells binned according to their Y1 value will exhibit certain log-transformed

distributions of the other proteins Y2,. . .,YN. Knowing the joint pdf (Eq 15), one can derive the

conditional probability of Yi given Y1 (that is, the pdf of Yi among cells that express Y1 log-

transformed copies of the reference protein), as follows:

p YijY1ð Þ ¼
pð½Yi;Y1�Þ

pðY1Þ
¼
∬pð½Yi;Y1�j½ki; k1�Þpð½ki; k1�jmÞpðmÞd½ki; k1�dm

∬pðY1jk1Þpðk1jmÞpðmÞdk1dm
ð16Þ

The mode of this distribution, i.e., the most probable value of Yi given the reference Y1, can

be found by solving the equation

dpðYijY1Þ

dYi
¼ 0 ð17Þ

Let us denote this most probable value as YMODEi ðY1Þ. The value of YMODEi ðY1Þ can be deter-

mined experimentally as a mode of Yi distribution after binning the cells according to their Y1

value. The equation may have more than one solution, corresponding to multimodal probabil-

ity density function from Eq 16.

This bring us to the most relevant question of this section: What is the distribution of the

gene copy number ki for the cells that reside in the mode(s) of Yi, and what is the most proba-

ble value of ki? To answer this question, we evaluate the conditional probability p(ki|Yi)
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according to Bayes’ theorem:

p kijYið Þ ¼
pðYijkiÞpðkiÞ

pðYiÞ
¼

1ffiffiffiffiffiffiffi
2ps2
p exp �

Yi � lnðbikiÞþs
2

2

� �2

2s2

 !
R
pðkijmÞpðmÞdm

∬pðYijkiÞpðkijmÞpðmÞdkidm
ð18Þ

In order to find the most probable copy number kMODEi ðYMODEi ðY1ÞÞ we solve the equation

(or equations, when YMODEi ðY1Þ takes more than one value)

dpðkijYMODEi ðY1ÞÞ

dki
¼ 0 ð19Þ

Knowing the most probable gene copy numbers in the cells residing in the modes of log-

transformed protein distributions allows us to correlate the data to what might be obtained in

cells with stably integrated constructs harboring similar gene copy numbers.

Numerical analysis of transient co-transfection of constitutively expressed

genes

An analytical solution of Eq 19 does not exist, and we solve it using numerical simulations. To

this end, we performed in-silico simulations of a transient co-transfection containing multiple

(N = 5) independent genetic constructs (Methods). The change in protein expression over

time, _Oi, of each gene gi can be described by an ordinary differential equation (ODE) with

kinetic parameter �bi, gene copy number ki and degradation rate δi

_Oi ¼
�biki � diOi ð20Þ

In the steady state, i.e. _Oi ¼ 0, the steady-state level of Oi is proportional to ki with the

global coefficient of proportionality bi ¼
�bi=di and identical to Eq 7:

Os:s:
i ¼ biki ð21Þ

Iterating multiple times to simulate multiple single cells j (1�j�C, where C is the total num-

ber of simulated "cells"), we draw the multiplicitymj from a lognormal distribution (Eq 12)

with parameters that roughly fit experimental data (see below) and initialize gene copy number

vectors

kj ¼ ½kj1; kj2; . . . ; kjN� ð22Þ

according to Eq 11 with pre-set parameters (Methods). To create log-normal protein distribu-

tions given kj according to Eq 10, for each kji in kj, local proportionality factor bji is drawn

from a log-normal distribution:

LN lnðbiÞ �
s2

2
; s

� �

ð23Þ

with fixed βi values (Methods, S1 Table); the values of σ are fixed for a given simulation run

and systematically varied between 0.00 and 0.32 in different runs. A value

Oji ¼ kjibji ð24Þ

is the level of protein Oi in cell j (S1 Fig).

The generated in-silico dataset (S2A Fig) is similar to a flow cytometry dataset what one

would obtain in a transient co-transfection experiment of constitutively-driven genes. In order
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to confirm that the parameters, and in particular the values of σ are realistic, we transiently co-

transfected five plasmids, each expressing constitutively different fluorescent protein (O1:

SBFP2, O2: Cerulean, O3: Citrine, O4: mCherry and O5: iRFP; Methods) (S2B Fig). We find

that the standard deviation of the log-transformed protein expression distribution in cells pre-

binned on similar values of the reference protein, which we denote σ�,

s� ¼ sYi jY1
ð25Þ

depends on Y1, and indeed ranges between 0.1–0.3 (S2C Fig). Higher values of σ�are observed

as very low Y1 values, and they plateau towards 0.1 for larger Y1. Accordingly, the range of σ
values used in the simulations, and given that σ<σ�, constitutes a realistic range for the gene

expression variability due to "intrinsic noise".

Next, we simulate transient co-transfections using two different gene ratios; (i) equimolar

and (ii) a ratio of 1.0:1.3:0.8:0.5:0.4, the latter following some fine-tuning in a parallel experimental

project (manuscript under preparation), to generate a joint pdf p(Y) (Figs 1A, S3A, S3B, S4A and

S4B). We use these datasets to solve Eqs 17 and 19 numerically, that is, determine the YMODEi ðY1Þ

and kMODEi ðYMODEi ðY1ÞÞ. To do so, we bin cells that share a log-transformed reference protein value

Y1, evaluate the conditional pdf p(Yi|Y1) and, first, determine numerically the value of YMODEi ðY1Þ.

Second, we retrospectively look up the values of ki in cells whose Yi and Y1 expression levels lie in

the vicinity of a vector [YMODEi ðY1Þ;Y1]. The empirical distribution of ki (Figs 1B, S3C and S4C) is

pðkijYMODEi ðY1ÞÞ from Eq 19, and the mode of the gene copy number distribution,

kMODEi ðYMODEi ðY1ÞÞ, or kMODEi ðY1Þ, is determined numerically (Figs 1C, S3D and S4D, Methods).

According to Eq 7 there is a simple, linear relation between Oi and the gene copy number

ki, linking them via the global coefficient of proportionality βi. The global coefficient of propor-

tionality can be determined experimentally using e.g., a calibrated Western blot to measure the

absolute amount of protein and calibrated qPCR to measure absolute mean internalized gene

Fig 1. In-silico simulation of multiple gene co-transfections. In-silico simulations shown for two cases with parameter settings σ = 0.08, ε = 0.04 andm = 10:

equimolar (a1:a2:a3:a4:a5 = 1.0: 1.0: 1.0: 1.0: 1.0; top row) and "nominal" (a1:a2:a3:a4:a5 = 1.0: 1.3: 0.8: 0.5: 0.4; bottom row) ratio of gene mix. (A) Density plots

show the amount of expressed proteinsO2 versus O1. Solid black lines indicate the edges of an example bin for the transfection reference proteinO1. (B) The

plots show the distribution of gene copy numbers in cells whoseO1 values fall into the bin shown in panel A. Copy number distributions corresponding to

different genes gi are shown using different colors (legend on the very right of the figure). In the equimolar case, gene copy number distributions overlap, while

in the "nominal" case they are separated. (C) The modes of the copy number distributions are plotted versus the median signal of the transfection reference

proteinO1 in all bins (colored lines). The dash-dotted line marks the mean (E[O1]) of the globalO1 distribution. (D) For each bin of the transfection reference

proteinO1, the modes of the gene copy number distributions from each gene gi are determined numerically. The ratio of the numerically-determined mode of

the copy number distribution kMODEi and the anticipated copy number k�i are computed and plotted versus the corresponding O1 values in individual bins. The

global mean of O1 is shown with a dash-dotted line. (E) Ratios of gene copy number modes kMODEi relative to the gene copy number mode of the transfection

reference protein kMODE
1

, as a function of theO1 median value in the bins.

https://doi.org/10.1371/journal.pcbi.1008389.g001
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copy numbers. For the transfection reference protein, we introduce the variable k�
1

that corre-

sponds to the gene copy number that one would "naïvely" anticipate to be the most probable

value leading to a particular Y1, given β1:

k�
1
Y1ð Þ ¼

expðY1Þ

b1

ð26Þ

For the other log-transformed outputs Yi the naïvely anticipated copy number in cells that

express certain level of the reference protein Y1, is defined by a similar relationship:

k�i Y1ð Þ ¼
expðY1Þ

b1

�ai ð27Þ

Given that the value of Y1 and β1 are the only “knowable” parameters, it is of interest to ask

how the actual copy numbers relate to these anticipated values. Using our simulated datasets,

we compute the ratio between numerically found kMODEi ðY1Þ and the anticipated copy number

k�i ðY1Þ from Eq 27 (Fig 1D) as a function of Y1. We find that the deviation from the anticipated

value is a decreasing monotonous function of Y1 with the following properties: (1) The devia-

tion is always positive for values of Y1<ln E[O1]; (2) the deviation is essentially zero when Y1 =

ln E[O1], and (3) it is negative for Y1>ln E[O1]. Further, the absolute magnitude of the devia-

tion increases with increasing σ (S3E and S4E Figs). However, for all noise levels, the deviation

is zero at the global mean of the O1 distribution, E[O1], and

kMODEi ðlnðE½O1�ÞÞ

k�i ðlnðE½O1�ÞÞ
� 1 ð28Þ

We further analyzed the ratio of the modes of gene copy number distributions kMODEi to

kMODE
1

in cells that reside in the close vicinity of the log-transformed expression vector

½Y1;YMODE2
ðY1Þ;YMODE3

ðY1Þ; . . . ;YMODEN ðY1Þ�. The ratio stays constant for almost the entire

range of Y1 values (Figs 1E, S3F and S4F). Since the naïve estimate and the numerical mode of

the absolute gene copy number coincide at the global mean of the O1, both the relative and the

absolute abundance of the gene copy numbers can be deduced with high certainty in cells that

express O1 around its global mean. This is true regardless of the chosen distribution ofm and

βi. Simulations that employ Poisson, Gamma or lognormal distributions show a strikingly sim-

ilar effect (S5 Fig). Appropriate experimental techniques allow measuring both the protein

copy number [39] and the gene copy [6] number in the cells residing at the global mean of O1,

making it possible to determine the value of β1 experimentally and therefore extrapolate

directly to the ground truth expected in the stable cell line with the similar gene copy number.

Numerical analysis of transient co-transfection of non-trivial gene circuits

Next, we consider the case when the same genes, apart from the transfection reference protein

gene g1, encode a set of genes interacting in a circuit. Depending on the circuit, log-trans-

formed distribution Yi of protein Oi in cells pre-binned on the value of Y1 may exhibit mono-,

bi- or multimodality. We may consider the joint probability distribution of the vector of inde-

pendent constitutive genes and their gene products, k�Y, as a baseline state of any circuit.

When the genes are interconnected (not including the reference gene g1 and its log-trans-

formed product Y1), this baseline distribution is transformed because the values of Y are no

longer independent. However, the values of k remain the same, because they represent the

exact same underlying process of DNA delivery, and only the Y values change relative to the
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independent, constitutive values. We hypothesize that despite the fact that the values of Y are

no longer independent of kj for i6¼j, k vectors corresponding to the (possible multiple) multi-

variate modes of Y|Y1, would not deviate far from the k vectors obtained in the case of inde-

pendent co-transfection. We further hypothesize that this deviation will decrease as the noise

in the system increases to biologically-plausible levels.

To test these hypotheses, we simulated two three-node gene circuit architectures (currently

being investigated experimentally in a related project, see S6 Fig for the experimental results of

the fan-out circuit); a simple monomodal fan-out circuit (FO; Fig 2A) and a non-trivial

Fig 2. Schematics of gene circuits FO and RIFFM and analysis outline. (A)| Monomodal/fan-out (FO) and (B) bi-modal (RIFFM) gene circuit. The

circuits are composed of five independent genes. Constitutively-expressed transcription factor rtTA co-induces PIT2 and the fluorescent protein

mCherry in a Doxycycline-dependent fashion. PIT2 in turn activates two promoters P1 and P2, which express a transcriptional repressor lacI-KRAB and

Kni, respectively, co-expressed via P2A linkers with Citrine and Cerulean fluorescent reporters. In the FO circuit the repressors do not interact due to

mutated promoter binding sites, while in the RIFFM circuit they repress each other, establishing a mutual inhibition. (C) Graphical illustration of all steps

to find the modes within our simulated data sets. The raw flow cytometry like data (1) is binned by the transfection marker (i.e. Y1: SBFP2). The binned

data is isolated and subsequent analysis is done only on this subset (2). Afterwards the distribution of the log-transformed input signal (mCherry) within

the binned subset is determined and at least one Gaussian is fitted to the distribution. A narrow bin(s) around the mode(s) (black arrows) of the fitted

distribution(s) is determined (pink bars), thus obtaining a subset of the originally-binned dataset. The subset around the peaks (YMODE;LOWinput ðY1Þ and

YMODE;HIGHinput ðY1Þ) are now analyzed individually. For illustrative purposes, we show the input (mCherry) and output (Cerulean) signal of the subset around

YMODE;LOWinput ðY1Þ (3) and YMODE;HIGHinput ðY1Þ (4). The modes of the log-transformed output distributions are identified using a similar peak finding procedure as

for the input signal (mCherry). The output histograms and their modes (black arrows) are shown on the sides of plot. Within these modes, we look at the

pdf of the gene copy number distributions for all circuit genes as well as the transfection reference gene and identify the vectors kMODE;HIGH
¼

½kMODE;HIGH1 ; . . . ; kMODE;HIGHi ; . . . ; kMODE;HIGHN � and kMODE;LOW
¼ ½kMODE;LOW1 ; . . . ; kMODE;LOWi ; . . . ; kMODE;LOWN �, respectively.

https://doi.org/10.1371/journal.pcbi.1008389.g002
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pitchfork bifurcation circuit, also known as reinforced incoherent feed forward motif RIFFM
[4,30,40,41] (Fig 2B). The input to the circuit is a transcriptional activator PIT2 [42], whose

level is tuned by Doxycycline via an bi-directional TRE promoter that also drives a fluorescent

protein mCherry as a proxy for input expression. The first PIT2 target promoter (P1) drives

the D.melanogaster derived transcriptional repressor Knirps (kni) and translationally-linked

fluorescent protein Cerulean, constituting the first circuit output. The second PIT2 target pro-

moter (P2) drives the transcriptional repressor LacI fused to a KRAB domain and translation-

ally linked to a fluorescent protein Citrine, representing the second circuit output. In RIFFM
circuit, kni is able to repress P2 while LacI is able to repress P1; in FO, the mutual repression is

eliminated via mutations.

We built mechanistic kinetic models of the circuits FO and RIFFM (S2 Text "Simple Fan-

Out Model" and S3 Text "Detailed Models") and simulated the flow cytometry dataset for mul-

tiple transiently transfected cells j (1�j�C, where C is the total number of simulated "cells").

As above, every gene is encoded on a separate plasmid. We also compared this to a single-plas-

mid setup with all five genes are located on a single DNA backbone, but saw only a marginal

difference in outcomes (S7 Fig). The multiplicity of transfection and the gene copy numbers

are simulated as above (S1A Fig); the gene copy numbers become the initial conditions for

running a simulation. Differently from that case of constitutive co-transfection, we directly

simulate circuit dynamics governed by kinetic parameters p; to simulate the effects of intrinsic

gene expression noise, the parameters that govern protein translation rates are sampled inde-

pendently from a lognormal distributions with nominal parameter values πi and preset "noise"

levels ranging, as above, from 0.00 to 0.32:

LN lnðpiÞ �
s2

2
; s

� �

ð29Þ

For every cell j, the drawn parameter values pij are used in a dynamic simulation ran to a

steady state, with the simulated steady state input and output protein levels corresponding to

the readouts from that cell.

First, we simulate mono- and bi-modal gene circuits for a single Doxycycline/input level.

Similar to the data analysis above, we bin the cells according to Y1 value. In the bin, we first

focus on the input protein Yinput and identify its mode. Importantly, in the general case the dis-

tribution of Yinput|Y1 can be bi-modal, leading to two numerically-found values YMODE;HIGHinput ðY1Þ

and YMODE;LOWinput ðY1Þ. In this case, we consider separately the cells residing close to the expression

vectors ½YMODE;HIGHinput ðY1Þ;Y1� and ½YMODE;LOWinput ðY1Þ;Y1�. Next, for every circuit output we consider

the distributions YoutputjY
MODE;HIGH
input ðY1Þ and YoutputjY

MODE;LOW
input ðY1Þ. These distributions can also

be multimodal; in what follows we assume they are bi-modal. We denote the modes of the out-

put distribution corresponding to the high mode of the input YMODE;HIGHoutput ðYMODE;HIGHinput ðY1ÞÞ

and YMODE;LOWoutput ðYMODE;HIGHinput ðY1ÞÞ, and use similar notation for the output modes corresponding

to the low mode of the input, if the latter is present. Lastly, we consider all cells in the

vicinity of the expression vector ½YMODE;HIGHoutput ðYMODE;HIGHinput ðY1ÞÞ; Y
MODE;HIGH
input ðY1Þ; Y1� and

½YMODE;LOWoutput ðYMODE;HIGHinput ðY1ÞÞ; Y
MODE;HIGH
input ðY1Þ; Y1� and evaluate the copy number distribution of

every circuit gene as well as the reference gene. These are monomodal distributions, with the

modes denoted respectively as kMODE;HIGHi and kMODE;LOWi (see Fig 2C for schematic description

of the process). These numerically evaluated values are then compared to the naively antici-

pated values calculated according to the Eq 27. Note that in these simulations, the transfection

reference gene expression is modelled explicitly as a transcription/translation/degradation
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cascade with corresponding kinetic parameters; the value of β1 for Eq 27 is calculated accord-

ing to Eqs 20 and 21.

The analysis of the simulated data reveals the following: for the monomodal FO circuit, the

behavior of the copy number modes of the input and the output genes is quantitatively identi-

cal to what is observed in the simulation of multiple constitutive gene co-transfection (Fig 3A–

3E). The bi-modal circuit (Fig 3F) shows its bi-modal behavior at the lower intensities of the

transfection reference protein O1 (103–105). In this range, distributions of gene copy numbers

for the high and low modes of output expression are slightly diverging (Figs 3G–3K). They are,

however, almost fully overlapping, and their modes differ only by a few percent respectively

upwards or downwards relative to the monomodal case, despite large difference in the corre-

sponding protein modes. We quantify the divergence in gene copy number modes between

high and low protein output modes by introducing a metric

D~ki ¼ ~kHIGHi � ~kLOWi ¼
kMODE;HIGHi

k̂MODE1

�
kMODE;LOWi

k̂MODE1

ð30Þ

with k̂MODE
1

being the mode of the transfection marker copy number distribution found in the

constitutive co-transfection simulation (Fig 1). We observe a steady increase in D~ki upon an

increase in noise level σ (Fig 3L), however, it is less that 10% for realistic levels of noise. Fur-

thermore, we quantify bi-modality-dependent deviations of gene copy number ratios between

the high and low output modes and introduce the metric

D�i ¼ �
HIGH
i � �

LOW
i ¼

kMODE;HIGHi

kMODE;HIGH1

�
kMODE;LOWi

kMODE;LOW1

ð31Þ

Unlike D~ki, this deviation of gene copy number ratios, Δϕi, decreases with an increase

in the noise level σ (Fig 3M). These observations confirm our hypothesis that even in multi-

modal circuits, the cells that share the same amount of the reference protein, also share very

similar gene copy numbers, both in absolute and especially, in relative terms (S8–S10 Figs).

Moreover, deviations from the nominal gene copy number ratio decrease with the increase of

noise levels σ.

The rationale for extracting input/output relationship from transient

transfection data

The analyses above suggest a workflow for analyzing and deducing input/output relationships

from transiently-transfected circuits. To summarize the findings so far, we show that cells,

which express a certain level of reference protein O1 and reside at multivariate modes of log-

transformed input and output expression, harbor both input and output genes (or plasmids)

with the following properties: (1) even for multimodal outputs with large differences in protein

level modes, the distribution of the input and output genes copy numbers corresponding to

the different output protein modes are almost overlapping, with the copy number modes vary-

ing by about 10% for biologically-realistic noise values, and thus can be treated as the same

copy number for all practical purposes; (2) the copy number distribution modes’ ratio almost

exactly corresponds to the nominal ratio used in a transfection for all reference protein bin val-

ues, for both low and high output modes, and the deviation from the nominal ratio decreases

with increased noise; (3) the distribution modes’ absolute values exactly match the naïve antici-

pation (Eq 27) when the reference protein is expressed at the level E[O1]; (4) the distribution

modes’ absolute values (for both high and low output modes) deviate from the naïve expecta-

tion in a predictable linear fashion as a function of log-transformed reference protein level Y1,
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Fig 3. In-silico simulation of transiently-transfected gene circuits FO and RIFFM and the copy number analyses at various σ noise levels. In-silico simulations

(global parameters σ = 0.08, ε = 0.04, μm = 1.4979, σm = 1.2686 and a1:a2:a3:a4:a5 = 1.0: 1.3: 0.8: 0.5: 0.4) shown for two circuits: A-E monomodal/fan-out (FO) and

F-M bi-modal (RIFFM). (A) Raw data of the simulated transiently transfected FO circuit. The amount of expressed proteinsO2 (left: Cerulean) orO3 (right:

Citrine) versus O1 (transfection marker: SBFP2) is shown as a density plot. Solid lines indicate the edges of a transfection marker bin. (B) Gene copy number

distributions of cells binned by a particular value of log-transformedO1 in a bin shown in panel A. (C) The modes of the copy number distributions, kMODEi , are

plotted versus the median signal of the transfection reference proteinO1 for all bins (colored lines). The dash-dotted line marks the mean (E[O1]) of the globalO1

distribution. (D) The ratio of the numerically-determined mode of the copy number distribution kMODEi and the anticipated copy number k�i plotted versus theO1

values in individual bins. The global mean of O1 is shown with a dash-dotted line. (E) Modes of the gene copy number distributions kMODEi normalized by the mode

of the transfection reference gene kMODE
1

are shown as a function ofO1 values in individual bins. (F) Raw data of the simulated RIFFM circuit with bi-modal output

O2 (Cerulean; left) orO3 (Citrine; right). The black lines indicate a bin within the bimodal range. (G) The modes of the copy number distributions, kMODE;HIGHi and

kMODE;LOWi , are plotted versus the median signal of the transfection reference protein O1 of all bins (colored lines). Dashed segments indicate the range of O1 in

which the high and low modes do not coincide; the black dash-dotted line indicates the mean (E[O1]) of the globalO1 distribution. (H) The ratios of the

numerically-determined mode of the copy number distribution kMODE;HIGHi and kMODE;LOWi ; and the anticipated copy number k�i are plotted versus the corresponding

O1 values in individual bins. Dashed segments indicate the range of O1 in which the ratios corresponding to high and low modes do not coincide. The global mean

ofO1 is shown with a straight dash-dotted line. (I) Modes of the gene copy number distributions kMODE;HIGHi and kMODE;LOWi , normalized by the mode of the

transfection reference gene kMODE
1

are shown as a function ofO1 values in individual bins. Dashed lines indicate the range ofO1 where the values do not coincide.

(J) The ratios kMODEi =kMODE
1

depicted in panel I are shown in greater detail for the outputsO2 (Cerulean; top) andO3 (Citrine; bottom). (K) Fitted gene copy
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with the magnitude of the deviation increasing with the overall noise level. However, because

the actual noise level and thus the degree of deviation can be quantified experimentally, even

in cells that lie away from E[O1] the copy numbers can be estimated not only in relative but

also in absolute terms. We show that this holds for a case of a complex circuit that generates

bi-modal output distribution, with only slight deviations of the copy number modes from the

expectation. Accordingly, by analyzing the input and output values in the cells that reside in

the multivariate modes of circuit inputs’ and outputs’ distributions (after binning by the log-

transformed reference protein value Y1), we should be able to extract the information about

the input/output response of the circuit that is comparable to the stable cell line harboring the

circuit at the copy number derived from Y1 according to Eq 26 and corrected by the measure

of deviation that depends on the noise level.

Overview of the workflow validation procedure

To validate the workflow suggested above, we simulate transient transfection and stable inte-

gration for FO and RIFFM circuits for a wide range in circuit input levels using the exact same

ODE model, with the input modulated via varying Dox level; otherwise the parameter ran-

domization is performed as described above according to Eq 29. To simulate a stable integra-

tion dataset, we initialize a copy number vector k such that the ratio between individual genes

corresponds to the nominal ratio of the transient transfection, and the absolute copy number

of the reference gene is set to different fixed values corresponding to the bins used for transient

transfection data analysis (S11 Fig; Methods). After the datasets are simulated, we extract

input/output relationships corresponding to various bins of log-transformed values of the

(transfection) reference protein Y1 from the simulated transient transfection data, as described

in detail in the next section. This is compared to the results of the stable integration simulation

performed for the copy numbers that correspond to those reference protein levels. The simula-

tion of the stable integration scenario generates an input/output “cloud”, as has also been dem-

onstrated experimentally [8,43,44]. The cloud can be used "as is" for the purpose of

comparison, or it can also be processed via output mode identification for different input levels

and building averaged curves. The process is illustrated schematically in S12 Fig.

The input/output relationship is generated for each level of log-transformed reference pro-

tein Y1. We make use of the datasets simulated with different Doxycycline levels and thus dif-

ferent amounts of input expressed per gene copy. (Note that Doxycycline does not affect the

gene copy number or the expression of the transfection reference protein, it is not a direct

input and is not a part of the input/output relationships that we seek.) For a given Y1 bin, a sin-

gle transfection experiment simulation with a fixed Doxycycline value generates (for a bimodal

case) at most four points on the input/output curve: [YMODE;LOWinput ; YMODE;LOWoutput ðYMODE;LOWinput Þ];

½YMODE;LOWinput ; YMODE;HIGHoutput ðYMODE;LOWinput Þ�; ½YMODE;HIGHinput ; YMODE;LOWoutput ðYMODE;HIGHinput Þ�; and

[YMODE;HIGHinput ; YMODE;HIGHoutput ðYMODE;HIGHinput Þ]. In most cases, the input will only exhibit a single mode

that we denote for uniformity YMODE;HIGHinput and thus only two points will be generated for a bi-

modal case, and one for a monomodal case. For this same reference protein bin, we repeat the

procedure defined earlier (Fig 2C) for every Doxycycline level and generate multiple [input;

number distributions of the indicated bin in F are shown for all genes (left to right) and noise levels σ. Black curves indicate the fitted distributions to the low

output mode, kLOWi , and colored curves the fitted distributions of the high output mode kHIGHi . (L) Divergence in gene copy number modes D~ki between high and

low protein output modes normalized to the mode of copy number distribution of the transient co-transfection for all noise levels σ as a function of O1 values in

individual bins. (M) Difference of copy number modes’ ratios Δϕi in the high and low protein output modes for all noise levels σ as a function ofO1 values in

individual bins.

https://doi.org/10.1371/journal.pcbi.1008389.g003
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output] pairs that cover the entire input range. The procedure can be done for any desired ref-

erence protein bin, thus showing circuit behavior for different absolute gene copy number of

its components (Fig 4).

The fact that every transient transfection performed with a certain Doxycycline level gener-

ates only up to four, and usually one or two, points on the input/output relationship curve is

slightly counterintuitive because a flow cytometry plot would reveal wide distribution of the

input values. However, this distribution results from the variability in the copy number of the

input gene in the cells and is therefore irrelevant to the determination of the input/output rela-

tionship. In order to characterize an entire curve, there must be a practical way to modulate

input expression per gene copy and repeat the experiment multiple times, every time with a

different degree of modulation. This can be done with Doxycycline as in our case; when this is

not feasible, one can mimic input modulation by systematically changing the relative dosage of

a constitutive input-expressing gene, or use a series of constitutive promoters of varying

strengths. In another observation, when extracting the modes, the high output modes corre-

sponding to both the low and the high input modes fall on the same curve when plotted against

the input values; the same is true for the low output modes (S13 Fig). This is not surprising,

because the input value is the only determinant of the output. Therefore, we pool high and low

output modes, respectively, and interpret them as the averaged input/output relationship of a

circuit; when the behavior is bimodal, two curves are generated.

Fig 4. Peak Finder Algorithm For Flow cytometry (PFAFF) analysis strategy. The steps of finding peaks in

distributions of a binned data as shown in Fig 2C are repeated for every input induction level (i.e. Doxycycline level;

here three representative cases for low (1), medium (2) and high (3) input modulation levels are depicted) for each

output (here, Cerulean and Citrine). Initially, a bin of the transfection reference protein (here, SBFP2) is determined

and all downstream analyses only deals with cells residing in this bin. The plots in the dashed box show the example

workflow of applying the peak finding to the individual input modulation levels. The density plots depict the binned

data and the adjacent histograms show the distributions of their respective input and output proteins. Black wedges

indicate the modes of the (convoluted) distributions and black markers indicate their location on the density plots. The

[input; output] mode pairs, identified in this workflow (markers), derived from the raw data corresponding to the

different input modulation level are plotted on the input/output mapping charts the output Cerulean (4) and Citrine

(5).

https://doi.org/10.1371/journal.pcbi.1008389.g004
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Validation using direct simulation data

We applied our data generation tool for transient transfections to FO and RIFFM circuit archi-

tectures and simulated 500,000 cells at twelve different Doxycycline input concentrations and

six noise levels of σ. In Fig 5A we show representative examples of the raw data from transient

Fig 5. Results of PFAFF analysis on simulated FO and RIFFM flow cytometry data set. (A) Raw simulated transient

transfection data for circuits FO and RIFFM at noise level σ = 0.16, modulated by different input levels of Doxycycline

(columns). Each circuit (FO, RIFFM) is represented by two rows of charts depicting the input versus their respective

output signals. (B) Simulated flow cytometry data set of the bin that lies at the transfection reference protein’s global

mean (transfection reference: SBFP2) at different gene expression noise levels σ (columns) ranging from 0.00–0.32.

The plots show the input/output curves extracted by PFAFF (colored crosses; top row: Cerulean, bottom row: Citrine)

atop of the simulated stably integrated circuit at the indicated gene expression noise level σ (grey density plot). FO

undergoes an activation in both output colors. The RIFFM circuit shows a bi-modal behavior already at low noise

levels for both output colors.

https://doi.org/10.1371/journal.pcbi.1008389.g005
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circuit simulations at a single noise level (σ = 0.16) and various Doxycyline modulations. Note

the shift in the scatter plots in response to Doxycycline increase. For each noise level, we

extract the corresponding input/output relations of the data set with our analysis strategy that

we call PeakFinder Analysis For Flow cytometry, or PFAFF. The algorithm bins simulated

cells according to the expression level of the transfection reference protein SBFP2 each bin

containing an equal number of cells (9.5% of total population, 10 bins in total). Next, we deter-

mine the modes of log-transformed input and output protein distributions of cells residing in

each bin for the different Doxycycline levels as described above, and build the input/output

relationships corresponding to that bin (S14–S19 Figs). In the stable integration scenario, we

build datasets that correspond to different fixed sets of gene copy numbers. Specifically, the

copy numbers are set to correspond to the median copy numbers of the bins used to process

the simulated transient transfection data (Methods). We simulate 5,000 cells per Doxycycline

value and repeat this for twelve different Doxycycline values to cover the entire input range.

This simulation is repeated for each σ. These data serve as the gold standard to evaluate the

performance of our method for transient transfection data processing, by how well the input/

output relationships match the stable integration simulation for matching bin/stable copy

number.

In Fig 5B we show the stable integration simulation and the analysis results from PFAFF,

the latter extracted from a transfection reference bin that lies close to the global mean of the

reference protein (i.e. SBFP2 bin 5; see S14–S19 Figs for all bins, input and noise levels); the

former simulated for the gene copy number that corresponds to this reference protein level.

Note that the number of transfection reference bins does not influence the outcome (S20 Fig).

We plot the stable integration outputs at various input levels as density plots in the background

(grayscale). For the lowest noise case (σ = 0.00), the density plots for the stable integration col-

lapse to curves, as expected. Gradually increasing σ leads to increasingly diffuse input/output

relationships. Atop these density plots we superimpose the mode values extracted by PFAFF

from the corresponding simulated transient transfection data and binned for the cells that

express the same level of the transfection marker as the stable integration. The analysis suggests

that the input/output relationship extracted using PFAFF superimposes with the input/output

“cloud” simulated for the stable integration, when both reflect similar underlying absolute

gene copy number.

In order to expand the number of circuits for analyses, we simulated another commonly

studied circuit family–the type-1 incoherent feed-forward motifs. Our simulations include two

versions of the I1-FFL (one for each repressor; I1-FFL1 and I1-FFL2; Fig 6A and 6B). We

applied the same analyses as before to both I1-FFLs and show the comparison of input/output

from stable integrated and transiently transfected circuits (Fig 6C; see S21–S26 Figs for all

bins, inputs and noise levels). As is the case for other two circuits, there is excellent correspon-

dence between the input/output curves extracted from simulated transient transfection data,

and the input/output behavior of the comparable simulated stable case. This motivated us to

expand the number of circuits by a coherent feed-forward, a negative feedback and lastly a pos-

itive feedback motif; all of them showing similar, excellent agreement (S27–S29 Figs).

The initial qualitative analysis uncovers excellent overlap between the input/output rela-

tionships found by PFAFF, and the input/output clouds from the corresponding stable inte-

gration simulations. Only at the highest simulated levels of σ, i.e. 0.32, the PFAFF algorithm

has minor difficulties with extracting expected input/output relationships. Indeed, a σ of 0.32

is much larger than variations observed typically in nature [9,45]. To obtain a quantitative

measure of the correspondence, we extracted modes from the log-transformed protein expres-

sion distributions of input (mCherry) and outputs (Cerulean and Citrine) from the stable inte-

gration data sets with the same peak finder algorithm that we employ in PFAFF (Methods).
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We correlated the obtained modes with the modes that were found by PFAFF in the transient

transfection case (Fig 7). In the pooled modes from all data sets, meaning all external input lev-

els and bins for each noise level, we find a high correlation between the modes from both sim-

ulation scenarios for all expression noise levels (mean of Pearson correlation coefficient

ρ>0.91±0.01 for output modes; σ: 0.00–0.32).

Discussion

In this study we show that transient transfection data can be used to extract input/output rela-

tionships of gene circuits that are comparable to the data that would have been obtained with

stably-integrated circuits. Our findings reveal that it is sufficient to focus on small subsets of

transiently transfected cells that lie at multivariate modes of input and output expression, post-

binning on a transfection reference protein, otherwise known as a "transfection marker". We

prove numerically that cells in these modes harbor distributions of circuit genes with the

Fig 6. Results of PFAFF analysis on simulated I1-FFLs flow cytometry data sets. (A) and (B) Circuit architecture of two additional I1-FFLs. (C)

Simulated flow cytometry data set of the bin that lies at the transfection reference protein’s global mean (transfection reference: SBFP2) at different

gene expression noise levels σ (columns) ranging from 0.00–0.32 is processed by PFAFF. The plots show the input/output curves extracted by

PFAFF (colored crosses; top row: Cerulean, bottom row: Citrine) atop of the simulated stably integrated circuit at the indicated gene expression

noise level σ (grey density plot). Both I1-FFLs show adaptive behaviors in their respective outputs.

https://doi.org/10.1371/journal.pcbi.1008389.g006

PLOS COMPUTATIONAL BIOLOGY Extracting input-output relationships from trasient transfection data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008389 November 30, 2020 18 / 30

https://doi.org/10.1371/journal.pcbi.1008389.g006
https://doi.org/10.1371/journal.pcbi.1008389


following properties: (1) the modes’ absolute values can be deterministically deduced from the

observed level of the transfection reference protein expression, the noise level in the experi-

mental data, and the distance from the global mean of the transfection reference protein; (2)

the modes’ ratios are identical to the gene or plasmid ratios used in the transient transfection

experiments, for all values of the reference protein expression. Moreover, in the case of multi-

modal data, large differences in protein expression do not translate into significant differences

between the underlying gene copy number distributions, and for all practical purposes the

absolute and relative copy numbers can be considered identical for the different protein

expression modes. Interestingly, the cells that belong to the bin that lies close to the global

mean of the reference protein expression, harbor gene copy numbers whose modes’ absolute

and relative values correspond exactly to what one would expect from the naive expectation,

namely the ratio between the knowable expressed protein level and the knowable global coeffi-

cient of proportionality between the protein and gene copy number. The detailed understand-

ing of the gene copy number behavior in the multivariate protein expression modes that can

be identified in the experimental data, provides a degree of confidence in relevance of

extracted data to the ground truth behavior of the same circuit when stably integrated in a cell.

This confidence is confirmed by the direct in-silico validation experiments, where both types

of data are directly simulated, the PFAFF workflow analysis is applied to the data from simu-

lated transient transfections, and the results are compared to, and are shown to reproduce, the

ground truth.

While transient transfections are often valued as a tool to rapidly analyze genetic circuit

behavior, they are rarely used to draw fine-tuned conclusions about the input/output

Fig 7. Quantitative analysis of the stable integration and transient transfection data sets. Correlation between extracted

output modes of stable integration simulation and PFAFF results from transient transfection simulations. The mode values

for both output colors (Cerulean and Citrine) for all input modulator levels and for all bins/stable copy number sets are

plotted, and Pearson correlation coefficient (ρCer or ρCit) is shown for each plot.

https://doi.org/10.1371/journal.pcbi.1008389.g007
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relationship of corresponding stably integrated circuits, more so for multimodal circuits. This

is likely due to various pitfalls in existing analysis methods, the most prominent being the

insufficient treatment of multimodal systems and the lack of conclusive analysis of the under-

lying gene copy number distributions in identifiable cell populations. Our analysis strategy

allows a thorough comparison of input/output relationships from both scenarios and results in

an excellent agreement between them. This will play an important role in gene circuit design

and characterization, as it alleviates the need to generate multiple stable cell lines.

Materials and methods

Cloning

Standard cloning techniques were used to clone all plasmids. We used E. coliDH5a and

DH10B as the cloning strains, cultured in LB Broth Miller Difco (BD; Cat. no. 244610) and

Ampicillin (100ug/ml, Sigma-Aldrich; Cat. no. A0166-5G) as selection medium.

Cell culture and reagents

All experiments were done with HEK 293 cells (Life Technologies) and were grown at 37˚C,

5% CO2 in complete medium (DMEM (Thermo Fischer; Cat no. 11965092) supplemented

with 10% fetal bovine serum (FBS; Sigma-Aldrich; Cat. no. F9665) and 1% Penicillin/Strepto-

mycin (Sigma-Aldrich; Cat. no. P4333)). They were sub-cultured by seeding 106 cells into T75

flasks every 3–4 days.

Transfection

One day prior transfection, cells were passed through a 40um cell strainer (Falcon; Cat. No

352340) and counted with Bio Rad TC10. In each well (uncoated 6-well plates, Thermo Scien-

tific Nunc; Cat. No. 2020–10) 300,000 cells were seeded and incubated for another 24 hours.

On the day of transfection DNA was diluted in 250ul Opti-MEM I Reduced Serum (Gibco,

Life Technologies Cat no. 31985–962) and mixed with a 244ul Opti-MEM I/6ul Lipofectamin

2000 Transfection Reagent (Thermo Fischer; Cat. no. 11668019). After a 20 minutes’ incuba-

tion step at room temperature, the transfection mix was added drop wise to the wells. The cells

were incubated for another 72 hours before being measured by flow cytometry.

Flow cytometry

All samples were measured with a BD LSR Fortessa cell analyzer. The medium was removed

and cells were incubated with 300ul StemPro Accutase Cell Dissociation Reagent (Thermo

Fischer; Cat. no. A1110501) at 37˚C, 5% CO2 for 10 minutes. Reporter specific combinations

were used to measure all four fluorescent proteins independently, but still providing a setup of

little bleed over. In particular, we used for: SBFP2 a 405nm laser with 445/15, Cerulean 445nm

laser with 473/10, Citrine 488nm laser with 542/27, mCherry 561nm laser with 610/20 and

iRFP 640nm laser with 710/50 emission filter sets. We used the same PMTs (FSC: 350, SSC:

350, SBFP2: 220, Cerulean: 242, Citrine: 220, mCherry: 245, iRFP: 460) throughout all mea-

surements and controlled for consistency of the instrument by using SPHERO RainBow Cali-

bration particles (Cat no. 559123, BD).

Co-transfection experiment

We experimentally co-transfected five different fluorescent protein genes (SBFP2 [46], Ceru-

lean [47], Citrine [48], mCherry [49], iRFP [50]; S30 Fig), individually driven by an Ef1a pro-

moter and analyzed them via flow cytometry. The amount of transfected DNA (ng) was
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adjusted according to each plasmid’s size (nominal ratio: SBFP2: Cerulean: Citrine: mCherry:

iRFP = 504: 634: 400: 239: 249). We collected more than 1,000,000 events and stringently gated

the live population (~750,000 cells). This experiment created a five-dimensional distribution

of fluorescent values.

Fan-out gene circuit experiment

We transfected five gene cassettes on individual plasmids as depicted in Fig 2A into HEK293

cells and activated the circuit through the addition of Doxycycline at eight different input

modulation levels (0nM, 0.90nM, 3.15nM, 0.01uM, 0.05uM, 0.13uM, 0.45uM and 1.35uM).

After 72h post-transfection we analyzed the induced cells using flow cytometry and collected

more than 1,000,000 events per replicate (n = 3). The obtained data were subjected to our anal-

ysis pipeline as outlined in section Data Analysis.

Model

Co-transfection model. We generated the model of multiple constitutively expressed

genes using a steady state approximation (Eqs 7 and 21). Once the gene copy number ki and

expression parameter βi are determined, the protein output Oi is computed as described in

S1 Fig.

Circuit models. ODE circuit models were created with Simbiology, a MathWorks

MATLAB 2018b package. Each molecular interaction was modeled according to the law of

mass action (S3 Text "Detailed Models" and parameter values in S2 Table). This includes bind-

ing and unbinding of a transcription factor to inducible promoters, transcription of mRNAs

and translation into proteins. All circuits have the same underlying interaction map. We cre-

ated four different topologies by inactivating the translation reaction of the respective repres-

sor mRNAs. Therefore, we generated in silico "knock outs" with minimal changes to the

model.

Parameters

Expression rate parameters. The vector of global proportionality coefficients β used in

the simulation of constitutive gene co-transfection is a measure for the conversion of gene

copy numbers to the number of proteins. In our circuit models, this coefficient is derived from

expression and degradation rate constants. We adjusted the values of βi according to the maxi-

mum expression levels of our circuit models to obtain similar and biologically feasible

amounts (S1 Table).

In dynamic circuit models, binding/unbinding and transcription rates were either fitted

from experimental data (Manuscript in preparation), literature values, or set arbitrarily at bio-

logically feasible values. The translation rates πi are based on previously-reported values [51]

and were adjusted according to the length of each protein (S3 Text "Detailed Models").

Anticipated gene copy number k�i . In order to compute the values of anticipated gene

copy numbers k�i from Eq 27, we first have to determine the Y1 values. This is done by remov-

ing the top and bottom 0.1 percentile from the in-silico co-transfection and circuit simulations

and binning the obtained data set into equally spaced bins (50 bins for co-transfection simula-

tions; 25 bins for circuit simulations) according to the signal intensity of the transfection

marker (O1). Since the O1 distribution within a bin is just a subset of the global O1 distribution,

we use the median of the log-transformed O1 signal for each bin, which is then identified as Y1

value. Together with the global proportionality coefficient β1 (see above) and the abundance

parameter ai we can compute k�i according to Eq 27 for each bin of the respective data set.
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In-silico flow cytometry simulations

Gene expression noise from lognormal distributions. Within our in-silico simulations,

we introduce gene expression noise through the randomization of kinetic parameters. In the

case of co-transfection simulations we randomize the vector of the proportionality coefficients

b by drawing its individual values from a lognormal distribution LN ðmb; sÞ, with the mean μβ
being their coefficient of proportionality of the respective gene gi (S1 Table) in log-space

mb ¼ lnðbiÞ � s2

2

� �
and the standard deviation σ being one of the six noise levels (0.00, 0.02,

0.04, 0.08, 0.16 or 0.32). In the case of circuit simulations, we introduce variability through the

translation parameter vector p. Likewise, it is drawn from a lognormal distribution LN ðmp; sÞ
with the mean being set according to S2 Table in log-space mp ¼ lnðpiÞ � s2

2

� �
and the standard

deviation being again one of the six noise levels.

Gene expression noise from Γ distributions. Gene expression noise is introduced by

drawing individual values b of the proportionality coefficients from a Γ (gamma) distribution,

Γ(k,θ). We chose the shape parameter k and the scaling parameter θ, so that the mean (βi) and

the variance of the distribution are the same as in the lognormal case. We simulated transient

co-transfections at σ = 0.08.

Gene copy number/extrinsic noise. We introduce extrinsic noise in our transient trans-

fection simulations by drawing gene copy numbers k from a five-dimensional multivariate

normal distribution N Nðμ;ΣÞ. The mean of the distribution, μ = am, depends on the multi-

plicity parameterm, which is drawn from a lognormal distribution

LN ðmm; smÞðmm ¼ 1:4979; sm ¼ 1:2686), and the abundance vector a (equimolar: a1:a2:a3:a4:

a5 = 1.0: 1.0: 1.0: 1.0: 1.0 or nominal: a1:a2:a3:a4:a5 = 1.0: 1.3: 0.8: 0.5: 0.4). For our systematic

comparison of gene copy number distributions (S5 Fig), we draw the multiplicity parameterm
from a Poisson (Pois(λ), λ = 10) and Γ distribution (Γ(k,θ), k = 0.7436, θ = 13.46), respectively.

The covariance S = diag((amε)2) is diagonal matrix and depends on the abundance a, the mul-

tiplicitym and the constant factor ε = 0.04. For every simulated cell, the multivariate distribu-

tion N Nðμ;ΣÞ changes along the lognormal distributionLN ðmm; smÞ and in every iteration

five gene copy numbers are drawn from it.

Single-plasmid simulations. The single-plasmid circuit contains all gene cassettes on a

single entity. We achieve this by setting the constant factor ε to zero. Consequently, the covari-

ance matrix of the five-dimensional multivariate distributions S also turns zero. The remain-

ing simulation is performed as described below in section “Gene circuit simulations”.

Co-transfection simulations. We simulated our simple model independently 5×106

times (C), randomizing both the parameters b and gene copy number k, according to the

description above. Each simulated run corresponds to a single cell and contains a randomized

set of b and k. We simulated the steady-state and the runs were stored in a single .csv-file that

contained all information used to generate the data afterwards. This includes the individual

parameters b and k for every cell as well as the output values. Thus, we obtained a data set that

resembles a transient co-transfection experiment aided by the information of individual

parameters. The simulations were performed in MATLAB 2018b.
1: program: Simulation Transient Co-transfection
2: initialize abundance a, constant factor σe = 0.04
3: for Noise-Level σ in [0.00, 0.02, 0.04, 0.08, 0.16, 0.32]
4: for Cell j in 1:C
5: draw mj from LN ðmm;smÞ, μm = 1.4979 and σm = 1.2686
6: seed and draw kj from N Nðμ;ΣÞ; μ = amj, Σ = diag((amjσe)

2)
7: draw bj from LN ðmb; sÞ, mb ¼ lnðβÞ � s2

2

8: Model: Oj = kjbj
9: end
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10: end
11: save Simulation.csv
12: end program

Gene circuit simulations. In-silico simulations of flow cytometry data for our circuits

requires a mathematical model (ODE) generated by MATLAB’s Simbiology toolbox. The

model was exported into the workspace and to decrease computational effort, we generated a

SimFunction object. This function has five outputs: the number of fluorescent proteins

(SBFP2, Cerulean, Citrine, mCherry) and transcription factor rtTA bound to Doxycycline at

steady state (i.e. 1,500,000s). As the SimFunction’s input serves a matrix wherein each column

represents the gene copy number (k1: pCS187, k2: pCS171, k3: pCS166, k4: pCS200, k5: pZ91),

the Doxycycline level DOX (Z = 12 logarithmically spaced values from 10–500,000 molecules)

and eight translation parameters p, each for every protein O produced. Sets of gene copy num-

bers kj and gene expression noise variations pj were drawn as described above. The simulation

input, output as well as all parameters used for each cell are stored in a table and saved as.csv-
files for documentation and further analysis. The simulations were performed in MATLAB

2018b.
1: program: Simulation Transient Circuits
2: initialize abundance a, constant factor σe = 0.04
3: for Noise-Level σ in [0.00, 0.02, 0.04, 0.08, 0.16, 0.32]
4: for Input-Level l in 1: Z
5: for Cell j in 1: n
6: draw mij from LN ðmm; smÞ, μm = 1.4979 and σm = 1.2686
7: seed and draw klj from N Nðμ;ΣÞ; μ ¼ amlj; Σ ¼ diagððamljseÞ

2
Þ

8: draw plj from LN mp;sð Þ; mp ¼ lnðπÞ � s2

2

9: initialize and simulate SimFunction-Model
10: end
11: end
12: end
13: save Simulation.csv
14: end program

Determine copy numbers for stably integrated gene circuits. We first simulated the

transient transfection data set according to our initial parameters, which we drew from previ-

ous experiences. After binning the data set according to the protein output from our transfec-

tion marker O1, we determined the mode of the gene copy number k1 within each bin. The

other values are derived from k1 according to their abundance coefficients. These values serve

as the gene copy number for stably integrated gene circuits.

Data analysis

Pre-processing of experimental flow cytometry data. Retrieved data from BD LSR For-

tessa was recorded with BD FACS Diva Software. The resulting files were exported in .fcs for-

mat and loaded into FlowJo software [52]. There, compensation of individual fluorescent

channels was performed, live population gated and exported as scaled values into .csv-files.

Bi-exponential transformation. Scaled FACS values were transformed into bi-exponen-

tial space when needed via formulas from Parks et al. [53] with parametersM = 4.5, p = 2,

T = 262144 andW = 0.401:

S X;Wð Þ ¼ T � 10� D 10D � p2 � 10�
D
p þ p2 � 1

� �

where Δ = X−W for X�W and Δ =W−X else.
Gene copy number distributions ki in output peaks. After binning the data set according

to the transfection marker (50 bins in case of the co-transfection simulations, 25 bins in case of
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the circuit simulations), we fit Gaussians to the log-transformed values. We slice a window of

±0.15 log10 units around the mode(s) of the fitted distribution. Within this narrow window,

we repeat the process for the remaining genes (co-transfection case: 1. Cerulean, 2. Citrine, 3.

mCherry, 4. iRFP; circuit case: 1. mCherry, 2. Cerulean or Citrine). Since all parameters

needed for the simulations are stored in an array, we can select all cells within that final slice

and look up the gene copy numbers that were used to generate this subset of output data. The

distributions of the gene copy numbers are then processed to discover their modes.

Peak Finder Algorithm for Flow cytometry (PFAFF). The software is available on

GitHub (https://github.com/benensonlab/PFAFF). The repository contains the code, detailed

S4 Text "PFAFF User Manual", S5 Text "Description of the example data set" and sample simu-

lated data for running the analysis. User-provided data can also be analyzed according to the

steps described in User Manual.

The algorithm’s procedure starts by discarding the tails of the transfection control’s distri-

bution. Within this window (i.e. 2.5–97.5% of transfection control fluorescence intensity) the

distribution is segmented into bins of equal number of events (i.e. ten bins). Each bin is ana-

lyzed sequentially and all values are transformed bi-exponentially. The input distribution (i.e.

mCherry) is approximated by a histogram in bi-exponential space and Gaussians are fitted to

it. A following set of rules determines the number of fitted Gaussians:
1: program Fit Gaussians to mCherry Distribution
2: if Goodness-of-Fit for one Gaussian > 0.975 then
3: save mode value
4: exit
5: else
6: fit two Gaussians
7: if Goodness-of-Fit for two Gaussians > 0.99 then
8: save mode values
9: else
10: fit three Gaussians
11: if distance between two peaks < 0.42 then
12: go back to use two Gaussian fit
13: exit
14: elseif distance (mean closest-modes) to (two-Gaussian-Fit
modes) < 0.3
15: save two-Gaussian-Fit mode and remaining three-Gaussian-
Fit mode
16: end if
17: save mode values
18: end if
19: if distance between the two modes < 0.75 then
20: go back to use one Gaussian fit
21: exit
22: end if
23: end if
24: end program

A window of ±0.1 bi-exponential units is sliced around the peaks’ center. Within that subset

of cells, distributions of the output colors (i.e. Cerulean and Citrine) are again approximated

by histograms. Much like before a set of rules determines the number of Gaussians that are fit-

ted to these distributions:
1: program Fit Gaussians to Cerulean or Citrine Distribution
2: if Goodness-of-Fit for one Gaussian > 0.975 then
3: save mode value
4: exit
5: else
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6: fit two Gaussians
7: if Goodness-of-Fit for two Gaussians > 0.995 then
8: save mode values
9: else
10: fit three Gaussians
11: if distance between peaks with highest intensities < 0.9
then
12: remove remaining peak from the data set
13: fit one Gaussian for the highest peak
14: if Goodness-of-Fit > = Goodness-of-Fit for two Gaussians
then
15: save mode values
16: else
17: save mode values of two Gaussian-Fit
18: end if
19: if distance between the two modes < 0.75 then
20: go back to use one Gaussian fit
21: exit
22: end if
23: end if
24: end program

For each bin, we repeat this fitting procedure. All extracted modes are re-transformed into

flow cytometry units and stored in a table. The output of this algorithm is saved as MATLAB

workspaces, that contain variables for generating (weighted) input/output mappings. Further-

more, various plots are generated (density plots of (raw) data, individual fits to data distribu-

tions, weighted input/output mappings and weighted mean input/output mappings) and

saved as individual files in the result folder (see provided manual for details).
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(TIF)
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S21 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.00.

(TIF)

S22 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.02.

(TIF)

S23 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.04.

(TIF)

S24 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.08.

(TIF)

S25 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.16.

(TIF)

S26 Fig. In-silico simulation of stably integrated and transiently transfected (PFAFF

input/output) circuits (I1-FFL1 and I1-FFL2) at intrinsic noise level 0.32.

(TIF)

S27 Fig. Results of PFAFF analysis on simulated cFFL flow cytometry data sets.

(TIF)

S28 Fig. Results of PFAFF analysis on simulated negFB flow cytometry data sets.

(TIF)

S29 Fig. Results of PFAFF analysis on simulated posFB flow cytometry data sets.

(TIF)

S30 Fig. Maps of plasmids used in co-transfection experiment.

(TIF)

S31 Fig. (Quasi) steady states of a fan-out circuit at different protein degradation rates.

(TIF)

S1 Table. Model parameter values for co-transfection simulations.

(DOCX)

S2 Table. Model parameter values for tested circuit architectures (RIFFM, I1-FFL1/2, FO,

cFFL, negFB, posFB).

(DOCX)

S3 Table. List of plasmids.

(DOCX)

S4 Table. List of primers.

(DOCX)

S5 Table. Model parameter values for simple fan-out circuit.

(DOCX)
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