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A(H1N1) strains of Influenzavirus were responsible for 2 pandemics in the last 100 years. Because infections experi-
enced early in life may have a long-lasting influence on future immune response against other influenza strains, we drew
on previously collected seroincidence data from Singapore (n = 2,554; June–October 2009) to investigate whether the
1918 pandemic influenza virus and its early descendants produced an age-related signature in immune responses
against theA/California/7/2009(H1N1)pdm09 virus of 2009. Hemagglutination inhibition assays revealed a J-shaped rela-
tionship; the oldest birth cohort (born in 1911–1926) had the highest titers, followed by the youngest (born in 1987–1992).
Differential response by vaccination history was also observed, with seasonal influenza vaccine being associated with
higher titers mainly in the oldest birth cohort. On the assumption that antibody titers are a correlate of protection, structural
equation modeling predicted that a titer-mediated effect by the vaccine could, on its own, account for a negative associa-
tion with seroconversion equivalent to a risk reduction of 23% (relative risk = 0.77, 95% confidence interval: 0.60, 0.99)
in the oldest birth cohort. A subset of 503 samples tested against the A/Brisbane/59/2007(H1N1) and A/Puerto Rico/8/
1934(H1N1) strains also revealed different age-related antibody profiles. The effectiveness of seasonal influenza vac-
cines against future pandemic strains could thus be age-dependent and related to early-life exposures.

antibodies; cell-mediated immunity; cohort studies; cross-protection; influenza; serology; surveillance; vaccines

Abbreviations: CI, confidence interval; GMT, geometric mean titer; HI, hemagglutination inhibition; LTCF, long-term care facilities;
RR, relative risk; SEM, structural equation model.

A(H1N1) subtypes of Influenzavirus were responsible for 2
of the 4 naturally occurring influenza A pandemics in the last
100 years. The influenza A(H1N1) pandemic of 1918 was
associated with widespread mortality (1, 2) several orders of
magnitude worse than that of seasonal influenza. Conversely,
the influenza A(H1N1)pdm09 pandemic that occurred in 2009
had an impact not dissimilar to that of seasonal influenza epi-
demics (3). However, both pandemics were associated with an
age-related pattern of morbidity and mortality that differed
from seasonal influenza (3, 4), with the elderly being relatively
protected as compared with adults in younger age groups.

Differences in age-related morbidity and mortality between
seasonal and pandemic influenza may be due to differential
exposures to related influenza viruses (5). Indeed, while vastly
different in severity, the influenza A(H1N1)pdm09 virus of

2009 bore antigenic similarities to the virus that caused the
1918 pandemic (6). If so, it would be interesting to explore
whether survivors of the 1918 influenza pandemic, and those
exposed to early descendants of the 1918 virus, differed from
younger persons in their immune response to the influenza
A(H1N1)pdm09 virus of 2009. Indeed, there were indications
of age-related differences in the levels of cross-neutralizing
antibodies to influenza A(H1N1)pdm09 among individuals.
However, data on the role of pre-2009 seasonal influenza vac-
cine in accounting for this were equivocal (7). Estimates of
the effectiveness of seasonal influenza vaccine against influenza
A(H1N1)pdm09 have also been highly variable. Some studies
demonstrated weak protection (8), while others found that vacci-
nation increased the risk of symptomatic infections (9, 10).
One age-stratified analysis suggested nonsignificant protection in
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older age groups (11). However, the small numbers of older per-
sons and the age cutoff point (of ≥50 years) in that study did not
permit more detailed assessment of whether this could be attri-
buted to differential responses to the vaccine in birth cohorts
exposed to the 1918 influenza A(H1N1) virus and its early
descendants.

In this study, we investigated age-related differences in anti-
body levels against influenza A(H1N1)pdm09 and the associa-
tion of the seasonal influenza vaccine with antibody titers and
risk of seroconversion.We used a structural equation modeling
framework to assess whether age-related differences in the vac-
cine’s association with titers could cause age-related differ-
ences in vaccine effectiveness. In the Discussion we suggest
how this approach could, in the future, be used to predict the
age-specific effectiveness of a seasonal influenza vaccine against
the emergence of a new pandemic virus. Finally, we discuss
whether the age-related signatures identified in our data are
more compatible with exposure to influenza A(H1N1) viruses
associated with the 1918 pandemic or whether they generally
represent early-childhood exposures to influenza A(H1N1)
viruses, given that influenza A(H1N1) viruses were reintro-
duced into the human population (following an absence of
about 20 years starting from the late 1950s) in 1977 (12) and
were circulating in the human population just before the 2009
pandemic.

METHODS

Study populations and design

Wedrew on samples and data from our previous study inves-
tigating influenza A(H1N1)pdm09 transmission in a commu-
nity cohort, military personnel, and staff and residents of 2
long-term care facilities (LTCFs) in Singapore (June 22, 2009–
October 15, 2009) (13). We also included 2 additional LTCFs
for which data were unavailable at the time of (and hence not re-
ported in) the original study, to increase the number of elderly
persons for analysis.

The study design involved measuring antibody levels by
means of hemagglutination inhibition (HI) assays to influ-
enza A(H1N1)pdm09 in a “baseline” sample (i.e., the earliest
available sample for each participant) and up to 2 follow-up
samples (Figure 1). In the community cohort, baseline sam-
ples were predominantly archived sera collected before the first
appearance of the pandemic influenza strain in Singapore in
late May 2009 (14). Other baseline samples were taken after
local transmission had been detected but before widespread
epidemic activity, and were assumed to reflect preexisting anti-
body titers in the respective populations. The intraepidemic
sample (community and military cohorts) was taken from mid-
August 2009, and the postepidemic sample was taken from late
September 2009 (all groups). Seroconversion (i.e., ≥4-fold
increase in titers to A/California/7/2009(H1N1)pdm09 between
any pair of samples) was taken as evidence of serological infec-
tion during the influenza A(H1N1)pdm09 epidemic, with the
change in titers between these samples being used to infer the
“survival time” contributed by a given individual.

We considered the 6 weeks on either side of August 1, 2009
(when the epidemic peaked) to be the at-risk period (June 20,
2009–September 12, 2009). These time points coincided with

early reports of community-based transmission and the week in
which the incidence of influenza-like illness fell to less than
10% of all acute respiratory illness consultations, respectively
(15, 16). Participants contributed time starting from their
respective start dates, defined as the baseline sample date
or June 20, 2009 (whichever was later). However, since the exact
timing of infection was unknown, we imputed “survival time”
on the basis of when seroconversion occurred (see Figure 1B).

Specimen collection and processing and laboratory
methods

HI assays were performed according to standard protocols
at the World Health Organization Collaborating Centre for
Reference and Research on Influenza inMelbourne, Victoria,
Australia (17) as previously described (13). All samples were
tested against A/California/7/2009(H1N1)pdm09 pandemic
virus. Baseline samples from LTCF staff and residents (which
had the broadest age distribution among samples) were also
tested against A/Brisbane/59/2007(H1N1), the last A(H1N1)
strain used in seasonal vaccine formulations before mid-2009,
and A/Puerto Rico/8/1934(H1N1), a historical A(H1N1) strain.
Titers are expressed as the reciprocal of the highest dilution at
which hemagglutination was prevented.

Outcomes and exposures of interest

The study had 2 key outcomes of interest: HI titers in baseline
samples and seroconversion toA/California/7/2009(H1N1)pdm09.
The primary exposures of interest were birth cohort and his-
tory of influenza vaccination, and the interaction between these
2 factors. We based birth cohort on the participant’s birth year,
in approximately 10-year bands, starting from 1911 (oldest par-
ticipant) to 1926, followed by 1927–1936, and ending with the
youngest participants, born in 1987–1992. Influenza vaccina-
tion history was based on self-reported receipt of vaccine up
to 1 year before June 30, 2009 (and supplemented with institu-
tional vaccination records in LTCF residents). Where vaccina-
tion history could not be reliably ascertained, participants were
assumed not to have had influenza vaccination in the past year.
A small number of community cohort participants had baseline
samples banked before their most recent vaccination and thus
were excluded from our analyses. In addition, samples banked
before January 1, 2009, were omitted from analyses of the associ-
ation between HI titers and vaccination history, since titers can
decline substantially 6months after vaccination (18).

Besides sex and study cohort, we also adjusted for several
potential confounders. LTCF and military participants were re-
cruited at the facility and unit levels, and a subgroup identifier
in conjunctionwith a latent variablewas used tomodel the degree
of clustering of observations within facilities and units. Addition-
ally, because seasonal influenza vaccination was bundled with
other outbreak mitigation measures in “essential” and “health-
care” military units (19), a binary variable was used to distin-
guish “essential”/“health-care” units from “normal” units.

Statistical methods

To investigate age-related signatures in immune profiles, we
performed visualization of key outcome variables by birth cohort
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and vaccination history, presenting geometric mean titers (GMTs)
and the proportion of baseline samples with HI titers above a par-
ticular cutoff point and the proportions which seroconverted
by baseline sample titer and birth cohort (see Web Appendix 1,
available at https://academic.oup.com/aje).

Since HI titers potentially mediate protection (20), if a greater
proportion of vaccinated persons had higher titers, vaccinated
persons would experience a relative risk (RR) of infection that
was decreased relative to nonvaccinated persons (“titer-
mediated” RRM; Web Appendix 2, Web Figure 1). However,
a vaccine may cause an additional “titer-independent” effect
that further reduces the risk equally among vaccinated persons
with different antibody titers (RRI), and the “combined effect”

(RRC) may thus be stronger. However, in observational studies,
potential confoundersmust be considered. For instance, age affects
risk of infection but is also associated with vaccine uptake and dif-
ferent antibody titer distributions.

A structural equationmodel (SEM)with 2 halves was hence
used to investigate the relationship between the vaccine and
risk of seroconversion while adjusting for potential confound-
ers (Web Appendix 2, Web Figure 2). Firstly, we grouped ti-
ters into 3 categories (<10, 10, and ≥20) and used ordinal
logistic regression to estimate the vaccine’s association with
titers (β )V

T . The second half of the SEM investigated the asso-
ciation of titers (titers of 10 and≥20 vs.<10 asβT

S
1
andβT

S
2
, re-
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S with the risk of seroconversion

471 334

218 77 208 250 163

958 255 151 535 222 10 1 261 515

10 23 282 339 595 94

0.0

0.5

1.0

1.5

2.0

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

N
o

. o
f In

flu
e

n
z
a

 C
a

s
e

s

p
e

r G
P

 p
e

r D
a

y

Period

Community

Military

  personnel

Long-term

  care facilities

A)
Study Group

1 2

Epidemiologic Week in 2009

B)
Permutation

1

2

3a

3b

4

5a

5b Did not seroconvert; had postepidemic sample
but intraepidemic sample was missing

Did not seroconvert; missing postepidemic
sample

Did not seroconvert; had intraepidemic and
postepidemic samples

Between the intraepidemic and postepidemic
samples

Between the baseline and postepidemic
samples, where the intraepidemic sample was
missing

Between the baseline and postepidemic
samples, but did not seroconvert between the
baseline and intraepidemic samples

Timing of Seroconversion
Baseline or

June 20, 2009

Intraepidemic 

Sample

Postepidemic or 

September 12, 2009

Between the baseline and intraepidemic
samples, regardless of the postepidemic
sample results

∆

X ∆

∆O

∆X

OX

X

O X

X

Figure 1. Timing of the collection of blood samples relative to the epidemic of influenza A(H1N1)pdm09 in 2009 (A) and imputation of survival
time (B), Singapore, 2009. In part A, baseline (green), intraepidemic (blue), and postepidemic (yellow) samples taken from the community cohort,
military personnel, and staff/residents of long-term care facilities (LTCF) are shown relative to influenza A(H1N1)pdm09 activity, represented by the
sentinel surveillance cases (black line). No intraepidemic sample was collected from the LTCF cohort. The heights of the colored boxes denote
the number of samples collected during a specific time period or epidemiologic week in 2009 (between June 14, 2009, and October 31, 2009). The
gray shaded area represents the period which contributed survival time to the failure time regression model. Periods 1 and 2 denote samples col-
lected between the years 2005 and 2008 and between January 1, 2009, and June 13, 2009, respectively. In part B, survival time is determined by
the changes in the hemagglutination inhibition antibody titers between any 2 samples, with seroconversion defined as ≥4-fold increased titers to A/
California/7/2009(H1N1)pdm09, the marker X denoting the absence of seroconversion, the marker O denoting either missing intraepidemic sam-
ples or missing postepidemic samples, themarkerΔ denoting seroconversion, and the respective time points being represented as a single vertical
line. GP, general practitioner.
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through failure time regression. Multiplying βT
S
1
and βT

S
2
by the

proportion in each titer category according to vaccination his-
tory then gives the respective risk by vaccination history. This
allows estimation of the titer-mediated effects (Web Appendix
2; Web Table 1, equations 1 and 2) and, together with the vac-
cine’s titer-independent effect, βV

S , the combined effect of the
vaccine in protecting against seroconversion. We also present
a “titer-unadjusted” estimate of the vaccine’s association with
seroconversion, where the term for titers is omitted. This re-
flects what studies on vaccine effectiveness that did not mea-
sure HI titers might observe. The above analyses were repeated
with and without incorporating terms for interaction between
vaccination history and birth cohort (as a categorical variable),
with stratum-specific coefficients for the relationship between
vaccination and seroconversion presented where appropriate.

We also performed structural equation modeling on a syn-
thetic data set (a simplified representation of our actual data;
Web Appendix 3, Web Table 2) to assist in the interpretation
of our findings. All statistical analyses were performed in Stata
15 (StataCorp LLC, College Station, Texas), with P < 0.05 as
the cutoff for statistical significance.

RESULTS

The study included 838, 1,213, 211, and 292 participants from
the community, military personnel, LTCF staff, and LTCF resi-
dents, respectively (Table 1). Sample collection was completed
by June 27, 2009, and July 1, 2009, for the community and
military cohorts, respectively, and by July 28, 2009, for LTCF
staff and residents. In the community cohort, only 367 (43.8%)
samples postdated January 1, 2009, and 37 participants reported
vaccination after the date of sample collection. Adults born after
1936 were reasonably represented in the community cohort,
while military personnel were mostly young males, and LTCF
staff were working-age adults. LTCF residents included sev-
eral younger adults from a home for destitute persons, but 269
of 292 (92.1%) had been born before 1957. Only 47 (5.6%)
community cohort participants reported receiving seasonal
influenza vaccine, while other groups included a fair mix
by vaccination history (42.6% (517/1,213) in military per-
sonnel, 42.2% (89/211) in LTCF staff, and 68.5% (200/
292) in LTCF residents). However, vaccine uptake varied
widely between military units, being 7.4% (35/472) in “normal”
units and 64.0% (362/566) and 68.6% (120/175) in “essential”
and “health-care” units, respectively. The risk of seroconversion
was 13.5% (98/727) in the community cohort, 29.4% (312/
1,060) in military personnel, and 4.2% (7/168) and 4.5% (11/
245) among LTCF staff and LTCF residents, respectively.

Figure 2A shows that most participants (79.0%) had
no detectable antibodies (titers <10) to A/California/07/
2009(H1N1)pdm09. The proportion with titers ≥10 was sig-
nificantly higher in participants who reported vaccination
than in those who did not (25.2% and 18.3%, respectively;
P < 0.001), and likewise for titers ≥20 (15.5% and 12.2%,
respectively; P = 0.029), but not so for titers ≥40 (9.0% and
7.1%, respectively; P = 0.129). Figure 2B suggests an inverse
relationship between HI titer and risk of infection, regardless
of vaccination history. GMTs by agewere J-shaped, being low-
est in the 1957–1966 and 1967–1976 birth cohorts and highest

in those born before 1927 (Figure 2C). While differences in
GMTs by vaccination history varied from 1.0- to 1.1-fold in
younger birth cohorts, this difference was 1.4-fold in persons
born before 1937. Persons born from 1911 to 1926 also had the
greatest difference in antibody prevalence at titers≥10 (Figure 2D;
33.5% vs. 58% in other age groups) and≥20 (Figure 2E; 20.6%
vs. 2.5%) by vaccination history, although not so for titers≥40
(not shown). After excluding military participants, the risk of
seroconversion (Figure 2F) was similar by vaccination his-
tory across the younger birth cohorts. Among persons born
in 1911–1926, vaccinated participants were less likely to be
infected than nonvaccinated participants, but the overall num-
ber of infectionswas very small, and this difference was not statis-
tically significant (3.3% and 12.5%, respectively;P = 0.230).

When using ordinal logistic regression to model HI titers
while adjusting for birth cohort and other factors (Web Appen-
dix 4,Web Figure 3), the J-shaped relationship persisted (model
A in Table 2). Beta coefficients for titers (βT) were highest in the
oldest birth cohort, born in 1911–1926 (compared with the
youngest cohort, βT = 0.89, 95% confidence interval (CI):
−0.16, 1.94;P = 0.098), followed by the second-oldest cohort
and then the youngest birth cohort (1987–1992). Persons who
reported vaccination had a significantly higher beta coefficient
(βT= 0.60, 95%CI: 0.32, 0.88; P < 0.001) than those who did
not. The only other significant association was study group (LTCF
staff and residents lower than community participants).

Comparedwith the youngest birth cohort, all other age groups
had a reduced risk of seroconversion (model B in Table 2). Mili-
tary personnel were at increased risk comparedwith the commu-
nity cohort. Being from essential and health-care units in the
military was protective. Adjustment for baseline titers through
model C did not substantively change the associations. How-
ever, having titers of 10 (RR = 0.89, 95% CI: 0.62, 1.28; P =
0.521) and ≥20 (RR = 0.42, 95% CI: 0.29, 0.60; P < 0.001)
was nonsignificantly and significantly associatedwith decreased
risk of infection, respectively. Vaccination history showed little
associationwith risk of infection.

The diamonds in Figure 3 show the association between
vaccination and risk of infection by birth cohort, unadjusted
for titers. While the titer-adjusted estimates were associated
with an increased risk of seroconversion in all participants
except the oldest and youngest birth cohorts, the relative risks
had wide confidence intervals overlapping with 1. However,
the titer-mediated estimate was associated with reduced risk
of infection across the age groups, which in the oldest group
(RR = 0.77, 95% CI: 0.60, 0.99) had a confidence interval
below 1. The vaccine’s titer-independent effect (without strati-
fying by birth cohort; Table 2, model C) wasweakly protective.
This, combined with the birth-cohort–stratified titer-mediated
effect, strengthened the protection associated with vaccination
(e.g., in the oldest birth cohort, RR= 0.74, 95% CI: 0.50, 1.09)
but resulted in wider confidence intervals overlapping with 1.
An analysis in which the vaccine’s titer-independent effect was
allowed to vary by birth cohort had even wider confidence in-
tervals (Web Appendix 5,Web Figure 4).

Analysis of the LTCF group’s baseline samples (usingwider
20-year birth cohort intervals) showed HI titer profiles distinct
from those for the A/California/7/2009(H1N1)pdm09 strain.
The GMT against A/Brisbane/59/2007(H1N1) was highest in
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the youngest birth cohort (1976–1989; Figure 4A) and lower
in other birth cohorts. The vaccine was associated with a
difference in GMTs that was greatest in the oldest birth cohort
(1911–1936; 2.4-fold, 95% CI: 1.7, 3.4) and smallest in those
born in 1957–1976 (1.5-fold, 95% CI: 0.9, 2.4). For A/Puerto
Rico/8/1934(H1N1) (Figure 4B), GMTs increased in persons
born before 1950 and were highest in the oldest birth cohort
(1911–1936). The difference in GMT by vaccination history

was widest in the 2 oldest birth cohorts (1.4-fold in those born
in 1911–1936 and 1937–1956 vs. 1.2-fold in other birth cohorts).

DISCUSSION

Our study corroborates how early-life exposures—in this
case, exposure to the 1918 influenza A(H1N1) virus and its

Table 1. Demographic Characteristics, History of Vaccination, and Serological Evidence of Infection Among Participants in a Study of Influenza
A Immunity, Singapore, 2009

Characteristic

Participant Group

Community
Membersa

(n = 838)

Military
Personnelb

(n = 1,213)

LTCF Staffc

(n = 211)
LTCFResidentsd

(n = 292)
All Participants

(n = 2,554)

No. % No. % No. % No. % No. %

Timing of blood sample
collection

Baseline sample June 29, 2005–June
27, 2009

June 22, 2005–
July 1, 2009

July 16, 2005–July
28, 2009

July 16, 2005–
July 28, 2009

June 29, 2005–
July 28, 2009

Intraepidemic sample August 20, 2009–
August 29, 2009

August 20, 2009–
September 14,
2009

N/Ae N/A August 20, 2009–
September 14,
2009

Postepidemic sample October 6, 2009–
October 11, 2009

September 30,
2009–October
9, 2009

October 5, 2009–
October 30, 2009

October 5, 2009–
October 30,
2009

September 30,
2009–October
30, 2009

No. of blood samples tested

Baseline sample 838 100 1,213 100 211 100 292 100 2,554 100

Intraepidemic sample 621 74.1 919 75.8 N/A N/A N/A N/A 1,540 60.3

Postepidemic sample 689 82.2 776 64 168 79.6 245 83.9 1,878 73.5

At least 2 samples 727 86.8 1,060 87.4 168 79.6 245 83.9 2,200 86.1

Birth cohort

1911–1926 N/A N/A N/A N/A N/A N/A 52 17.8 52 2

1927–1936 4 0.5 N/A N/A N/A N/A 88 30.1 92 3.6

1937–1946 27 3.2 N/A N/A 3 1.4 91 31.2 121 4.7

1947–1956 153 18.3 15 1.2 14 6.6 38 13 220 8.6

1957–1966 289 34.5 22 1.8 18 8.5 18 6.2 347 13.6

1967–1976 185 22.1 43 3.5 58 27.5 4 1.4 290 11.4

1977–1986 156 18.6 229 18.9 98 46.4 1 0.3 484 19

1987–1992 24 2.9 904 74.5 20 9.5 N/A N/A 948 37.1

Male sex 353 42.1 1,175 96.9 57 27 182 62.3 1,767 69.2

Receipt of influenza vaccine

No/not known 791 94.4 696 57.4 122 57.8 92 31.5 1,701 66.6

Yes 47 5.6 517 42.6 89 42.2 200 68.5 853 33.4

Seroconversionf 98 13.5 312 29.4 7 4.2 11 4.5 428 19.5

Abbreviations: LTCF, long-term care facilities; N/A, not applicable.
a Of the baseline samples, 33 (4.0%) were purposively collected for the study; 367 (43.8%) postdated January 1, 2009, with 12 of these partici-

pants (1.4%) receiving seasonal influenza vaccine after sample collection.
b Recruited from 15 military units, with 5 normal units contributing 472 personnel (38.9%), 5 essential units contributing 566 personnel (46.7%),

and 5 health-care units contributing 175 personnel (14.4%).
c Included 24 (11.4%), 116 (55.0%), 35 (16.6%), and 36 (17.1%) staff from LTCF A, B, C, and D, respectively; facilities A and B were part of our

previous study (13).
d Included 68 (23.3%), 92 (31.5%), 42 (14.4%), and 90 (30.8%) residents from LTCFA, B, C, and D, respectively.
e No samples were collected.
f As a proportion of all participants who provided at least 2 samples.
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early descendants—may have profound and long-lasting im-
plications for subsequent immune response to other influenza
A(H1N1) strains. We observed a J-shaped relationship, with
the 2 oldest birth cohorts (1911–1926 and 1927–1936) having
the highest antibody titers, followed by the youngest (1987–1992).
Titers to the A/California/7/2009(H1N1)pdm09 strain were
1.1-fold higher in participants who reported receiving a sea-
sonal influenza vaccine containing an antigenically distant
influenza A(H1N1) strain than in those who did not. How-
ever, titers were 1.4-fold higher in persons born nearest to
the advent of the 1918 influenza pandemic. This potentially
could have produced age-related differences in vaccine effec-
tiveness, by mediating some protection in the oldest birth
cohorts. However, the small number of infections among
those born before 1937 and other limitations in our data set
make it difficult to verify whether the vaccine was truly

effective in those groups. Finally, in the LTCF subset of baseline
samples, the HI titer profiles by birth cohort against 2 other influ-
enza A(H1N1) strains from different time periods differed sub-
stantially from each other and from that observed for A/California/
7/2009(H1N1)pdm09.

Other investigators have previously demonstrated a high
prevalence of cross-reactive antibodies to the A/California/7/
2009(H1N1)pdm09 strain in older populations (7, 21, 22).
However, Hancock et al. (7) reported that receipt of the sea-
sonal influenza vaccine did not result in a substantial increase in
cross-reactive antibodies to A/California/7/2009(H1N1)pdm09
among adults aged 60 years or more, nor did that age group
exhibit a greater cross-reactive response than younger age groups.
One possible explanation for the discrepant findings between
their study and ours is our reliance on cross-sectional samples
and self-reported vaccination history (while their study drew
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Figure 2. Hemagglutination inhibition (HI) titers for influenza A(H1N1)pdm09 and seroconversion in serum samples collected in Singapore, 2009.
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on sera previously used for testing vaccine formulations, which
would bemore robust).

However, an alternative explanationmay lie in the age groups
analyzed. While Hancock et al. grouped persons aged 60 years
and above, we observed that age-related differences for the
association of the vaccine with titers were only apparent in
cohorts born before 1937. Analyzing our data by age suggests
that an increased response to the vaccine may only occur in
persons aged 70 years or older. For instance, the differences
in GMTs by vaccination history were 1.0-fold, 1.3-fold, and
1.4-fold for those aged 60–69, 70–79, and ≥80 years, respec-
tively. Interestingly, mouse model and epitope modeling work
suggests that both the 1934 A/Puerto Rico/8/34(H1N1) strain
and the 1947A/FortMonmouth/1/47(H1N1) strain had greater
potential than the 1957 A/Denver/1/57(H1N1) strain to gener-
ate cross-reactive antibodies to the 2009 pandemic virus (23).
Since initial exposure to influenza mostly occurs between 2
and 4 years of age (24), those whose earliest exposure was to A/
Fort Monmouth/1/47(H1N1) and earlier strains would have been
in their mid-60s or older in mid-2009. Age-related differences

were even more pronounced in the subset of samples tested
against 1934 A/Puerto Rico/8/34(H1N1). There was an appar-
ent peak in antibody titers for persons born around 1930, with
the peak difference by vaccination history also being around that
point (Figure 4B).

Taken together, our observations provide support for how
the 1918 pandemic influenza A(H1N1) strain and its early de-
scendantsmay have influenced the immune response of the older
generation and consequently the epidemiology of subsequent
influenza A(H1N1) viruses. This is in line with the “original
antigenic sin” hypothesis (25), particularly the refinement pro-
posed by Lessler et al. (26), which they termed “antigenic
seniority.” Although the study by Lessler et al. was based on
serological data on influenza A(H3N2) (26), our data support
their hypothesis that subsequent repeat exposures are interact-
ing with the immune memory to elicit higher antibody titers to
“more senior” strains.While Lessler et al.’s work did not address
the potential role of vaccination in eliciting such a response,
our data suggest that influenza vaccine formulations contain-
ing an antigenically distant strain may boost antibody levels, but

Table 2. Results From an Ordinal Logistic Regression Model of Factors AssociatedWith Baseline Hemagglutination Inhibition Titers to
A/California/7/2009(H1N1)pdm09 (Model A) andWith Serological Infection Before (Model B) and After (Model C) Adjustment for Baseline Titers,
Singapore, 2009

Characteristic

Model

Model A: Ordinal Logistic
RegressionModel of

AssociationsWith HI Titers in
Baseline Samplea

AssociationWith Seroconversion

Model B: Exclusion of
Baseline Titersa

Model C: Inclusion of
Baseline Titersa

βT 95%CI P Value RR 95%CI P Value RR 95%CI P Value

Birth cohort (vs. 1987–1992)

1911–1926 0.89 −0.16, 1.94 0.098 0.39 0.08, 1.82 0.229 0.43 0.09, 2.04 0.288

1927–1936 0.15 −0.85, 1.16 0.763 0.15 0.03, 0.83 0.029 0.16 0.03, 0.87 0.034

1937–1946 −0.56 −1.57, 0.45 0.275 0.17 0.05, 0.58 0.005 0.16 0.04, 0.56 0.004

1947–1956 −0.72 −1.45, 0.00 0.051 0.33 0.17, 0.64 0.001 0.3 0.15, 0.60 0.001

1957–1966 −1.23 −1.85,−0.60 <0.001 0.54 0.33, 0.90 0.018 0.51 0.30, 0.86 0.011

1967–1976 −0.99 −1.54,−0.44 <0.001 0.46 0.27, 0.80 0.006 0.39 0.22, 0.69 0.001

1977–1986 −0.52 −0.87,−0.18 0.003 0.63 0.43, 0.94 0.022 0.61 0.41, 0.90 0.014

Female sex (vs. male) −0.28 −0.65, 0.08 0.127 0.85 0.59, 1.21 0.355 0.9 0.62, 1.31 0.589

Study group (vs. community members)

Military personnel −0.23 −0.74, 0.28 0.378 2.08 0.93, 4.64 0.073 2.29 0.95, 5.53 0.066

LTCF staff and residents −0.58 −1.13,−0.03 0.039 0.45 0.16, 1.26 0.127 0.48 0.16, 1.43 0.187

Essential or health-care military unit (vs. normal) −0.30 −0.63, 0.04 0.080 0.39 0.25, 0.62 <0.001 0.41 0.25, 0.66 <0.001

LTCF resident (vs. LTCF staff) −0.06 −0.99, 0.87 0.896 2.12 0.61, 7.40 0.239 2.18 0.62, 7.60 0.223

Receipt of seasonal influenza vaccine
(vs. no/unknown)

0.6 0.32, 0.88 <0.001 1.04 0.78, 1.39 0.792 0.96 0.71, 1.30 0.787

Baseline HI titer (vs.<10)

10 0.89 0.62, 1.28 0.521

≥20 0.42 0.29, 0.60 <0.001

Abbreviations: CI, confidence interval; LTCF, long-term care facilities; RR, relative risk.
a For illustration of the main effects, the above models exclude the terms for interaction between influenza vaccine and age group. Coefficients

for the cutpoints in the ordinal logistic regression model were 0.56 (95% CI: −0.84, 1.22) and 1.12 (95% CI: −0.29, 1.77). P values for the term for
clustering of observations within military units/LTCFs were 1.000, 0.027, and 0.012 for models A, B, and C, respectively.

Am J Epidemiol. 2018;187(12):2530–2540

Legacy of the 1918 Pandemic in Influenza A Immunity 2537



only in age groups previously primedwith an antigenically simi-
lar virus (27, 28). The key question, then, iswhether such responses
also correlate with protection.

In our titer-unadjusted estimates, the vaccine was associated
with a nonsignificant reduction in risk of seroconversion in the
oldest birth cohort. However, the confidence intervals were
wide, and we could not adequately adjust for potential con-
founders, such as membership in LTCF with differences in
the risk of exposure to the virus. The finding that adjusting for
antibody levels did not substantively change the association of
the vaccine with seroconversionwas also somewhat surprising.
To investigate further, we generated synthetic data simulating
a titer-mediated effect similar to what we estimated (Web
Appendices 3, 4, and 6; Web Table 2) with varying levels of
titer-independent effects (WebAppendix 6,Web Figures 5–7).
Briefly, the conclusions were that, at the sample size for the

oldest birth cohort available to us, it would not have been pos-
sible to accurately estimate age-stratified titer-independent and
titer-unadjusted effects conferred by the vaccine. On the other
hand, the SEM approach correctly estimated the level of age-
stratified titer-mediated effect that was simulated.

Were the SEM to be used in a predictive manner, then on
the basis of the titer-mediated effect alone, we anticipate that
the vaccine would confer negligible protection in younger age
groups but would be protective in the oldest birth cohort and
equivalent to a vaccine effectiveness of about 23% (1 – RR).
Such an effect size could be of public health relevance in a
severe pandemic but might be challenging to estimate reliably
without large sample sizes, particularly in birth cohorts where
infection rates are low. However, it must be acknowledged
that our prediction of the titer-mediated effect was affected
by how the SEMmodeled titer distributions. The ordinal logistic
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regression model grouping titers of ≥20 produced a reason-
able fit to the observed distribution of titers (Web Appendix
4, Web Figure 3). However, using more categories or linear
regression to model titers would have produced more strongly
protective estimates for the titer-mediated effect in the oldest
birth cohort (data not shown).

However, the degree to which HI titers mediate protection
may not be the point here. There has been other evidence
suggesting that both the incidence of infection and the sever-
ity of the 2009 influenza pandemic virus were lower in older
age groups than in younger adults (29, 30). Potentialmediators not
accounted for here include memory B-cell and memory T-
cell responses. These cells could have been primed to respond
in older adults by exposure to past influenza A(H1N1) viruses
descended from the 1918 pandemic virus (31, 32). Therefore,
age-related differences in antibody levels and in the relationship
between the vaccine and antibody titers are potentially an
imperfect but still useful proxy for other mechanisms that also
mediate protection. They point us to birth cohorts in which a
seasonal influenza vaccine may be beneficial in the event of a
subsequent influenza A pandemic.

We have already highlighted several limitations of the current
study (the reliability of vaccination history and the low number
of infections in some subgroups). In addition, antibody titers
can wane substantially (18, 33, 34) over the time frame of
about 6 months to 1 year. While we limited assessment of
seroconversion to a 12-week period, we did not account for
differences in the time from vaccination to antibody measure-
ment, which could have compromised estimates of the corre-
lation between vaccination and baseline titers, and in turn
biased downwards the titer-mediated effect of the vaccine via
baseline titers. Additionally, instead of different cohorts,
we would ideally have used a large reasonably representative
community-based cohort with key age groups and freshly
collected (instead of banked) samples. Moreover, a ceiling
effect could have prevented us from detecting seroconversion
in persons with higher baseline antibody titers (35). We thus
compared baseline titer distributions in a set of virologically
determined infections (36) with those in nonseroconverting,
asymptomatic participants from our community cohort. The
resulting estimates for titer-mediated protection against infec-
tion were not dissimilar to those presented in Table 2 and
Web Tables 3 and 4 (Web Appendices 7 and 8).

In conclusion, our data show how the influenza pandemic
virus of 1918 and its early descendants potentially affected
birth-cohort–related immune profiles and responses to a sea-
sonal influenza vaccine formulation administered during the
2009 influenza A(H1N1) pandemic. While survivors of the
original 1918 pandemic virus are unlikely to be a consider-
ation in the next influenza pandemic, the principle that a past
pandemic can interact with another over the space of decades
remains relevant. In particular, our analysis suggests that a sea-
sonal vaccine containing an antigenically distant strain can be
useful, but only in age groups previously primed to respond.
While some studies have already formulated approaches to
prediction of a vaccine’s effectiveness based on the correlates
of protection (37, 38), we propose here how these can be
combined with a SEM to simultaneously disentangle some

effects from confounders while estimating the contribution of
a particular correlate of protection. While the approach met
with some challenges, we believe it remains possible to obtain
some prediction of the anticipated effect using appropriately
collected data, such asmeasurements of cross-reactive immune
responses in age-stratified samples from vaccine trials. While
the vaccine effectiveness estimated in the oldest age group
based on the titer-mediated effect (via boosting of antibodies)
was weak, an intervention with such levels of effectiveness
would still be relevant if we were to again encounter a pan-
demic as severe as the influenza pandemic of 1918.
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