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Health Risk, Inequality Indexes, and Environmental Justice

Glenn Sheriff 1,∗ and Kelly B. Maguire2

Inequality indexes have long been used to analyze distributions of income. Studies have re-
cently begun to use these tools to evaluate the equity of distributions of environmental harm.
In response, issues have been raised regarding the appropriateness of using income-based
measures in the context of undesirable outcomes. We begin from first principles, identify-
ing a theoretical preference structure under which income-based tools can be appropriate
for ranking distributions of “bads.” While some critiques of existing applications are valid,
they are not a justification for rejecting the approach altogether. Instead, we show how stan-
dard income-based measures can be adjusted to accommodate bad outcomes. Rather than
inequality indexes, we argue that equally distributed equivalents (EDEs) are well-suited for
this purpose since they account for levels and dispersion of outcome distributions. The Kolm–
Pollak EDE is particularly useful, having the advantage of consistently evaluating both bads
and their complementary goods (e.g., mortality risk and survival probability). As an illustra-
tion, we show how these tools can inform an environmental justice analysis of a proposed
Environmental Protection Agency (EPA) rule addressing indoor air pollution.
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Environmental justice (EJ) refers to a concern
that environmental harm is distributed in a man-
ner that disproportionately affects vulnerable demo-
graphic groups, typically defined on the basis of race
or income. This decades-old concept (United Church
of Christ, 1987) has long been an element of U.S. pol-
icy (Clinton, 1994). The practical challenge remains,
however, of how to quantify policy-induced changes
in distributions of environmental outcomes such that
a decisionmaker considering various options can ob-
jectively identify which is preferable from an EJ per-
spective (Maguire & Sheriff, 2011).
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A recent literature has emerged attempting to fill
this gap by using tools developed for evaluating the
equity of income distributions for the analysis of dis-
tributions of pollution or its implied health impacts.
The pioneer in this area is Levy, Chemerynski, and
Tuchmann (2006), who consider the merits of sev-
eral metrics, ultimately recommending the income in-
equality index developed by Atkinson (1970). The
Atkinson index has since been used to evaluate
national distributions of mortality risk from power
plant and mobile source emissions (Levy, Greco,
Melly, & Mukhi, 2009; Levy, Wilson, & Zwack, 2007),
a multipollutant risk–based approach to air quality
management in Detroit (Fann et al., 2011), ambi-
ent NO2 concentrations (Clark, Millet, & Marshall,
2014), and toxic releases in Maine (Bouvier, 2014).
A related literature advocates using welfare weights
derived from the Atkinson index to incorporate the
monetized value of environmental harm into benefit–
cost analysis, effectively placing more value on bene-
fits conferred to low-income people (Farrow, 2011).
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In the context of income distributional analysis,
a key advantage of the Atkinson index relative to
other commonly used income inequality metrics such
as the Gini coefficient is that it is normatively signif-
icant (Blackorby, Bossert, & Donaldson, 1999). That
is, one can begin with a sensible well-behaved pref-
erence structure and identify the conditions under
which one distribution would be more desirable than
another based on the Atkinson index values. It is the
desirable properties implied by this preference struc-
ture that led some to advocate its use in the environ-
mental context (Levy et al., 2006).

Unfortunately, simple substitution of pollution
exposure or health risk for income in the formula
for the Atkinson index causes the inequality index
to lose its desirable normative properties. For ex-
ample, the Atkinson income inequality index places
greater weight on the worse off: people with low
values in its argument, income. Fann et al. (2011)
recognize that replacing income with something un-
desirable like health risk places more weight on
the better off, those with low risk. Cox (2012)
goes further, identifying several shortcomings of the
Atkinson index, ultimately concluding that the
use of income inequality indexes for purposes of
evaluating distributions of health risk is fatally
flawed.

We take a more formal approach, first speci-
fying a utility function suitable for evaluating bads
(e.g., mortality risk), rather than goods. We then
show how this utility function can be used to gener-
ate an index of relative inequality analogous to, yet
mathematically distinct from, the Atkinson income
inequality index. This formulation addresses several
of the concerns raised by Cox (2012). Part of the
remaining difficulty arises from the fact that while
relative inequality indexes have practical advantages
in comparing income distributions for populations
facing different prices (e.g., from different countries
or time periods), these advantages may be liabili-
ties for comparing distributions, for example, expo-
sure to toxic chemicals, in which absolute quanti-
ties are meaningful (Harper et al., 2013). In addition,
Atkinson-based measures have the undesirable prop-
erty that they can provide different rank orderings
depending on whether an outcome is characterized
as a bad or a complementary good (e.g., mortality
risk vs. survival probability). To address these issues,
we derive an analog of the absolute inequality index
proposed by Kolm (1976) that is suitable for evaluat-
ing distributions of bad outcomes and is not subject
to these two issues.

Although inequality indexes are derived from in-
dividual preferences, it is important to recognize that
the index values are not normative rankings them-
selves (Kaplow, 2005). That is, just because a distri-
bution is less equal than another, does not necessar-
ily mean that it is less desirable; total levels are also
relevant. Consequently, we advocate use of equally
distributed equivalents (EDEs) for evaluating distri-
butions. EDEs are derived from the same preference
structure as inequality indexes, but take both levels
and dispersion into account. The EDE answers the
question “What is the level of risk that would make
an individual indifferent between a distribution in
which everyone received that risk and the actual un-
equal risk distribution?”

We show how comparisons of EDEs generated
by alternative policy options are useful for quantify-
ing the EJ implications of environmental regulations.
In particular, they allow the analyst to answer the fol-
lowing questions:

• For a given policy option, did vulnerable demo-
graphic groups (e.g., based on income or race)
have a worse distribution of a particular envi-
ronmental risk than the rest of the population?

• Which is the preferred policy option for each de-
mographic group?

• Relative to baseline conditions, which groups
benefit most from each option?

The answer to the first question evaluated at base-
line levels can be used to provide evidence regarding
the presence of a preexisting EJ concern for the spe-
cific pollutant that a rule is proposing to regulate. It
also allows one to evaluate whether any policy option
creates a disparity among demographic groups. The
second question allows one to determine whether a
particular policy option may make a vulnerable de-
mographic community worse off than under baseline.
Although this consideration is less relevant for regu-
lations that reduce risk from all sources, it can be im-
portant for regulatory options that change the spa-
tial distribution of risk. Examples could include the
choice between market-based versus command-and-
control policy mechanisms or the multipollutant ver-
sus single-pollutant control strategies evaluated by
Fann et al. (2011). The answer to this question can
also indicate whether there is a tradeoff between the
option chosen by standard benefit–cost analysis and
the option that is best for vulnerable populations. The
third question can help identify whether a policy op-
tion exacerbates preexisting disparities, for example,
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by conferring more benefits to groups that had the
better baseline outcomes.

Although EDEs can provide useful information
for EJ analysis, they do have limitations. The EDE
welfare ranking assumes that all individual charac-
teristics besides the outcome of interest are held
constant. Consider a comparison of distributions of
pollution for low-income and high-income demo-
graphic groups. The EDE ranking would be based
only on differences in pollution between the two
groups, not differences in income. That is, it would
compare the expected utility of the two pollution dis-
tributions evaluated at a given reference income—
not the desirability of having the poor distribu-
tion and being poor versus having the rich distribu-
tion and being rich. Similarly, it assumes that exter-
nal factors are constant across the scenarios being
evaluated, thus abstracting from possible price
changes attributable to differences in pollution.

Here, we focus on EDEs measured in natural
units, e.g., cancer risk. Standard benefit–cost analysis
in contrast uses monetized values, e.g., willingness to
pay to avoid a marginal increase in cancer risk. These
marginal willingness-to-pay values are appropriate
for approximating the monetized benefit of an incre-
mental change in an environmental outcome. They
are less justifiable, however, as a basis for calculat-
ing the argument of the EDE function: the total, not
marginal, value of an environmental outcome. More-
over, it is unlikely that the preferences assumed in an
existing nonmarket valuation study would be consis-
tent with those used to derive the EDE.

An alternative approach proposed by Fleurbaey
(2005) could in principle be used to generate a full-
health equivalent income. For an individual with a
given income and health status, this equivalent in-
come is the smallest income she would be willing
to receive in exchange for her actual income if pro-
vided with perfect health. Such a measure has the
advantage of transforming multidimensional aspects
of well-being (various health indicators and income)
into a single value. Since equivalent income is a good
it could theoretically be adapted for use in standard
income inequality measures as well. Unfortunately,
the data requirements for such a measure are daunt-
ing, and to our knowledge it has not been imple-
mented in practice at the level of detail necessary for
an EJ analysis.

In sum, EDEs measured in natural (i.e., not
monetized) units offer a middle ground between the
statistics (means, variances, and correlations) with
no normative content often used in the EJ litera-

ture (Ringquist, 2005), and the Fleurbaey (2005) full-
health equivalent income or a complete multidimen-
sional social welfare function over stochastic life his-
tories as proposed by Adler (2012). An advantage of
EDEs over the former is that an individual with an
appropriately specified set of reasonable well-defined
preferences would prefer a distribution with a low
EDE over one with a high EDE, whereas the same
cannot be said about the other metrics. An advantage
of EDEs over the latter is tractability.

The rest of the article is organized as follows.
Section 1 describes the microeconomic foundations
for applying EDEs to distributions of environmen-
tal harm, Section 2 provides a brief illustrative EJ
analysis of a U.S. Environmental Protection Agency
(EPA) proposal to limit formaldehyde emissions
from pressed wood products, and Section 3 offers
concluding comments.

1. THEORETICAL MODEL

Our policy evaluation framework is explicitly
welfarist, being based on individual utility. Any non-
welfarist method has the potential of preferring a
policy that makes everyone worse off (Kaplow &
Shavell, 2001). In particular, we rank pollution dis-
tributions based on the preferences of a hypothet-
ical representative individual. We use the veil of
ignorance to ensure her impartiality (Harsanyi, 1953;
Rawls, 1971). That is, the rankings are based on the ex
ante preferences of a representative individual who
believes she will randomly receive an ex post out-
come from the distribution.

Formally, under a given policy scenario let xn

be the adverse environmental outcome such as pol-
lution exposure or health risk experienced by in-
dividual n. For the formaldehyde example in Sec-
tion 2, for example, x indicates cancer risk. The vec-
tor x = (x1, x2, . . . , xN )′ ∈ R

N
+ denotes outcomes for

the N members of the total population. Behind the
veil of ignorance, the vector x generated by a given
policy can be framed as an ex ante lottery in which
each ex post outcome xn occurs with probability 1/N.
Ranking distributions is then equivalent to determin-
ing which lottery would be preferred by the represen-
tative individual. To do so requires imposing struc-
ture on the individual’s preferences.

We first impose the Pareto criterion: increas-
ing pollution for at least one ex post outcome while
leaving all others unchanged makes a lottery less
desirable. Let U (x, y) be a twice continuously dif-
ferentiable function returning the ex ante utility
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generated by an emissions lottery conditional on a
deterministic numeraire good y, e.g., income. The
Pareto criterion can then be expressed as x ≥ x̃ ⇐⇒
U (x, y) ≤ U (x̃, y).

As is common in the income distribution liter-
ature we also impose that U is Schur concave in x
(Lambert, 2001). Schur concavity implies that trans-
ferring a unit of pollution from a low exposure ex
post outcome to a high exposure outcome makes a
lottery less desirable, i.e., a mean-preserving regres-
sive reallocation of pollution decreases welfare.1 It
is consistent with the representative individual being
risk averse.

In addition to evaluating the desirability of an
emissions distribution over the total population, we
are interested in evaluating the relative desirability of
emissions distributions of demographic groups within
the population. It is therefore useful to be able to
rank the pollution distribution of policy A versus that
of policy B for a particular demographic group inde-
pendently of the outcomes of these policies for some
other group. This property requires a separability as-
sumption over demographic groups.

This separability in demographic groups’ as-
sumption can be stated as follows. Let xd denote the
vector of outcomes corresponding to individuals in
demographic group d, and x−d denote the vector of
outcomes for individuals outside the group. Then,
U (x, y) can be expressed U (xd, x−d, y). Without fur-
ther structure, a ranking between alternative distri-
butions for group d depends upon the distributions
of outcomes for the rest of the population. Separa-
bility in population subgroups allows us to express
U (x, y) = Ũ (Ud(xd, y), x−d, y). That is, we can rank
changes in xd, the distribution for group d, inde-
pendently of the outcomes for all other individuals
(Blackorby, Donaldson, & Auersperg, 1981).

We next impose a restriction that is only implic-
itly assumed by much of the income distribution lit-
erature: separability in utility between consumption
of numeraire y and consumption of the environmen-
tal outcome of interest. Separability in consumption
implies that the ex ante utility function U (x, y) can be
expressed as U∗(u(x), y). It ensures that the marginal
rate of substitution between any two ex post realiza-
tions xm and xn, and therefore the ranking of any lot-

1Let Q be a square matrix composed of nonnegative real num-
bers whose rows and columns each sum to 1. The function f (x) is
Schur concave if Qx is not a permutation of x and f (Qx) ≥ f (x).
All symmetric quasi-concave functions are Schur concave, al-
though the converse is not true.

teries, is independent of the reference income level
y. The specification is consistent with a marginal util-
ity of y that is decreasing (multiplicatively separable)
or constant (additively separable) in ex post pollution
exposure (Rey & Rochet, 2004). It is not compatible,
however, with preferences in which the marginal util-
ity of y is increasing in ex post exposure, for example,
if exposure is equivalent to lost consumption (Ham-
mitt, 2013). Evans and Viscusi (1991) use survey data
to explore a similar problem of how marginal util-
ity of income is affected by health. Their findings
are ambiguous, suggesting that less severe adverse
health outcomes may increase the marginal utility of
income, while more severe outcomes may decrease
it. Multiplicative separability is commonly assumed
in the health economics literature (Garber & Phelps,
1997; Murphy & Topel, 2006).

Although U (·) is measured in utility, preferences
over distributions can be represented by a social eval-
uation function measured in cardinal units of x, also
independently of y. Let �(x) be the scalar value of
the bad outcome, which if allocated to each individ-
ual, would generate the same ex ante utility as the ac-
tual distribution:

�(x) ≡ {
ξ : U (ξ · 1, y) = U (x, y)

}
≡ {

ξ : U∗(u(ξ · 1), y) = U∗(u(x), y)
}

≡ {
ξ : u(ξ · 1) = u(x)

}
. (1)

The income distribution literature commonly refers
to � as the “equally distributed equivalent” value of
x (Atkinson, 1970). Note that higher values of the
social evaluation function �(x) correspond to less
desirable pollution distributions. Schur concavity of
U (·) thus implies Schur convexity of �(x) since the
latter is increasing, rather than decreasing in pollu-
tion. Consequently, the EDE for a bad distribution is
no lower than the mean outcome, whereas the EDE
for income is no higher than the mean.

1.1. Atkinson Preferences

In addition to the properties described above,
the social evaluation function used to calculate
the Atkinson index satisfies homotheticity: �(λx) =
λ�(x) for any λ ∈ R

1
+ (Blackorby & Donaldson,

1978). This property implies that the rankings of
alternative emissions distributions are independent
of proportional shifts in x. Combined with separa-
bility in demographic groups, homotheticity implies
that u(x) can be specified as the expectation of the
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Fig 1. Schur concave preferences for
goods and bads.

Notes: Panel (a) depicts Schur concave preferences for a distribution of a good x between individuals i and j. A mean-preserving reallocation
from an unequal distribution A to an equal distribution B improves welfare. Panel (b) depicts Schur concave preferences for a distribution
of a bad x between individuals i and j. A mean-preserving reallocation from an unequal distribution A to an equal distribution B improves
welfare.

following functions of ex post values of xn (Blacko-
rby & Donaldson, 1978):

uA(x) = − 1
N

N∑
n=1

x1−β
n ;β < 0. (2)

The corresponding EDE is

�A(x) =
[

1
N

N∑
n=1

x1−β
n

] 1
1−β

;β < 0. (3)

It is instructive to highlight the difference between
Equation (2) and the analogous function proposed by
Atkinson for the case of an income vector y,

vA(y) = 1
N

N∑
n=1

y1−ε
n ; ε > 0, ε 
= 1. (4)

Note that in Atkinson’s formulation expected utility
is increasing in y, so that Schur concavity requires ε >

0. For bad outcomes, utility is decreasing in x such
that Schur concavity of U requires β < 0.

Figure 1 illustrates the implication of this dif-
ference. Panel (a) depicts an indifference curve for
standard Atkinson preferences when x is a good,
such as income. In this case, the parameter β in
Equation (3) is positive. A mean-preserving real-
location of income from an unequal point A to an
equal point B increases welfare. Simply substituting
health risk for income, however would imply that
such a reallocation reduces welfare since, by the
Pareto criterion welfare would be decreasing, rather
than increasing, in x. Panel (b) illustrates the impact

of restricting β < 0. Here, a reallocation from A to
B increases welfare for a bad x.

From the EDE, it is straightforward to calculate
the corresponding relative inequality index. Letting
x̄ ≡ ∑

n xn/N,

IA = �A(x)
x̄

− 1 (5)

=
[

1
N

N∑
n=1

[xn

x̄

]1−β

] 1
1−β

;β < 0. (6)

Again, the difference between this formula and that
of the standard Atkinson income inequality index ap-
plied to “bads” as proposed by Levy et al. (2006) is
the sign of the exponent parameter; here β is non-
positive, rather than nonnegative.

1.2. Kolm–Pollak Preferences

An implication of the homotheticity assumption
imposed by Atkinson preferences is that, like all
relative inequality indexes, IA(x) = IA(λx). That is,
proportional shifts in the distribution do not affect
measured inequality. This property is convenient for
measuring income inequality across time periods or
geographic areas in which the purchasing power of
income differs by an exchange rate or inflation index.
It is not so useful when measuring distribution of a
health or pollution variable in which absolute dif-
ferences are economically meaningful. As suggested
by Cox (2012), it seems unsatisfactory for a distri-
bution with individuals exposed to small levels of
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mortality risk, say 0.001 and 0.0002, to be as equi-
table as one with risks of 1 and 0.2. In this subsection,
we consider absolute inequality indexes that do not
suffer this drawback. For these indexes, an equipro-
portional increase in the distribution increases
measured inequality (Kolm, 1976).

To construct the absolute index, we impose that
the social evaluation function satisfies translatability,
rather than homotheticity: �(x + λ · 1) = �(x) + λ

for any λ ∈ R
1 (Blackorby & Donaldson, 1980).

This property implies that rankings of alternative
emissions or risk distributions are independent of
common shifts in (unobserved) background levels.
Combined with separability in demographic groups,
translatability requires that u(x) be specified as a
Pollak (1971) function (Blackorby & Donaldson,
1980):

uK(x) = − 1
N

N∑
n=1

e−κxn; κ < 0. (7)

The corresponding EDE is

�K(x) = − 1
κ

ln

(
1
N

N∑
n=1

e−κxn

)
; κ < 0. (8)

Letting x̄ ≡ ∑
n xn/N, the absolute inequality index

is then

IK(x) = �K(x) − x

= − 1
κ

ln

(
1
N

N∑
n=1

e−κ[xn−x]

)
; κ < 0. (9)

Analogously to the case for Atkinson prefer-
ences, the specification here differs from the abso-
lute income inequality measures discussed by Kolm
(1976) and Blackorby and Donaldson (1980) by the
sign of κ . To ensure Schur concavity of U , κ must
be nonpositive, whereas for a good (like income), the
parameter would be nonnegative. Parameter κ can be
thought of a measure of the representative individ-
ual’s aversion to inequality in adverse environmen-
tal outcomes. The elasticity of marginal utility with
respect to a change in an individual’s pollution al-
location is κxn. Preferences vary from no aversion
to maximin as this elasticity goes from zero to neg-
ative infinity.

1.3. The Mirror Property

Cox (2012) discusses an important disadvantage
of the Atkinson index in the context of health risk.

An inequality evaluation of alternate policies can
generate conflicting rankings based on whether the
outcome is good (e.g., survival probability) versus
bad (e.g., mortality risk). This quandary has been dis-
cussed at length in the health economics literature
(Bosmans, 2016; Clarke, Gerdtham, Johannesson,
Bingefors, & Smith, 2002; Erreygers, 2009; Erreygers,
Clarke, & Van Ourti, 2012; Lambert & Zheng, 2011).
Inequality measures which are not vulnerable to this
shortcoming satisfy the so-called mirror property.

This mirror property has typically been inter-
preted as applying to a single functional form of an
inequality index. For a bad outcome, commonly re-
ferred to as a “shortfall,” x, with upper bound x̂,
and its complementary good “attainment” outcome,
x̂ − x, an index I(·) would satisfy the mirror prop-
erty when I(x) > I(x̃) if and only if I(x̂ · 1 − x) >

I(x̂ · 1 − x̃) for all permissible x, x̃, and x̂.2

As shown by Lambert and Zheng (2011), this
interpretation of the mirror property is incompat-
ible with the diminishing transfer principle, which
effectively places more weight on transfers among
the worst off. The diminishing transfer principle is
widely considered a desirable attribute of an inequal-
ity measure and can be satisfied by both Atkin-
son and Kolm–Pollak preferences. For an attainment,
worse off individuals have a relatively low allocation
of the good, whereas for a shortfall they have a high
allocation of the bad. Thus the contradiction: for both
the mirror and diminishing transfer principles to be
satisfied a single function would need to evaluate x
and its complement x̂ − x differently.

Consequently, we reframe the standard interpre-
tation of the mirror property in terms of the EDE
rather than the inequality index.3 For a shortfall EDE
function �−(·) to satisfy the mirror property, we re-
quire that there exist some attainment EDE function
�+(·), such that the complement of the attainment
EDE evaluated at the complement of an arbitrary
distribution x is equal to the shortfall EDE evaluated
at x:

Definition 1. Mirror Property For any permissible
x̂, x < x̂ · 1, and shortfall EDE �−(·), there exists an
attainment EDE �+(·) such that �−(x) = x̂ − �+(x̂ ·
1 − x).

2This formulation is the weak form of the mirror property, referred
to as consistency (Lambert & Zheng, 2011). A stronger form re-
quires that I(x) = I(x̂ · 1 − x) (Erreygers, 2009).

3Our definition is thus distinct from other reformulations, e.g.,
Bosmans (2016).
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This definition is both intuitive and logically con-
sistent. If the EDE value of a given vector of mor-
tality risks is p, it seems clear that the EDE value
of the complementary vector of survival probabili-
ties should be 1 − p. It is logically consistent since
comparison of any two bad distributions based on
the shortfall EDE function generates the same pref-
erence ordering as a comparison based on the attain-
ment EDE function of the complementary good dis-
tributions. As shown in the following two proposi-
tions, Atkinson preferences do not satisfy the mirror
property while Kolm–Pollak preferences do.

Proposition 1. The Atkinson EDE does not satisfy
the mirror property.

Proof. See the Appendix.

Proposition 2. The Kolm–Pollak EDE satisfies the
mirror property.

Proof. See the Appendix.

1.4. Practical Implementation

In the preceding subsections, we derived two nor-
matively significant EDE functions that can rank dis-
tributions of bad outcomes, explicitly identifying the
restrictions each imposes on preferences. Although
these functions are analogous to the EDEs associated
with the Atkinson and Kolm–Pollak income inequal-
ity indexes, they are mathematically distinct. Simply
substituting health risk for income in the formula for
an income inequality index will cause it to lose its nor-
mative significance. That is, one cannot use the result-
ing index values to determine the relative desirability
of a given distribution for some well-behaved prefer-
ence structure.

Also analogous to the case for income inequality
measures, the differences between the two new spec-
ifications stem from different assumptions about in-
dividual preferences, homotheticity versus translata-
bility. Although there is little a priori evidence to sug-
gest which of these properties more closely resembles
actual human preferences, translatable preferences
have a key practical advantage: only EDE functions
with this property are guaranteed to generate a rank-
ing that is insensitive to whether an outcome is ex-
pressed as a bad or its complementary good. This at-
tribute is particularly important for analysis of risks
that have a natural upper and lower bound.

It is helpful to address two related practical is-
sues regarding implementation of translatable pref-
erences that have been raised in the literature. Both

issues originate from the fact that the elasticity of
marginal utility is variable with translatable prefer-
ences, rather than constant as is the case for homo-
thetic preferences. From Equations (2) and (7), the
respective elasticities are

∂(∂uA/∂xn)
∂xn

xn

∂uA/∂xn
= β, (10)

∂(∂uK/∂xn)
∂xn

xn

∂uK/∂xn
= κxn. (11)

The elasticities are by definition unit free, being in-
terpretable as the percent change in marginal utility
arising from a 1% change in the quantity of x. Unlike
β, the parameter κ is not an elasticity itself, and is not
unit free. Rather, it is the percent change in marginal
utility per unit of x. Changing units of x without mod-
ifying κ effectively changes this elasticity, and hence
individual preferences. It could thus cause the social
ranking of two distributions to reverse (Zheng, 2007).

Therefore, a change in units of measurement re-
quires a change in units of κ . Fortunately, this oper-
ation is quite simple. Consider, for example, a study
of distributions of exposure to a pollutant, measured
in kg, using a parameter κ = −0.5. If one wanted to
calculate the EDE in pounds, it would be necessary
to multiply x and divide κ by 2.2. This adjustment en-
sures that the elasticity of marginal utility remain un-
changed for each individual at each quantity of x, and
the values of �K and IK would be 2.2 times larger,
as desired.

A related practical issue in applied work is
choosing the value of κ that defines the elasticity.
Like the β parameter for Atkinson preferences, this
parameter can assume any real nonpositive value.
The standard approach in the inequality literature is
to examine sensitivity of results to a range of values.
What constitutes a useful range is an open question.

In the context of income distribution, experi-
ments have found values for the (constant) elastic-
ity of marginal utility of income in the neighborhood
of 0.25 (Amiel, Creedy, & Hurn, 1999), and the U.S.
Census Bureau often reports results using elastici-
ties of 0.25, 0.5, and 0.75 (DeNavas-Walt, Proctor, &
Smith, 2012; Jones & Weinberg, 2000). The only study
to our knowledge that has attempted to estimate this
elasticity for an environmental good (a hypothetical
cleanup program) found higher values, with a mean
of 0.72 and median of 2.8 (Cropper, Krupnick, & Re-
ich, 2016).
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To present results for a range of κ that generates
elasticities comparable to those in the above-cited lit-
erature, we first identify a value of κ that is consistent
with a given constant elasticity β. To establish a cor-
respondence between an elasticity β and a vector of
elasticities xκ , we choose the value of κ that mini-
mizes the sum of squared differences between the in-
dividual elasticities and the constant β:

κ(β) = arg min
κ̂

{
[κ̂x − β1]′[κ̂x − β1]

}

= β
∑N

n=1 xn∑N
n=1 x2

n

. (12)

We use κ(−0.50) to calculate the main results, pre-
senting results for κ(−0.25) and κ(−0.75) in the Ap-
pendix. Although EDE and index magnitudes vary
with different parameter values, the qualitative re-
sults remain largely unchanged.

2. ILLUSTRATIVE APPLICATION

To our knowledge, an EDE based on Kolm–
Pollak preferences has not been used to analyze EJ
issues. Here, we provide an illustrative application in
the context of evaluating distributional implications
policy options to reduce indoor air pollution.

Resins commonly used in pressed wood prod-
ucts can emit significant amounts of formaldehyde.
This chemical has been linked to adverse health out-
comes including nasopharyngeal cancer. Partly in re-
sponse to concerns over high levels of formaldehyde
in Federal Emergency Management Agency trailers
used for temporarily housing people dislocated in
the wake of Hurricane Katrina, Congress enacted the
2010 Formaldehyde Standards for Composite Wood
Products Act.4 This legislation amended the Toxic
Substances Control Act to set national emissions
standards for pressed wood components (hardwood
plywood, medium-density fiberboard, and particle-
board) common in home construction and furniture.

In 2013, the EPA published a regulatory anal-
ysis for a proposed rulemaking to implement the
Act.5 This analysis used a three-stage model to eval-
uate health impacts of the emissions standards (EPA,
2013). The first-stage generated models of nine hous-
ing types in various climate zones, stocking them with
a representative selection of pressed wood products.

4See, for example, Citizen Petition to EPA Regarding Formalde-
hyde in Wood Products (http://www.epa.gov/opptintr/chemtest/
pubs/petition3.pdf).

5The final rule was promulgated in 2016.

These engineering models simulated indoor air con-
centrations of formaldehyde at baseline and under
alternative policy scenarios. The second stage intro-
duced epidemiological concentration–response func-
tions to model the impact of formaldehyde concen-
trations on the probability of incurring fatal cancer.
Concentrations varied by home age (due to a de-
cay in emissions rates over time) and other home
characteristics such as ventilation, temperature, and
humidity. Health responses varied by age of ex-
posed individual. The third stage used data from the
American Community Survey and American Hous-
ing Survey to populate the model homes and simu-
late health benefits for various demographic groups.
Demographic groups are defined by self-reported
race, ethnicity, and income in the American Com-
munity Survey. The Hispanic category includes in-
dividuals of any race, such that Black, White, Na-
tive American, and Other are properly interpreted
as non-Hispanic Black, etc. The below-poverty cate-
gory consists of individuals belonging to households
below the U.S. Census Bureau poverty threshold.

Standards introduced by the Act raise several
questions in the context of EJ. Formaldehyde emis-
sion rates decrease exponentially over time. Con-
centrations are highest in new or newly remodeled
homes with new furniture. Although the legislation
was motivated by concern for poor and minority in-
dividuals using trailers, these groups may not be the
main beneficiaries if they are less likely to live in
newer homes with high formaldehyde levels.

We focus on three emission levels considered in
the EPA analysis: the baseline absent the legislation
(Baseline), the level under the EPA’s proposed im-
plementation of the legislated standards (Proposal),
and a level corresponding to a hypothetical stricter
standard requiring manufacturers to use resins with
no added formaldehyde (NAF).

Table I presents average cancer risk for each pol-
icy scenario and demographic group. Average base-
line risk ranges from 1.1 to 1.6 cases per million.
Among racial and ethnic groups, White has the low-
est average risk, while Hispanic has the highest.
There is also considerable dispersion of risk within
groups. Native American has the lowest standard de-
viation and lowest maximum risk. Black and White
share the highest maximum risk, while Hispanic has
the highest standard deviation. Minimum risk for all
groups is zero.

For all demographics, increased stringency is as-
sociated with lower average, standard deviation, and
maximum cancer rates. The relative baseline patterns

http://www.epa.gov/opptintr/chemtest/pubs/petition3.pdf
http://www.epa.gov/opptintr/chemtest/pubs/petition3.pdf
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Table I. Summary Statistics

Fatal cancer cases per million
Population Baseline Proposal NAF

Demographic (millions) Mean Std. dev. Max Mean Std. dev. Max Mean Std. dev. Max

Race/Ethnicity
Black 35.0 1.319 0.856 16.317 1.279 0.774 14.992 1.160 0.543 9.941
Hispanic 45.4 1.426 0.880 16.161 1.384 0.796 14.849 1.256 0.558 9.957
Native American 1.9 1.264 0.764 13.673 1.231 0.699 12.619 1.137 0.532 9.941
White 194.1 1.136 0.823 16.317 1.105 0.765 14.992 1.015 0.602 9.957
Other 19.6 1.342 0.847 14.424 1.302 0.766 13.310 1.178 0.532 9.946

Income
Above poverty 256.4 1.195 0.840 16.317 1.162 0.776 14.992 1.063 0.596 9.957
Below poverty 38.7 1.353 0.871 16.083 1.313 0.784 14.777 1.194 0.552 9.957
Income unknown 1.0 1.594 0.680 9.734 1.550 0.578 8.534 1.425 0.261 4.474
Total 296.1 1.217 0.845 16.317 1.183 0.779 14.992 1.081 0.592 9.957

Notes: Hispanic includes all races who report Hispanic ethnicity. All others are of non-Hispanic ethnicity.
Source: Author calculations, based on data from U.S. EPA.

are generally preserved under the proposed rule,
while the strict NAF limits sharply reduce the differ-
ences in maximum risk, and switch the relative posi-
tion of Hispanic and White in terms of standard de-
viations.

The table illustrates limitations of using stan-
dard summary statistics to evaluate EJ implications
of regulatory action. Which distribution is better?
Some people may be willing to accept higher average
risk, for example, if there was less variance, or bet-
ter worst-case outcomes. The approach taken here,
in contrast, allows us to rank these distributions us-
ing explicit well-behaved preference structures and
examine sensitivity of rankings to alternative specifi-
cations.

The goals of this analysis are to develop an un-
derstanding of the baseline distribution (i.e., absent
any new regulation) in formaldehyde-induced can-
cer risk, the way the two policy options affect the
distribution, and how the various distributions can
be ranked. Table II presents Kolm–Pollak EDEs and
inequality indexes, �K, IK, for each policy scenario
and demographic group, evaluated at κ(−0.50). Ap-
pendix tables present these statistics evaluated at
κ(−0.25) and κ(−0.75).

Panel A presents EDEs, indicating the additional
amount of risk the representative individual would
be willing to tolerate if it were to be equally dis-
tributed. EDEs can be interpreted as adjusting the
average outcomes in Table I for the welfare loss
caused by inequality in the distributions. The patterns
across demographic groups and policy options ob-
served for mean outcomes are largely preserved for

EDEs. The EDE for the Native American distribu-
tion is higher than that for White, however, signify-
ing that the lower variance and maximum risk does
not compensate for its higher mean. In addition, al-
though White and Hispanic have, respectively, the
best and worst distributions under both Baseline and
Proposal, the Proposal results in a larger improve-
ment for Hispanic, thus partially alleviating the dis-
parity. Similarly, although individuals above poverty
have better outcomes, the proposal delivers more
benefits to individuals below poverty.

Panel B presents the Kolm–Pollak inequality
indexes quantifying the equity of the distribution in-
dependent of the mean. A higher index value indi-
cates a less equal distribution. Similar to the case
with EDEs, Hispanic and below poverty have the
most inequitable distributions, but also see the most
improvements from the proposed rulemaking. As
shown in Tables AI and AII, all results are ro-
bust to both lower and higher levels of inequality
aversion.

In general, Table II suggests that for this set of
policies there is no tradeoff between increased strin-
gency and the equity of the distribution; within each
demographic group and across demographic groups
lower mean outcomes are associated both with lower
inequality indexes and a convergence between the
groups with the worst and best outcomes. Thus, con-
cerns that upper income individuals may experience
the lion’s share of benefits from the rule due to a
higher propensity to purchase new furniture or live
in new construction with higher levels of formalde-
hyde exposure appear to be largely unfounded.
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Table II. Policy rankings by fatal cancer cases per million

Baseline Proposal NAF Difference
(a) (b) (c) (b)-(a)

Panel A. Equally distributed equivalents
Race/Ethnicity

Black 1.457 1.388 1.208 −0.070			

(0.021) (0.016) (0.009) (0.005)
Hispanic 1.584 1.510 1.317 −0.074			

(0.022) (0.009) (0.006) (0.013)
Native American 1.374 1.320 1.186 −0.054			

(0.005) (0.001) (0.020) (0.004)
White 1.263 1.212 1.077 −0.051			

(0.014) (0.004) (0.034) (0.010)
Other 1.474 1.405 1.223 −0.069			

(0.007) (0.008) (0.016) (0.001)
Income

Above Poverty 1.328 1.272 1.124 −0.055			

(0.013) (0.007) (0.026) (0.006)
Below Poverty 1.500 1.427 1.246 −0.073			

(0.021) (0.013) (0.011) (0.007)
Income unknown 1.682 1.611 1.435 −0.071			

(0.047) (0.051) (0.001) (0.004)
Total 1.352 1.294 1.141 −0.058			

(0.015) (0.008) (0.024) (0.006)

Panel B. Inequality indexes

Race/Ethnicity
Black 0.138 0.108 0.048 −0.030		

(0.007) (0.002) (0.002) (0.009)
Hispanic 0.158 0.126 0.060 −0.031		

(0.009) (0.002) (0.004) (0.011)
Native American 0.110 0.089 0.049 −0.021			

(0.001) (0.002) (0.007) (0.003)
White 0.127 0.107 0.062 −0.020			

(0.001) (0.002) (0.003) (0.004)
Other 0.132 0.104 0.045 −0.028			

(0.002) (0.002) (0.001) (0.004)
Income

Above Poverty 0.133 0.111 0.061 −0.022			

(0.003) (0.002) (0.003) (0.005)
Below Poverty 0.147 0.114 0.052 −0.033			

(0.005) (0.001) (0.002) (0.006)
Income unknown 0.088 0.061 0.011 −0.027			

(0.008) (0.016) (0.001) (0.008)
Total 0.135 0.112 0.060 −0.024			

(0.003) (0.002) (0.003) (0.005)

aNotes: Bootstrapped standard errors in parentheses. Equally dis-
tributed equivalents and inequality indexes assume translatable
preferences calculated using κ(−0.50). Hispanic includes peo-
ple of all races who claim Hispanic ethnicity. All races are non-
Hispanic. 	 p < 0.10, 		 p < 0.05, 			 p < 0.01
bSource: Author calculations, based on data from U.S. EPA.

3. CONCLUSION

EDEs and the associated inequality indexes are
useful tools for characterizing distributions of ad-
verse health outcomes. Grounded in an internally
consistent set of well-behaved preferences, they pro-
vide a transparent method for ranking outcomes of
alternative policy options that takes entire distribu-
tions into account. They also facilitate comparisons
of distributions of outcomes both within and across
demographic groups.

The ability to provide normatively meaningful
rankings provides clear advantages over other statis-
tics (variance, correlations, regression coefficients,
etc.) for regulatory analysis. However, EDEs may
also have value as descriptive statistics in other an-
alytical contexts. Empirical studies have begun to
examine the effects of environmental quality on
residential sorting (e.g., Banzhaf & Walsh, 2008;
Gamper-Rabindran & Timmins, 2011). Presentation
of EDEs and inequality indexes over time for the an-
alyzed outcomes (e.g., toxic releases or proximity to
Superfund sites) could provide the reader with more
context as to how distributions within and across
groups changed during the period of study.

Similarly, other econometric research has exam-
ined the degree to which race or income is a predictor
of increased exposure to pollution under alternative
policy scenarios (Fowlie, Holland, & Mansur, 2012).
In such studies, inclusion of EDEs could provide a
sense of which population groups have the least de-
sirable distributions under each policy before con-
trolling for other factors. Inequality indexes for dif-
ferent demographic groups could also provide clues
as to the whether exposure generates hotspots under
different policies.

Caution should be exercised when applying met-
rics designed for analyzing the distribution of income
to examine harmful environmental or health out-
comes. In particular, income inequality indexes lose
their desirable properties if used to analyze distribu-
tions of bads rather than goods. We have shown how
to transform Atkinson and Kolm–Pollak inequality
indexes in a manner that permits analysis of distri-
butions of bads. We have also shown that in cases
where an outcome can be characterized as either a
good or bad (e.g., mortality risk or survival proba-
bility), Kolm–Pollak preferences can guarantee dis-
tributional rankings that are insensitive to how the
outcome is characterized, whereas Atkinson prefer-
ences cannot.
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As an illustrative example, we apply our ap-
proach to evaluate EJ implications of an EPA
proposal to limit formaldehyde emissions from com-
posite wood products. This regulation provides an
interesting case study since it was partly motivated
by concern for poor and minority communities
exposed to formaldehyde in temporary housing.
Since indoor formaldehyde levels tend to be highest
in new and newly remodeled homes, however, less
economically advantaged groups may not benefit
from the standards.

Using data generated from a hybrid engineer-
ing/epidemiological model developed by the EPA,
we analyzed the distribution of cancer risk un-
der three scenarios: baseline, EPA proposed emis-
sions standards, and a stricter no-added formalde-
hyde standard. Baseline EDE values for minority
and low-income groups were higher than those for
White and high-income groups suggesting that they
had relatively undesirable distributions before any
policy change. Regarding the two policy options,
we found no tradeoffs between health benefits and
equity. Stricter standards resulted in lower EDEs,
unambiguously benefiting all demographic groups.
Moreover, inequality index values were also lower,
indicating that the benefits were due not only to
reduced average pollution levels but also to re-
duced inequality within each group. Overall, minor-
ity and low-income groups benefited the most from
tighter emissions standards. This example serves to
illustrate how the Kolm–Pollak EDE and inequal-
ity index, appropriately adapted for distributions of
bad outcomes, can yield valuable insights about the
relative equity of alternative environmental poli-
cies options both within and across demographic
groups.
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APPENDIX A: PROOFS

Proof of Proposition 1. The proof has two steps.
We first show that any candidate attainment equally
distributed equivalent (EDE) that mirrors the Atkin-
son shortfall EDE must satisfy translatability. We then
show that translatability of the attainment EDE re-
quires translatability of the shortfall EDE. Therefore,
since it does not satisfy translatability, the Atkinson
shortfall EDE does not satisfy the mirror property.

Let x < x̂ · 1 and x̂ · 1 − x denote vectors of short-
fall outcomes and the complementary attainment out-
come. Define �A−(·) as the Atkinson shortfall EDE
defined in Equation (3). The mirror property implies
that there exist an attainment EDE function �A+(·)
such that

�A+(x̂ · 1 − x) = x̂ − �A−(x); for any x̂, x. (A1)

Suppose x > 0. �A+(·) satisfies translatability since
for some arbitrarily small δ > 0,

�A+(x̂ · 1 − [x − δ · 1]) = �A+([x̂ + δ] · 1 − x),
(A2)

= x̂ + δ − �A−(x), (A3)

= δ + �A+(x̂ · 1 − x), (A4)

where the second equality follows from Equation
(A1). Consequently, also by Equation (A1),

�A−(x − δ · 1) = x̂ − �A+(x̂ · 1 − [x − δ · 1]), (A5)

= x̂ − [�A+(x̂ · 1 − x) + δ], (A6)

= �A−(x) − δ, (A7)

which is a contradiction since �A−(x) does not satisfy
translatability. �

Proof of Proposition 2. Let x < x̂ · 1 and x̂ · 1 − x
denote vectors of shortfall outcomes and the comple-
mentary attainment outcome. Define �K−(·) as the
Kolm–Pollak shortfall EDE defined in Equation (8).
The mirror property requires that there exist an attain-
ment EDE function �K+(·) such that

�K−(x) = x̂ − �K+(x̂ · 1 − x); for all x̂, x. (A8)
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Table AI. Policy Rankings by Fatal Cancer Cases per Million

Baseline Proposal NAF Difference
(a) (b) (c) (b)–(a)

Panel A. Equally distributed equivalents
Race/Ethnicity

Black 1.377 1.326 1.182 −0.051			

(0.019) (0.015) (0.004) (0.004)
Hispanic 1.490 1.435 1.281 −0.055			

(0.013) (0.020) (0.006) (0.007)
Native American 1.310 1.269 1.159 −0.041			

(0.016) (0.006) (0.004) (0.010)
White 1.189 1.151 1.043 −0.038

(0.020) (0.006) (0.002) (0.026)
Other 1.399 1.347 1.199 −0.051			

(0.020) (0.011) (0.007) (0.009)Income
Above poverty 1.251 1.209 1.089 −0.042	

(0.021) (0.002) (0.001) (0.022)
Below poverty 1.414 1.361 1.217 −0.053			

(0.016) (0.011) (0.004) (0.005)
Income unknown 1.632 1.576 1.430 −0.055

(0.010) (0.088) (0.004) (0.078)
Total 1.273 1.230 1.107 −0.043		

(0.020) (0.000) (0.002) (0.021)

Panel B. Inequality indexes

Race/Ethnicity
Black 0.058 0.047 0.022 −0.012		

(0.001) (0.007) (0.000) (0.005)
Hispanic 0.064 0.051 0.025 −0.012	

(0.001) (0.007) (0.001) (0.006)
Native American 0.046 0.038 0.021 −0.008		

(0.000) (0.003) (0.000) (0.003)
White 0.053 0.046 0.027 −0.008		

(0.000) (0.003) (0.000) (0.003)
Other 0.056 0.045 0.021 −0.011			

(0.002) (0.005) (0.000) (0.003)Income
Above poverty 0.056 0.047 0.027 −0.009		

(0.000) (0.004) (0.000) (0.004)
Below poverty 0.061 0.048 0.023 −0.013		

(0.001) (0.006) (0.000) (0.005)
Income unknown 0.037 0.026 0.005 −0.011

(0.004) (0.013) (0.000) (0.009)
Total 0.057 0.047 0.026 −0.009		

(0.001) (0.004) (0.000) (0.004)

Notes: Bootstrapped standard errors in parentheses. Equally dis-
tributed equivalents and inequality indexes assume translatable
preferences calculated using κ(−0.25). Hispanic includes peo-
ple of all races who claim Hispanic ethnicity. All races are non-
Hispanic. 	 p < 0.10, 		 p < 0.05, 			 p < 0.01.
Source: Author calculations, based on data from U.S. EPA.

Consider the candidate function

�K+(x̂ · 1 − x) = 1
κ

ln
1
N

N∑
n=1

eκ[x̂−xn]; κ < 0, (A9)

Table AII. Policy Rankings by Fatal Cancer Cases per Million

Baseline Proposal NAF Difference
(a) (b) (c) (b)–(a)

Panel A. Equally distributed equivalents
Race/Ethnicity

Black 1.578 1.477 1.244 −0.101		

(0.030) (0.000) (0.003) (0.031)
Hispanic 1.737 1.631 1.377 −0.106			

(0.031) (0.000) (0.020) (0.031)
Native American 1.473 1.398 1.228 −0.075	

(0.020) (0.023) (0.017) (0.043)
White 1.376 1.305 1.129 −0.071			

(0.009) (0.001) (0.021) (0.010)
Other 1.582 1.486 1.255 −0.096		

(0.026) (0.009) (0.008) (0.035)Income
Above poverty 1.447 1.369 1.175 −0.078			

(0.015) (0.001) (0.018) (0.016)
Below poverty 1.634 1.525 1.289 −0.108			

(0.023) (0.003) (0.003) (0.026)
Income unknown 1.753 1.657 1.442 −0.096		

(0.021) (0.018) (0.000) (0.039)
Total 1.473 1.391 1.192 −0.082			

(0.016) (0.001) (0.016) (0.018)

Panel B. Inequality indexes

Race/Ethnicity
Black 0.259 0.197 0.084 −0.061		

(0.023) (0.003) (0.006) (0.019)
Hispanic 0.310 0.247 0.121 −0.064			

(0.021) (0.002) (0.017) (0.019)
Native American 0.209 0.168 0.090 −0.042

(0.011) (0.016) (0.000) (0.027)
White 0.240 0.199 0.114 −0.040			

(0.004) (0.005) (0.002) (0.010)
Other 0.240 0.184 0.077 −0.056		

(0.016) (0.008) (0.001) (0.024)Income
Above poverty 0.252 0.207 0.113 −0.045			

(0.009) (0.004) (0.005) (0.013)
Below poverty 0.280 0.213 0.095 −0.068			

(0.019) (0.001) (0.004) (0.018)
Income unknown 0.159 0.107 0.018 −0.051		

(0.020) (0.002) (0.000) (0.018)
Total 0.257 0.208 0.111 −0.048			

(0.011) (0.003) (0.005) (0.014)

Notes: Bootstrapped standard errors in parentheses. Equally dis-
tributed equivalents and inequality indexes assume translatable
preferences calculated using κ(−0.75). Hispanic includes peo-
ple of all races who claim Hispanic ethnicity. All races are non-
Hispanic. 	 p < 0.10, 		 p < 0.05, 			 p < 0.01.
Source: Author calculations, based on data from U.S. EPA.

= x̂ + 1
κ

ln
1
N

N∑
n=1

e−κxn . (A10)

By Equation (A9),

�K+(x̂ · 1 − x) = x̂ − �K−(x), (A11)
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with both �K+(x̂ · 1 − x) and �K−(x) satisfying trans-
latability, and the mirror property is satisfied. �
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