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Abstract
The genome sequence of Catopsilia pomona nucleopolyhedrovirus (CapoNPV) was deter-

mined by the Roche 454 sequencing system. The genome consisted of 128,058 bp and

had an overall G+C content of 40%. There were 130 hypothetical open reading frames

(ORFs) potentially encoding proteins of more than 50 amino acids and covering 92% of the

genome. Among all the hypothetical ORFs, 37 baculovirus core genes, 23 lepidopteran

baculovirus conserved genes and 10 genes conserved in Group I alphabaculoviruses were

identified. In addition, the genome included regions of 8 typical baculoviral homologous

repeat sequences (hrs). Phylogenic analysis showed that CapoNPV was in a distinct

branch of clade “a” in Group I alphabaculoviruses. Gene parity plot analysis and overall sim-

ilarity of ORFs indicated that CapoNPV is more closely related to the Group I alphabaculo-

viruses than to other baculoviruses. Interesting, CapoNPV lacks the genes encoding the

fibroblast growth factor (fgf) and ac30, which are conserved in most lepidopteran and Group

I baculoviruses, respectively. Sequence analysis of the F-like protein of CapoNPV showed

that some amino acids were inserted into the fusion peptide region and the pre-transmem-

brane region of the protein. All these unique features imply that CapoNPV represents a

member of a new baculovirus species.

Introduction
Members of the family Baculoviridae are rod-shaped, insect-specific viruses with double-
stranded large circular DNA genomes of 80–180 kb [1, 2]. Lepidopteran baculoviruses synthe-
size two progeny phenotypes, the budded virus (BV) and occlusion-derived virus (ODV).
Virus particles of the latter phenotype are embedded into occlusion bodies (OBs) [3], which
offer some protection against environmental inactivating conditions such as UV light, heat and
desiccation.
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Baculoviridae contains four genera: Alphabaculovirus [nucleopolyhedroviruses (NPVs) of
lepidopteran insects], Betabaculovirus [granuloviruses (GVs) of Lepidoptera], Gammabaculo-
virus (NPVs of Hymenoptera) and Deltabaculovirus (NPVs of Diptera) [4, 5]. The alphabacu-
loviruses can be further divided into Group I and Group II, based on phylogenetic analysis and
their membrane fusion proteins. Group I viruses use GP64 as the fusion protein while Group II
viruses use F-protein instead [6–8]. Phylogeny analysis suggested that Group I fall into two
clades, “a” and “b” [9]. Despite the diversity in gene content of baculovirus genomes, 37 have
been identified as core genes present in all sequenced baculoviral genomes and play very
important roles in the viral replication cycle [10]. In addition, there are 23 genes conserved in
all sequenced lepidopteran baculoviruses (NPVs and GVs) and 11 are specific to Group I [10–
13].

Catopsilia pomona (Lepidoptera: Pieridae) is distributed in Asia and Australia. In Mainland
China, it is present mainly in the provinces of Hainan, Guangdong, Guangxi, Yunnan, and
Fujian. It is harmful to Kassod tree, Wing-podded Senna, golden shower, pockwood and other
tropical plants[14]. Larvae feed on young leaves and during outbreaks, the trees are stripped of
foliage totally. In Hainan Province, the insect has 13–14 generations a year, causing damage all
year round [15]. CapoNPV was isolated from dead Catopsilia pomona larvae in Hainan in
1990 [15].

So far, 78 baculoviruses have been fully sequenced, including 19 Group I alphabaculo-
viruses, 35 Group II alphabaculoviruses, 20 betabaculoviruses, 3 gammabaculoviruses and 1
deltabaculovirus (http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10442,
and S1 Table). In this study, the complete genomic sequence of CapoNPV was determined
and analyzed. Phylogenetic analysis suggested that this virus is a distinct species in Group I
Alphabaculovirus.

Results and Discussion

Sequencing and genome characteristics
The complete nucleotide sequence of CapoNPV genomic DNA was determined using 454 pyr-
osequencing method. The sequences were assembled using the Roche GS De Novo Assembler
version 2.7. The genome was covered 350 times by 123,698 reads. It consists of 128,058 bp in
length and contains 130 predicted ORFs with a G+C content of 40% (S2 Table). The adenine
residue of the translation initiation codon of polyhedrin with a forward orientation was desig-
nated as the zero point on the circular genome map. Sixty-nine ORFs were in a clockwise direc-
tion and 61 in a counterclockwise direction with respect to the transcriptional orientation of
polyhedrin. The 37 core genes (red), 23 lepidopteran baculovirus conserved genes (blue) and 10
Group I specific genes (green) are illustrated on the genome map (Fig 1). Another 56 baculo-
viral genes and 4 hypothetical CapoNPV unique genes are shown in grey and open arrows,
respectively (Fig 1).

Phylogenetic analysis of CapoNPV
A phylogenetic tree built with linked 37 core genes from 79 sequenced baculoviruses (S1 Table)
classified CapoNPV into clade “a” of Group I (Fig 2). It is located on a distinct branch in clade
“a”alphabaculoviruses, which is consistent with a previous phylogenetic analysis based on poly-
hedrin/granulin, lef-8 and lef-9 [9]. CapoNPV appeared to have diverged shortly after the sepa-
ration of clades “a” and “b” and may be closer to an ancestral virus than most species in the
two clades. This situation is similar to a newly sequenced Cyclophragma undans nucleopolyhe-
drovirus (CyunNPV) (data not shown).
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Comparison of CapoNPV ORFs to other baculoviruses
CapoNPV genes were compared to homologues in 7 other well characterized baculoviruses;
Autographa californica MNPV(AcMNPV, belonging to Group I, clade “a”), Orgyia pseudotsu-
gata MNPV, (OpMNPV, Group I, clade “b”), Helicoverpa armigera NPV(HearNPV, Group

Fig 1. The circular map of CapoNPV.ORFs and direction of transcription are indicated by arrows. The colors represent gene types: red for core genes,
blue for lepidopteran conserved genes, green for Group I specific genes, grey for other baculoviral genes. Open arrows represent hypothetical unique
genes of CapoNPV.Hrs are represented by pink square boxes. The collinear region conserved in lepidopteran baculoviruses is also indicated.

doi:10.1371/journal.pone.0155134.g001
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Fig 2. Phylogenetic tree. Phylogenetic analysis was performed using amino acid sequence alignments of
the combined 37 core genes from 79 sequenced baculoviruses with Maximum Likelihood method. It is tested
by Bootstrap method with a value of 1000. Numbers at nodes indicate bootstrap scores, only the value >50%
are shown. CapoNPV is highlighted in bold.

doi:10.1371/journal.pone.0155134.g002

Genome Sequence of CapoNPV

PLOSONE | DOI:10.1371/journal.pone.0155134 May 11, 2016 4 / 12



II), Spodoptera exigua MNPV (SeMNPV, Group II), Cydia pomonella GV (CpGV, a betabacu-
lovirus), Neodiprion lecontei NPV (NeleNPV, a gammabaculovirus) and Culex nigripalpus
NPV (CuniNPV, a deltabaculovirus) (S2 Table). Most of the CapoNPV genes shared nt iden-
tity lower than 63% with the alphabaculoviruses and lower than 35% with that of beta-,
gamma- and deltabaculoviruses (S2 Table).

Gene order of CapoNPV was compared to the above baculovirus genomes using gene parity
plots [16]. Although CapoNPV is a distinct species in Group I, its gene order is substantially col-
linear with representatives of Group I alphabaculoviruses and partially collinear with those
from Group II alphabaculoviruses. However, its gene arrangement was significantly different
from that of gamma- and deltabaculoviruses (Fig 3). A collinearly conserved region of lepidop-
teran baculoviruses was also found in CapoNPV between capo43 to capo75 (Fig 1). It contains
20 core genes and five additional lepidopteran baculovirus conserved genes, and also includes
two Group I specific genes, ac73 (capo69) and ac72 (capo70), and six other genes ac91 (capo58),
cg30 (capo57), ac87 (capo58), ac79 (capo63), ac74 (capo68) and iap-2 (capo71) (Fig 1).

Regions of homologous repeated sequences
Homologous repeated sequences (hrs) of baculoviruses consist of a number of repeated
sequences with an imperfect palindrome, interspersed at different locations in a genome. Hrs
are highly variable, and although they are closely similar within the same genome, they
may show very limited homology among different viruses. Sixty-four of the 79 completely
sequenced baculoviral genomes contain 2–17 hrs (S1 Table). Previous studies suggested that
hrsmay act as origins of DNA replication [17, 18]. However, deletion of individual hrs from
the AcMNPV genome does not appear to affect genome replication [19]. The hrs also acted as
enhancers of gene expression and appeared to up-regulate the expression of the AcMNPV
immediate early gene-1 (ie-1) [20–22]. The locations and the sequences of the 8 CapoNPV hrs
are summarized in Figs 1 and 4, respectively.

Gene content of CapoNPV
CapoNPV contains 12 replication associated genes, 12 transcription associated genes, 8 genes
essential for oral infection, 34 structure related genes and 15 auxiliary genes (Table 1). The rest
are 45 of unknown function including 4 hypothetical unique genes of CapoNPV.

CapoNPV lacks fibroblast growth factor gene (fgf). FGF plays an important role in
developmental processes affecting cell growth, differentiation, and motility and is one of the
conserved proteins in vertebrates and invertebrates [23]. Lepidopteran baculoviruses also
encode fgf, and it was previously found conserved in all the lepidopteran baculoviruses [9]
except in Maruca vitrata nucleopolyhedrovirus (MaviNPV) [12]. Although deletion of fgf from
AcMNPV had no effect on replication in tissue culture cells, bioassays showed that time of
death in larvae was delayed [24]. It has been suggested that FGF may play a role in dissemina-
tion of the virus within the host insect [25]. Recent evidence suggests that FGF initiates a cas-
cade of events that may accelerate the establishment of systemic infections [26]. In our study,
fgf was not found in the CapoNPV genome.

CapoNPV lacks ac30, a gene specific to Group I. In the previous report, 11 genes (gp64,
tyrosine phosphatase gene (ptp), ie2, odv-e26, ac5, ac30, ac73, ac72, ac114, ac124, ac132) have
been identified as specific to Group I viruses and are absent from all other baculoviruses [13].
These genes might have had an evolutionary role in the emergence of Group I viruses [13, 27].
Notably absent from CapoNPV is a homologue to ac30. This gene seems to be nonessential
because deletion thereof did not affect the production of BmNPV [28]. Interestingly,
CyunNPV, a member of Group I also lacks ac30 (data not shown).
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CapoNPV lacks lef-7, a gene involved in DNA replication. lef-7 had stimulatory effects
on transient DNA replication [29]. It is present in all previously identified Group I viruses, sev-
eral Group II viruses and many betabaculoviruses. Deletion of lef-7 from AcMNPV had no
impact on virus infection in Tn368 cells, but in SF21 and SE1c cells the viral DNA replication
was reduced to only 10% of the wild-type virus [30], suggesting the function of LEF7 is host
dependent. lef-7 was also found to be involved in the regulation of the DNA damage response
(DDR). Deletion of lef-7 from the AcMNPV genome caused the activation of the DDR, and
progeny infectious virus decreased about 99% [31]. CapoNPV is the first reported group I virus
that does not contain a lef-7 gene.

CapoNPV lacks ODV-E66, a structure protein of ODV involved in oral infection.
ODV-E66 was identified as a component of ODV envelopes [32]. AcMNPV ODV-E66 was
shown to have chondroitinase activity [33] and its crystal structure was determined [34]. It was
suggested that ODV-E66 may function in midgut infection by degrading the peritrophic mem-
brane, which contains a low level of chondroitin sulfate [33]. In fact deletion of odv-e66 in

Fig 3. Gene parity plot analysis.Gene parity plots of CapoNPV against representative baculoviruses: AcMNPV
(Group I clade “a”), OpMNPV (Group I clade “b”); HearNPV (Group II); CpGV (a betabaculovirus), NeleNPV (a
gammabaculovirus) and CuniNPV (a deltabaculovirus). CapoNPVORFs are on the X axis. The red line and arrow
point to the collinearly conserved region.

doi:10.1371/journal.pone.0155134.g003
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AcMNPV increased the oral infection dose about 1000 times while did not changed the infec-
tivity of BV, suggesting ODV-E66 is an important oral infectivity factor [35]. Odv-e66 is pres-
ent in most alphabaculoviruses and betabaculoviruses, however, it was not found in CapoNPV
genome.

F-like protein
A characteristic feature of Group I viruses is the presence of GP64 and the loss of fusion func-
tion of F. Except for gammabaculoviruses and Group I viruses, the F protein functions as the
envelope fusion protein of BV. In AcMNPV, the F-like protein is also associated with BV mem-
branes and its deletion from the genome results in infectious virus with titers similar to the
parental virus in cell cultures, but the time to kill larvae is somewhat extended [36].

Previous studies showed the importance of the furin cleavage site in the fusion process.
Furin protease digests F into two components, a small N-terminus membrane-anchored F2
and a large domain F1 at the C-terminus. Both are needed for viral-host membrane fusion [7,
37]. The F-like protein in Group I viruses lacks the furin cleavage site and, therefore, lost its
fusion function. Instead, GP64 functions as an efficient envelope fusion protein [38–40].

In our study on F-like protein in CapoNPV, an insertion was found in the region equivalent
to the fusion peptide (Fig 5). We also found another stretch of amino acids are inserted ahead
of the pre-transmembrane domain (pre-TM) of CapoNPV (Fig 5). Sometimes, pre-TM
domain, which is rich in aromatic amino acids, plays an important role in membrane fusion
[41–44]. Similar insertions into the fusion peptide region and the pre-TM were also found in
CyunNPV (data not shown).

According to phylogeny (Fig 2), CapoNPV evolved relatively earlier than other Group I
alphabaculoviruses. Thysanoplusia orichalcea nucleopolyhedrovirus (ThorNPV), another rela-
tively early member of Group I (Fig 2) also has an insertion at the fusion peptide region (Fig 5).
The change of viral fusion ability mediated by the presence of GP64 and the inactivation of F
are considered critical events in the origination of Group I [13]. Our results provide new evi-
dence in the understanding of the process of F inactivation and, therefore, the early evolution-
ary events of Group I alphabaculoviruses.

Fig 4. Sequence alignment of CapoNPV hrs. Black background shows greater than 80% identity among compared regions,
dark gray and light gray shows greater than 50% and 30% identity, respectively. Palindromes are indicated below the alignments.

doi:10.1371/journal.pone.0155134.g004
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Materials and Methods

Viral DNA Extraction
CapoNPV infected Catopsilia pomona larvae have been preserved in the ‘‘Chinese general
virus collection center” (CGVCC) with collection number IVCAS 1.0228. OBs were purified
from homogenized larvae by differential centrifugation [46] and DNA was extracted as
described previously [47].

Sequencing and Bioinformatics Analyses
The genome of CapoNPV was sequenced with the Roche 454 GS FLX+ system by using a shot-
gun strategy. The determined nucleotide sequences were assembled with GS De Novo Assem-
bler software version 2.7. The complete genome sequence and annotation information were
submitted to GenBank (accession number: KU565883).

Table 1. Gene contents of CapoNPV*.

Gene types Core genes Lepidoptera conserved
genes

Other baculoviral genes Missing genes

Replication alk-exo(capo21), dna polymerase
(capo75), helicase(capo50), lef1
(capo124), lef2(capo130)

dbp(capo112), ie-1(capo11),
lef3(capo73), lef11(capo101),
me53(capo18)

ac79(capo63), lef12(capo96) lef7

Transcription lef4(capo55), lef5(capo47), lef8(capo90),
lef9(capo79), p47(capo97), vlf-1(capo65)

39k(capo102), lef6(capo109),
pk-1(capo3)

exon0(capo17), ie-2(capo7), pe38(capo6)

Structure 38k(capo48), 49k(capo16), ac53(capo87),
ac78(capo64), ac81(capo61),
desmoplakin(capo74), gp41(capo62),
odv-e18(capo15), odv-e25(capo51), odv-
ec27(capo14), odv-ec43(capo39), p18
(capo52), p33(capo53), p40(capo45),
p48/p45(capo43), p6.9(capo46), vp1054
(capo86), vp39(capo56), vp91/p95
(capo59)

F(capo116), fp/25k(capo80),
p12(capo44), p24(capo25),
polyhedrin(capo1), tlp-20
(capo60)

calyx/pep(capo23), cg30 (capo57), gp16
(capo24), gp64(capo26), odv-e26
(capo122), p10(capo20), p78/83(capo2),
pkip(capo115), vp80(capo42)

odv-e66

Oral
infection

p74(capo19), pif1(capo30), pif2(capo117),
pif3(capo33), pif4(capo49), pif5(capo10),
pif6(capo72)

sf58(capo40)

Auxiliary 38.7k(capo125), ADPRase
(capo100), ubiquitin(capo103)

arif(capo118), bro-a(capo99), chitinase
(capo114), djbp(capo89), egt(capo123),
gp37(capo77), ptp(capo127), iap-1
(capo110), iap-2(capo71), sod(capo107),
trax-like(capo92), cath(capo113)

ac105, ac30,
ctl, fgf, gta,
MTase, p26,
p94

Unknown ac106(capo41), ac108
(capo40), ac145(capo13),
ac146(capo12), ac75
(capo67), ac76(capo66)

ac11(capo126), ac110(capo38), ac111
(capo37), ac113(capo36), ac114(capo34),
ac117(capo32), ac12(capo98), ac120
(capo29), ac122(capo28), ac124(capo27),
ac132(capo22), ac149(capo9), ac150
(capo8), ac154(capo5), ac17(capo121),
ac18(capo120), ac19(capo119), ac26
(capo111), ac29(capo108), ac34(capo104),
ac4(capo128), ac43(capo95), ac44
(capo94), ac45(capo93), ac48(capo91),
ac5(capo129), ac52(capo88), ac55
(capo85), ac56(capo84), ac57(capo83),
ac59(capo82), ac72(capo70), ac73
(capo69), ac74(capo68), ac87(capo58),
ac91(capo54), capo105, capo4, capo76

* The CapoNPV hypothetical unique genes (capo31, capo35, capo78 and capo106) are not included.

doi:10.1371/journal.pone.0155134.t001
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Putative ORFs were analyzed using the FGENESV0 program (http://www.softberry.com/
berry.phtml) [48] and the NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html).
ORFs potentially encoding more than 50 amino acids were designated as putative genes with
minimal overlaps. Gene parity plot analysis was performed as previously described [17, 49].
The Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html) was used to locate hrs. Gene
annotation, comparisons were done with the aid of NCBI BLAST algorithm (http://blast.ncbi.
nlm.nih.gov/Blast.cgi).

Phylogenetic Analysis
A phylogenetic tree was generated based on amino acid sequences encoded by the 37 core
genes from CapoNPV and that of the other 79 reference genome sequences of baculoviruses in
NCBI (S1 Table). All the sequences were joined together in the same order and the alignments
were generated using muscle method of MEGA6 with default settings. A phylogenetic tree was
constructed by MEGA6 using Maximum Likelihood method based on the JTT matrix-based
model [–50]. Phylogeny tested by Bootstrap method with a value of 1000 [51].

Fig 5. The amino acid alignment of F and F-like proteins. The alignment was performed using ClusterWmethod. A
schematic figure of SeMNPV F protein was adapted from a previous publication [45] and is shown at the bottom, and two
enlarged regions with sequence alignments are also shown. Viral names and categories are on the left. The predicted regions
of furin cleavage site, fusion peptide, pre-TM and transmembrane domains are indicated below the alignment. The red
square shows the aromatic amino acids (F, Y, W and H) in the pre-TM region. The arrows point to the insertion regions in
CapoNPV. Black background shows greater than 80% identity among compared regions, dark gray and light gray shows
greater than 50% and 30% identity, respectively.

doi:10.1371/journal.pone.0155134.g005
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