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Resistant ovary syndrome:
Pathogenesis and management
strategies
Zhenni Mu, Sinan Shen and Lei Lei*

College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese
Medicine, Changsha, China

Resistant ovary syndrome (ROS) is a rare and difficult gynecological endocrine

disorder that poses a serious risk to women’s reproductive health. The

clinical features are normal sex characteristics, regular female karyotype,

and usual ovarian reserve, but elevated endogenous gonadotropin levels and

low estrogen levels with primary or secondary amenorrhea. Although there

have been many case reports of the disease over the past 50 years, the

pathogenesis of the disease is still poorly understood, and there are still no

effective clinical management strategies. In this review, we have collected all

the current reports on ROS and summarized the pathogenesis and treatment

strategies for this disease, intending to provide some clinical references for the

management and treatment of this group of patients and provide the foothold

for future studies.
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Introduction

Resistant ovary syndrome (ROS), also known as ovarian insensitivity syndrome or
Savage syndrome, is a rare gynecological condition with heterogeneous etiology that was
first identified and named by de Moraes-Ruehsen and Jones (1).

Patients present clinically with primary or secondary amenorrhea before the age of
30 years of age, with a low response to exogenous gonadotropins and biochemical tests
suggesting elevated endogenous gonadotropin levels and low estrogen levels. Moreover,
ROS patients present with normal karyotype and normal ovarian reserve, i.e., normal
Anti-Mullerian Hormone (AMH) and inhibin B (INB) levels, and with normal numbers
of small follicles on vaginal ultrasound and laparoscopic ovarian histology (2–4).

According to the World Health Organization (WHO) classification (5), ROS belongs
to type III amenorrhea characterized by hypergonadotropic hypogonadism (6, 7). It
is often difficult to distinguish clinically from primary ovarian insufficiency (POI) or
premature ovarian failure (POF) and is considered a subtype of POI or POF.
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Etiology and pathogenesis

Current research on ROS is still in its preliminary stage.
Given its low prevalence, it has predominantly been reported
as scattered cases, and no large sample-size studies have been
conducted. Studies on the mechanism have mostly focused
on gonadotropin pre-receptor and partial receptor levels.
Deficiency of follicle-stimulating growth factors, mutations in
the follicle-stimulating hormone (FSH) receptor or beta subunit,
abnormal gonadotropin signaling, and autoimmune problems
are potential causes of this disorder. It has been established that
the mechanism of ROS involves the failure of gonadotropins to
act effectively on the follicles. Accordingly, the follicles fail to
develop normally and stagnate in a resting state.

Inactive mutations of
follicle-stimulating hormone

Current evidence suggests that primordial follicles develop
to the primary stage mediated by the PI3K/AKT/mTOR
signaling pathway (8) (initial recruitment), while most
primordial follicles remain inhibited until they receive
activation signals. Once growth begins, the primordial follicles
develop into sinus follicles in response to local cellular
regulators in the ovary, such as keratinocyte growth factor
(KGF) (9), platelet-derived growth factor (PDGF) (10), basic
fibroblast growth factor (bFGF) (11), and so on. Although
most early sinus follicles undergo atresia, at least one sinus
follicle will progress to preovulation (circulating recruitment)
under pituitary FSH and luteinizing hormone (LH) stimulation
(12). During the later stages of follicular development, FSH
provides the primary stimulus (13, 14; Figure 1). Intriguingly,
inactivating FSH mutations result in many sinus follicles
developing without the support of endogenous FSH and failing
to develop into dominant follicles, remaining in the primary
stage. Clinically, several small follicles without dominant
follicles can be observed under vaginal B-ultrasound.

Abnormalities in the regulation of
follicle-stimulating factors

Besides FSH, C-type natriuretic peptide (CNP) is a follicle-
stimulating factor that has been identified in recent years (12,
15). CNP belongs to the natriuretic peptide family and is
characterized by a highly conserved 17-membered ring structure
formed by intramolecular disulfide bonds (16). It was found that
the precursor protein natriuretic peptide precursor C (NPPC)
of CNP and its cognate receptor natriuretic peptide receptor-
B (NPRB) were expressed in sinus follicles and preovulatory
follicles (17). CNP is produced by the sinus follicle and binds
to its receptor to stimulate follicle development by activating
the guanylate cyclase coupled receptor to produce cyclic

guanosine monophosphate (cGMP) (18, 19). In addition, in
the preovulatory follicle, CNP stimulates cGMP production by
activating NPRB, which is expressed by perivitelline and oocyte-
associated cumulus cells (CCs) and diffuses into oocytes via
gap junctions (20). In oocytes, cGMP inhibits phosphodiesterase
3A, thereby preventing cAMP hydrolysis (20). Overwhelming
evidence suggests that adenosine 3′, 5′-cyclic phosphate (cAMP)
is a second messenger in various central cellular functions. In the
ovaries, cAMP regulates ovulation, enhances primordial follicle
growth, and provides a key signal for gonadotropin action
on the gonads. High levels of cAMP can promote growth in
primordial follicles (21) and inhibit oocyte maturation (20). Sato
et al. (18) reported that daily injections of CNP to infant mice
could promote follicle growth, and ovulation was successfully
induced by gonadotropins. This was also demonstrated by in
vitro studies (22). This finding suggests that CNP is essential for
follicular growth and development. Regional follicular growth
and development in ROS patients may be related to the
abnormal regulation of this factor (Figure 2).

Mutations in the follicle-stimulating
hormone receptor gene

The interaction of FSH with its receptor is critical for follicle
development and maturation. Interestingly, any variation in the
FSHR genotype may alter the receptor’s ability to bind FSH and
induce downstream signaling pathways. Inactivating mutations
in the FSHR gene have been associated with loss of ovarian
function in women, and these mutations lead to impaired
receptor function (23). Abel et al. (24) found that follicles
developed to the antral follicle stage in mice with disrupted
FSHR gene, suggesting that the FSHR defect does not affect the
development of the antral follicle, accounting for a large number
of primordial follicles in the ovary of ROS patients with no sinus
follicle development.

It is well-established that mutations in the FSHR are rare,
and only 25 loss-of-function mutations in FSHR have been
found in women with ovarian dysgenesis, primary amenorrhea,
and secondary amenorrhea (Table 1). Of these, the C 566 T
mutation is only seen in Finns, suggesting a possible interethnic
difference (25). Mutations in the FSHR gene are reportedly rare
in UK women with ROS (26). However, most studies had small
sample sizes and did not provide robust evidence that FSHR
gene polymorphisms have pathophysiological significance in
ovarian function.

Abnormal regulation of granulocyte
proliferation factors

At least three oocyte-derived factors have been shown
to promote the growth of granulosa cells, including
R-spondin2, growth differentiation factor 9 (GDF9), and
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FIGURE 1

Hormonal regulation of follicle growth and expulsion. Primordial follicles are regulated by the PI3K/AKT/mTOR signaling pathway to a primary
stage of development, followed by the development of sinus follicles by the action of follicle-stimulating hormone (FSH) and local cellular
regulators. Eventually, the oocyte matures under the influence of LH, and ovulation occurs.

FIGURE 2

C-type natriuretic peptide (CNP) is an important follicle growth regulator secreted by granulosa cells in secondary and sinus follicles in response
to follicle-stimulating hormone (FSH) stimulation. Cyclic guanosine monophosphate (cGMP) and cyclic phosphate (cAMP) levels are regulated
by CNP in combination with natriuretic peptide receptor-B (NPRB), thereby regulating follicle development and maturation.

bone morphogenetic protein 15 (BMP15) (12). Studies in mice
have revealed that the transcripts of R-spondin2 are only present
in primary oocytes and oocytes of larger follicles but not in the
initiating follicles (44). The decrease of R-spondin2 level may

lead to failure of follicle development in the late reproductive
phase (12), which may contribute to the fact that in ROS
patients, during repeated ovulation stimulation, even when
follicles develop, they reach atresia occurs before dominance. If
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TABLE 1 Inactivating mutations of follicle-stimulating hormone receptor (FSHR) previously reported in women with ovarian dysgenesis, primary
amenorrhea, and secondary amenorrhea.

No. Nucleotide change
(exon number)

Amino acid change Phenotype of subjects References

1 c.566C>T (exon 7) p.Ala189Val Primary amenorrhea with increased
serum FSH levels

(27)

2 c.662T>G (exon 8) p.Val221Gly Primary amenorrhea (28)

3 c.671A>T (exon 7)
c.1801C>G (exon 10)

p.Asp224Val
p.Leu601Val

Primary amenorrhea with increased
serum FSH levels

(23)

4 c.1043C>G (exon 10) p.Pro348Arg Primary amenorrhea with increased
serum FSH levels

(29)

5 c.1255G>A (exon 10) p.Ala419V al Primary amenorrhea with increased
serum FSH levels

(30)

6 c.1555C>A (exon 10) p.Pro519Thr Primary ovarian failure with increased
FSH levels

(31)

7 c.1760C>A (exon 10) p.Pro587His Primary amenorrhea (32)

8 c.1723C>T (exon 10) p.Ala575Val Primary amenorrhea with
hypergonadotropic hypogonadism

(25)

9 c.175C>T (exon 2) p.Arg59Term Primary ovarian insufficiency with
increased serum FSH levels

(33)

10 c.1222G>T (exon 10) p.Asp408Tyr Primary amenorrhea with increased
serum FSH levels

(34)

11 c.1253T>G (exon 10) p.Ile418Ser Primary ovarian failure and
hypergonadotropic hypogonadism

(35)

12 c.1298C>A (exon 10) p.Ala433Asp Hypergonadotropic hypogonadism (36)

13 c.419delA
c.1510C>T

c.44G>A (exons 1 and 2)

p.Lys140Argfs*16
p.Pro504Ser
p.Gly15Asp

Primary ovarian insufficiency with
resistant ovary syndrome

(37)

14 I423T (exon 10) – Primary amenorrhea with primary
ovarian failure

(38)

15 c.479C>T (exon 6)
c.1717C>T (exon 10)

p.Ile160Thr
p.Arg573Cys

Secondary amenorrhea with increased
serum FSH levels

(39, 40)

16 c.182T>A (exon 2)
c.2062C>A (exon 10)

p.Ile61Asn
p.Pro688Thr

Secondary amenorrhea with resistant
ovary syndrome

(41)

17 c.793A>G (exon 9)
c.1789C>A (exon 10)

p.M265V
p.L597I

Secondary amenorrhea with premature
ovarian insufficiency

(42)

18 c.646G>A (exon 8)
c.1313C>T (exon 10)

p.Gly216Arg
p.Thr438Ile

Secondary amenorrhea with premature
ovarian insufficiency

(43)

similar R-spondin2 effects are identified in humans, R-spondin
agonists could provide a new therapeutic approach for infertile
women (12).

In addition to R-spondin2, GDF9 and BMP15 are local
factors produced by oocytes that stimulate follicle development.
They are members of the TGF-β superfamily of cystine
junctional proteins (45) and bind to receptor serine kinases
(RSK) to stimulate downstream signaling (46). Both factors
bind to type II RSK BMP receptor II (47) and recruit type I
RSK for GDF9, and BMP15 to regulate downstream SMAD
proteins in granulosa cells. Current evidence suggests that
GDF9 treatment enhances the growth and differentiation of
cultured prezygotic follicles (48). In vivo, treatment with GDF9
promotes the development of primordial follicles to primary
and antral follicles (49). GDF9 also has antiapoptotic effects
during early sinus follicle development (50). In the ovaries of

ROS patients, follicles are often present in the primordial state,
which may be associated with a lack of or abnormal regulation
of the GDF9 factor.

Immunity-related issues

Many studies have shown that the pathogenesis of ROS is
related to immune factors. Most studies found that patients
with ROS may have autoantibodies against FSHR that block
the ovarian response to gonadotropin stimulation (51–55).
In this respect, Rogenhofer et al. (6) identified antibodies
against human menopausal gonadotropin (HMG) that were not
recombinant-FSH (re-FSH) in a patient with ROS. It has also
been found that IgG can block DNA synthesis of granulosa cells
stimulated by FSH in ROS patients (56). In addition, Chiauzzi
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et al. (52) found immunoglobulin (Ig-FSHR) in the blood of
patients with ROS that inhibited the binding of FSH to its
receptor by detecting the level of circulating immunoglobulin
in patients with ROS. Escobar et al. (57) reported a case of
myasthenia gravis with ROS whereby a substance behaving
like gamma globulins could inhibit binding to FSH-specific
receptors in an in vitro system.

In contrast, Starup and Pedersen (58) found no circulating
gonadotropin antibodies in a 21 years-old woman with ROS.
Consistently, Board et al. (59) found no autoimmune antibodies
in ROS patients. Moreover, recent case reports of ROS in which
patients were examined for immune disorders showed no signs
of immune disorders (anti-nuclear antibodies, antiphospholipid
antibodies, lupus antibodies, antibodies to semicarbazide,
adrenocortical autoantibodies, steroid cell autoantibodies,
serum 21-hydroxylase, 17-hydroxylase, and P450 side-chain
cleavage enzyme autoantibodies were all negative) (60–62).

Management strategy

The clinical treatment varies for women of different ages,
with various complaints and other clinical manifestations.
For girls during puberty, the main aim is to promote the
development of secondary sexual characteristics, maintain
normal menstrual flow and protect the function of the
ovaries, mainly using hormone supplementation; for
women of childbearing age without fertility requirements,
the basic principle of treatment is to provide physiological
supplementation and prevent diseases in other systems caused
by hormone deficiency. In contrast, assisted reproductive
techniques such as ovulation promotion and in vitro culture of
immature oocytes can be performed for women of childbearing
age with fertility requirements. All specific treatment options
suggested are based on case reports (Figure 3).

Management strategy of resistant
ovary syndrome patients without
fertility requirements

Hormone replacement therapy
For adolescents or women of childbearing age who do

not require fertility, treatment of ROS usually begins with
hormone replacement therapy (HRT) to maintain normal
menstruation. Estrogen (e.g., estradiol valerate 2–4 mg/d) and
progestin (e.g., norgestrel 500 mg/d) are administered for 22–
28 days (63, 64). Withdrawal bleeding occurs on days 3–7 after
discontinuation, and the next cycle is administered on the 5th
day of menstruation, usually for three consecutive cycles. In
addition, short-acting oral contraceptive pills (OCP) can be used
to establish an artificial menstrual cycle for patients.

Treatment of resistant ovary syndrome
patients with fertility requirements

Hormone replacement therapy
For ROS patients with fertility requirements, ovulation

induction therapy or other assisted fertility methods are usually
performed based on HRT (usually ≥3 months). However, cases
of ROS having spontaneous pregnancies and successful live
births during or after treatment with HRT have been extensively
reported in the literature (63–68).

Mueller et al. (63) reported on a 26 years-old woman
with primary infertility with decreased serum FSH and
LH levels and increased levels of estradiol, progesterone,
and inhibin A during the third month of HRT, leading to
spontaneous follicular growth, maturation, and ovulation.
One cycle after discontinuation of the drug, there was
still spontaneous ovulation of follicles, and the patient
successfully conceived. Lim et al. (69) reported a 24 years-
old ROS woman with secondary amenorrhea and primary
infertility. After 2 months of cyclic estrogen-progestin
replacement therapy, insufficient inhibition of FSH and
LH was observed. Subsequently, she was prescribed 100 pg
of Ethinyl Estradiol daily for 23 consecutive months and
successfully conceived.

It is possible that exogenous estrogen suppressed excessive
gonadotropins in the body, resulting in increased sensitivity
of FSH receptors on follicular membrane cells and increased
sensitivity to gonadotropins, allowing follicles to become
sensitive to ovulatory drugs or spontaneously ovulate and
conceive (70). Although individual cases cannot indicate
whether the treatment was effective or occurred by chance, it
has been established that approximately 13% of ROS patients
can become pregnant spontaneously after low-dose HRT.
Accordingly, pregnancy is still possible after HRT treatment in
ROS patients (71).

Combined letrozole and human menopausal
gonadotropin for ovulation

Letrozole is a third-generation aromatase inhibitor, and
its peripheral action is key to the successful induction of
ovulation in patients with ROS. In the periphery, letrozole
blocks the conversion of androgens to estrogens at the
ovarian level by inhibiting aromatase activity, leading to a
transient accumulation of androgens in the ovary, which in
turn stimulates the expression of insulin-like growth factor
I and other autocrine and paracrine factors and increases
ovarian responsiveness to gonadotropins (72). The combination
of HMG and letrozole can maximize its effect and reduce
the dosage of HMG. Mu et al. (73) reported the successful
induction of dominant follicle development and ovulation in
a patient with ROS after ovulation promotion with letrozole
combined with HMG, resulting in the live birth of a
healthy male infant.
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FIGURE 3

The specific clinical treatments of resistant ovary syndrome (ROS) patients.

Laparoscopic ovarian incision
In recent years, laparoscopy has been widely used in

treating gynecological diseases due to its low invasiveness,
good surgical field, rapid healing, low risk of infection,
low impact on the abdominal organs and high safety
profile. LOI is a novel and simple laparoscopic procedure
that promotes follicular growth in patients with follicular
maturation disorders by mechanical damage to the ovarian
cortex (74) to provide the intrinsic stimulation needed for
dormant follicles.

Tanaka et al. (75) performed LOI in 11 patients with ROS,
followed by controlled ovarian hyperstimulation (COH) for at
least 1 year. Four ROS patients became pregnant and delivered
three healthy babies with one ongoing pregnancy.

Controlled ovarian hyperstimulation and
in vitro fertilization

Unlike conventional COH, the COH scheme of ROS
patients may be slightly different due to the lack of antibodies
or receptors in the ovary in ROS patients and there is no clear
clinical consensus on this.

Rogenhofer et al. (6) reported a 26 years-old woman with
secondary amenorrhea with fertility appeal that was given
HRT. On day 20 of the third cycle, Gonadotropin-releasing
hormone agonist (GnRH-a) was used for downregulation,
and 75IU rec-FSH-β and 225 IU HMG were injected
subcutaneously on day 10 of downregulation. Ultrasound
examination showed 12 dominant follicles 14 days after
treatment. Intracytoplasmic sperm injection (ICSI) was
performed after egg removal, and a boy was born naturally
after transplantation. The patient received a steady and
sustained suppression of gonadotropins, thus increasing
ovarian sensitivity, which may be attributed to pituitary
downregulation (76).

Controlled ovarian hyperstimulation and
in vitro fertilization combined with
glucocorticoids

Glucocorticoids (GC) are extremely important regulatory
molecules in the body and play an important role in
regulating the development, growth, metabolism and
immune function of the body. In clinical practice, they are
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widely used as anti-inflammatory and immunosuppressive
agents (77). Dexamethasone is a long-acting GC widely
used in allergic and autoimmune inflammatory diseases.
Li et al. (78) reported a case of ROS with serological
evidence of antibodies against FSHR, who eventually
achieved a live birth after ovarian stimulation combined
with dexamethasone treatment. Hydrocortisone is a short-
acting GC with anti-inflammatory and anti-allergic effects and
is widely used in immune disorders. Riestenberg et al. (79)
documented a case of Ig-FSHR-related POI initially resistant
to maximal dose gonadotropin stimulation that eventually
underwent successful COH and oocyte cryopreservation
using short-term high-dose prednisone for transient
immunosuppression. The above two cases indicate that
GC suppression of abnormal autoimmune antibodies may be
used for ROS treatment.

In vitro maturation of oocytes
In vitro maturation is a method of obtaining immature

cumulus-oocyte complexes from antral follicles with or
without ovulation medication, culturing them in vitro
under suitable conditions to mature to the MII stage,
followed by IVF/ICSI to achieve pregnancy (80). Indications
for IVM include cases of ROS with impaired oocyte
maturation. Since 2013, several cases of ROS in women
successfully conceiving following IVM have been reported
clinically (62, 81–87). Galvao et al. (83) reported that
nine patients with ROS underwent 24 IVM cycles and
found that the live birth rate was 16.7% per started
cycle and 33.3% per patient. Therefore, IVM offers a
meaningful approach to fertility claims in ROS patients,
but it is more costly.

Growth hormone combined with ovulation
induction

It is widely acknowledged that the reproductive and
growth axes often interact, and GH indirectly affects ovarian
development and its sensitivity to gonadotropins during
puberty through gonadotropins and insulin-like growth
factor 1 (IGF-I) (88). Growth hormone deficiency or
insufficiency leads to delayed puberty and affects normal
ovarian function. Studies in recent years have shown
that growth hormone can improve ovarian responsiveness,
promote endometrial growth, improve ovulation treatment
in patients with low ovarian response, and increase
pregnancy rates with cyclic ovulation. However, the use
of growth hormone in the promotion of ovulation in
patients with ROS warrants further investigation (89–
92). Mueller et al. (63) reported a case of ROS in which
follicle growth was not successfully induced with growth
hormone. There are no reports in the literature on the
effectiveness of growth hormones in promoting ovulation in
patients with ROS.

Dehydroepiandrosterone combined with
ovulation induction

Dehydroepiandrosterone (DHEA) is a steroid abundant
in human blood circulation (93). It enters the circulation
mainly in the form of DHEA sulfate (DHEA-S), which has
weak androgenic effects and is converted to testosterone
and estradiol in peripheral tissues (94). Interestingly,
Zangmo et al. (95) found an increase in the number
of oocytes, fertilization rates, and whole embryos in
IVF cycles in patients with poor ovarian response to
DHEA. Similarly, some studies confirmed that DHEA
could optimize the fertility of POI patients and lead to
successful pregnancy (96, 97). However, Wong et al. (98)
found no benefit of DHEA supplementation on functional
improvement in POI patients through a prospective
observational study.

Oocyte donation
With the development of assisted reproductive technology,

the technical challenges of oocyte donation have largely been
resolved, but the ethical issues it raises are also a hot topic
of the current debate on the technology (99). It is widely
thought that donor oocytes can be used for in vitro fertilization
transplantation only in ROS patients who have not responded
well to long-term ovulation-promoting drugs.

Other treatments

In addition to the above treatments, appropriate calcium
and vitamin D supplementation can prevent osteoporosis due
to estrogen deficiency in ROS patients (100); appropriate
psychological support is also helpful in restoring follicular
development and ovulation in ROS patients (101). In addition,
Chinese medicine has been reported to assist in treating ROS
patients via kidney tonification. However, specific treatment
effects need to be studied in large sample size studies.

Conclusion

Research is still ongoing to understand the complex
pathogenesis of ROS, given its intricacy. The exact mechanisms
remain largely unclear, and currently available approaches are
often ineffective. The heterogeneity in the etiology of ROS
account for the wide range of individual treatment options, and
treatment modalities such as psychological support, artificial
cycles, and ovulation promotion do not address the root of
the patient’s problem. The poor effectiveness of treatment is
often accompanied by the psychological and financial strain
of long-term medication on patients. Accordingly, an in-depth
understanding of the pathogenesis of the disease is an important
prerequisite for studying ROS management strategies. With the
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development of assisted reproductive technology, new assisted
reproductive methods such as IVM, GH, and DHEA addition
may be able to solve the fertility problems of this patient
population, but more comprehensive and effective management
strategies need to be further investigated.
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