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Aims There are a large number of common genetic variants that have been robustly associated with low-density lipopro-
tein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, or triglyceride concentrations. The majority of
these have been identified or confirmed in recent genome-wide association studies, but few studies have assessed
the combined effect of known lipid variants. We hypothesized that these variants would influence both the need
for interventions and myocardial infarction (MI) outcomes. We aimed to estimate combined effects of proven
SNPs on LDL, HDL, and triglyceride concentrations and MI history in a representative older population.

Methods
and results

In the InCHIANTI Study of Aging (age �65 years), we calculated individual dyslipidaemia risk allele counts for
increased LDL (range 4–14, n ¼ 594), reduced HDL (5–16, n ¼ 635), and increased triglycerides (7–16,
n ¼ 611). Lipid levels were compared with ATPIII National Cholesterol Education Panel (NCEP) intervention guide-
lines. Individual variants and the APOE haplotype explained ,2.1% of the variance in their respective lipid concen-
trations, with the exception of the CETP SNP rs1800775 and HDL levels (4.76%). Combined risk allele counts
outperformed the largest single-SNP effects for LDL (explaining 7.1% of variance) and triglycerides (4.8%), but
not HDL (3.4%). Risk alleles were divided as near as possible into quartiles. The 31% of respondents with 10 or
more LDL increasing alleles were more likely to have LDL levels above the intervention threshold (OR 3.00, 95%
CI 1.67–5.39, P ¼ 2.5 � 1024), compared with the 21% with 7 or less risk alleles. Similarly, the 35% with 13 or
more triglyceride risk alleles were more likely to exceed NCEP intervention thresholds (OR 2.98, 95% CI 1.43–
6.22, P ¼ 0.004) compared with the 24% with 10 or less alleles. The number of individuals reporting an MI event
was small (n ¼ 67), but an event was more common in the 36% of respondents who had the highest combined
risk allele score for all three lipids (OR 3.68, 95% CI 1.21–11.2, P ¼ 0.021) compared with the lowest risk 22%.

Conclusion In a representative older population, the cumulative effects of proven LDL- and triglyceride-altering genetic variants
increased the odds of crossing the lipid-level threshold for therapeutic intervention by approximately three-fold.
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Introduction
Raised total and low-density lipoprotein (LDL) cholesterol levels are
established risk factors for coronary artery disease (CAD), and inter-
ventions to lower these, most commonly statin treatment, are part of
standard medical practice.1 However, there is increasing evidence
that low levels of high-density lipoprotein (HDL) cholesterol are
an independent risk factor for cardiovascular disease2–5 and
stroke.6 In addition, there is some evidence that raised triglyceride
levels7,8 independently increase cardiovascular and diabetes risk.9,10

The National Institutes of Health Expert Panel on Detection,
Evaluation, and Treatment of High Blood Cholesterol in Adults11

recommended that lifestyle and treatment interventions should
be considered in individuals with LDL levels �130 mg/dL who
have two or more additional risk factors (e.g. smoking, hyperten-
sion, age, family history of CAD) and �160 mg/dL for individuals
with less than two additional risk factors. High-density lipoprotein
levels ,40 mg/dL were considered an additional risk factor for
CAD, whereas levels .60 mg/dL are protective. Women have a
higher recommended HDL threshold than men in the diagnosis
of metabolic syndrome (�50 mg/dL compared with �40 mg/dL,

respectively), due to the influence of oestrogen on HDL levels.
Treatment of triglyceride levels should be initiated when
.150 mg/dL, first using lifestyle intervention, but if levels exceed
200 mg/dL, drug treatment should also be considered.

Over the last 18 months, genome-wide association scans
(GWAS) have robustly identified or confirmed 21 independent var-
iants affecting LDL, HDL, and triglyceride levels.12,13 Most of these
variants are associated with small individual changes in their respect-
ive lipid levels and therefore studies have also assessed the impact of
combining information from many variants. There is no evidence for
interaction between individual variants, and a simple approach of
counting risk alleles has been adopted. For example, Kathiresan14

recently showed that an allele count combining nine variants for
LDL and HDL levels was associated with myocardial infarction
(MI) in a sample with a mean age of 57 years.

In our study, we aimed to assess the combined effect of the variants
identified/confirmed by GWAS to be associated with HDL, LDL, and
triglyceride levels in a representative older population. We examined
associations with recommended ‘need for intervention’ levels, and
history of MI in the population-based InCHIANTI Study of Aging.
As secondary outcomes, we also measured associations with stroke
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Table 1 Summary characteristics of the InCHIANTI study sample (aged �65 years)

Characteristic All Males Females

Number genotyped 635 274 361

Male 305 (43.4) — —

Mean age (years) 75.0 (7.4) 74.0 (6.9) 75.7 (7.7)

BMI (kg/m2) 27.4 (4.1) 27.1 (3.4) 27.6 (4.5)

Smokers 103 (14.7) 67 (22.0) 36 (9.1)

Alcohol (g/day) 13.8 (19.3) 23.1 (24.0) 6.6 (9.9)

Lipid levels (mg/dL)

Mean HDL 55.2 (15.1) 50.2 (12.5) 58.9 (15.7)

Low HDL levels �40 97 (13.8) 61 (20.7) 36 (9.1)

High HDL levels �60 244 (34.8) 70 (23.0) 174 (43.7)

Mean LDL 134.5 (33.3) 130.2 (33.1) 137.8 (33.2)

Borderline high LDL levels �130 390 (55.6) 159 (52.3) 231 (58.0)

High LDL levels �160 156 (22.2) 57 (18.8) 99 (24.9)

Mean triglyceride 128.6 (71.9) 133.7 (76.2) 124.7 (68.3)

Borderline high triglyceride levels �150 177 (25.2) 89 (29.3) 88 (22.1)

High triglyceride levels �200 78 (11.1) 46 (15.1) 32 (8.0)

Myocardial infarction history

Cases at baseline and within 6 year follow-up 67 (10.6) 35 (12.8) 32 (8.9)

Stroke history

Cases at baseline and within 6 year follow-up 57 (9.2) 33 (12.3) 24 (6.8)

Peripheral artery disease history

Cases at baseline and within 6 year follow-up 127 (21.6) 81 (31.2) 46 (13.9)

Hypertensives 135 (21.3) 43 (15.7) 92 (25.5)

Diabetics 64 (10.1) 30 (10.9) 34 (9.4)

Medication affecting lipid levelsa 68 (10.7) 23 (8.4) 45 (12.5)

All values are mean (SD) or n (%)
aIncludes those prescribed with diuretic and beta-blocker medication.
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and peripheral arterial disease, hypothesizing that lipid-altering SNPs
may be also associated with these vascular outcomes.

Methods

Study sample
The InCHIANTI Study of Aging recruited a total of 1453 individuals in
a population representative sample from two towns in Tuscany (Italy).
Of these, 1155 respondents were aged �65 years and were eligible for
inclusion in our study. The study design and protocol have been
described elsewhere.15 Subjects had an initial assessment at home
between September 1998 and March 2000, which was followed by
two separate clinic visits 2–3 weeks later. Follow-up assessments

were made in 2001–03 and 2004–06. DNA was extracted from
blood samples from the initial clinic visit, and all individuals in the
study were asked to give blood. The participants were all of white
European origin. The Italian National Institute of Research and Care
of Aging Ethical Committee approved the study.

Serum measures
Blood samples were collected in the morning after participants had
been fasting for at least 8 h and serum was separated. Commercial
enzyme tests (Roche Diagnostics, GmbH, Manheim, Germany) were
used to determine HDL and triglyceride levels, whereas LDL was
calculated from the Friedewald formula. Mean levels are given in
Table 1.
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Table 2 The effect of validated polymorphisms included in the simple risk allele count on levels of high-density
lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride in the InChianti sample, including proxy
markers

Validated
SNP

Nearest gene(s) Allele
included
in risk
count

Hapmap
allele
frequency

Genotyped
proxy

r2a Per allele effect b (95%
CI)

P-valueb Lipid level
variance
explained
(%)

LDL-raising variants

rs693 APOB A 0.492 3.25 (0.23, 6.27) 0.035 0.40
APOE e4 NA 5.66 (21.06, 12.4) 0.098 0.51

rs646776 CELSR2-PSRC1-SORT1 T 0.712 6.70 (2.89, 10.5) 0.001 1.35

rs12654264 HMGCR T 0.417 rs6896136 0.87 4.57 (1.61, 7.54) 0.003 0.87

rs6511720 LDLR G 0.095 8.86 (4.37, 13.3) 1.1 � 1024 1.29

rs11206510 PCSK9 T 0.850 4.18 (0.34, 8.02) 0.033 0.54

rs16996148 NCAN/CILP2 G 0.939 8.25 (1.82, 14.7) 0.012

HDL-lowering variants

rs4149268 ABCA1 C 0.267 0.015 (20.01, 0.04) 0.252 0.12

rs3135506 APOA1-C3-A4-A5 G 0.06 20.065 (20.12, 20.01) 0.017 0.52

rs1800775 CETP C 0.425 20.078 (20.10, 20.05) 1.4 � 10210 4.76

rs2144300 GALNT2 C 0.417 rs10779835 0.97 20.029 (20.05, 20.005) 0.018 0.75

rs1800588 LIPC C 0.742 20.049 (20.08, 20.02) 0.001 1.13

rs2156552 LIPG A 0.80 rs4939883 0.95 20.014 (20.05, 0.02) 0.421 0.07

rs328 LPL C 0.875 20.059 (20.09, 20.03) 0.001 1.38

rs2238104 MVK-MMAB C 0.558 20.013 (20.04, 0.01) 0.282 0.11

rs4775041 LIPC G 0.737 20.036 (20.06, 20.01) 0.012

Triglyceride-raising variants

rs1748195 ANGPTL3 C 0.675 rs1167998 1.00 0.022 (20.02, 0.07) 0.302 0.09

rs662799 APOA1-C3-A4-A5 G 0.017 0.118 (0.05, 0.019) 0.015 1.06

rs3135506 APOA1-C3-A4-A5 G 0.06 0.205 (0.11, 0.30) 2.2 � 1025 2.02

rs693 APOB A 0.492 0.041 (20.0001, 0.08) 0.009 0.40

rs2144300 GALNT2 C 0.417 rs10779835 0.97 0.018 (20.02, 0.06) 0.166 0.08

rs780094 GCKR T 0.383 0.057 (0.02, 0.10) 0.016 0.75

rs328 LPL C 0.875 0.104 (0.05, 0.16) 0.013 1.24

rs17145738 MLXIPL C 0.881 rs2240466 1.00 0.111 (0.03, 0.19) 0.036 0.79

rs17321515 TRIB1 A 0.602 rs6982636 1.00 0.052 (0.01, 0.09) 0.041 0.65

rs4775041 LIPC C 0.263 0.006 (20.04, 0.06) 0.806

rs16996148 NCAN/CILP2 G 0.939 0.145 (0.06, 0.23) 0.001

ar2 Values between validated SNP and genotyped proxy obtained from Hapmap CEU population.
bSignificance level for association between lipid level-altering SNP and associated serum lipid level.
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Myocardial infarction, stroke, and peripheral
arterial disease outcomes
An MI or stroke event was recorded using evidence from self-report
questionnaires with the question ‘Have you ever had an event?’ at
the baseline assessment and also ‘Has your doctor reported an
event since last interview?’ at the two follow-up interviews. Infor-
mation was combined from both questions, to record individuals
who had had an MI or stroke at baseline or during the 6 year follow-up
period.

Peripheral artery disease (PAD) was defined using the ankle brachial
index (ABI), defined as the ratio of systolic blood pressure in the ankle
to systolic blood pressure in the arm. A measurement was taken from
each leg, with the minimum value used in the analysis. Those with an
ABI measure greater than 1.40 were removed, as this is indicative of
non-compressible, calcified arteries,16 and inclusion of these individuals
could have led to a misclassification of arterial extremity disease. An
ABI measure less than 0.90 in either leg was used to define the pre-
sence of PAD, as this has been reported to be highly sensitive and
specific for defining angiographically documented PAD.17

SNPs selected and genotyping
We selected 21 variants, of which 7 were associated with LDL (APOB,
APOE haplotype, HMGCR, PCSK9, LDLR, NCAN/CILP2 and

CELSR2-PSRC1-SORT1), 9 with HDL (ABCA1, the APOA1-C3-A4-A5
gene cluster, CETP, GALNT2, LIPG, LPL, MVK-MMAB and 2 in LIPC),
and 11 with triglycerides (GCKR, APOB, 2 in the APOA1-C3-A4-A5
gene cluster, LPL, TRIB1, ANGPTL3, GALNT2, NCAN/CILP, LIPC and
MLXIPL). Six of the variants were associated with more than one
trait (APOB, APOA1-C3-A4-A5, GALNT2, LPL, NCAN-CLIP2-PBX4 and
LIPC). We genotyped all of the 21 variants using 22 SNPs, as the
APOE variant is defined by a two-SNP haplotype. Of the initial
sample set of 1155 individuals aged �65, 635 were successfully geno-
typed for all variants and had lipid levels measured.

Genotyping was performed using version 1 and version 3 Illumina
Infinium HumanHap550 genotyping chips, at the Laboratory of Neuro-
genetics of the US National Institute on Aging. This product assays
.500k unique SNPs mostly derived from stages I and II of the Inter-
national Haplotype Map Project (www.hapmap.org). The genotyping
was performed according to the manufacturer’s instructions. After
processing, the chips were scanned on Illumina BeadStation scanners.
All of the data were analysed in BeadStudio (version 3; Illumina),
with automated genotype calls made using the standard cluster files
provided by Illumina. We used only SNPs that were called in .98%
of samples and had minor allele frequencies in our sample of .1%.
SNPs deviating appreciably from the expected population distribution
(Hardy–Weinberg Equilibrium P , 1 � 1024) were also excluded
from the analyses. There were 496 032 SNPs that passed these QC
criteria. Seven SNPs were not directly genotyped on the Illumina

Figure 1 Frequency of respondents by low-density lipoprotein
(LDL) cholesterol allele count, with box-plots of the distribution
of serum LDL cholesterol levels. Dotted lines indicate interven-
tion levels of .130 mg/dL for borderline high levels and
.160 mg/dL for high levels. The boxes indicate median and
middle quartiles, whiskers include 1.5 times the inter-quartile
range.

Figure 2 Frequency of individuals by high-density lipoprotein
(HDL) allele count, with box-plots of the distribution of HDL
serum levels. Dotted lines indicate recommended levels, with
,40 mg/dL being a risk factor for coronary artery disease and
.60 mg/dL being protective.

A. Murray et al.1714



chip, but data were available for proxy SNPs in linkage disequilibrium
with the original signal with r2 . 0.8 (Table 2). Six SNPs (rs3135506,
rs1800588, rs328, rs662799, rs16996148, and rs4775041) were
reported in the literature, but were not included or captured on the
chip and were genotyped separately, using endpoint TaqMan PCR
with assays designed by Applied Biosystems and genotypes called
using Klustercaller software (KBioscience). In addition, the APOE (E2/

E3/E4) haplotype, which is well known to influence lipid levels and is
a CAD risk factor,18 but is poorly captured on the chip, was genotyped
in-house.

All SNPs passed quality control criteria, which included Hardy–
Weinberg Equilibrium P . 1 � 1024 and a duplicate error rate of
,1%. All studied variants represented independent signals, i.e. were
not in linkage disequilibrium with each other.

Statistical analysis
Data from respondents aged 65 years and over were included in this
analysis. Variables which deviated from normality were log-
transformed before analysis. The effect of each validated SNP on the
level of the appropriate lipid variable was determined (Table 2). Inter-
actions between each pair of SNPs were checked for each serum lipid
level in linear regression models. There were no statistical interactions
between SNPs (at P , 0.01), and therefore simple counts of the
number of alleles lowering HDL levels and raising both LDL and trigly-
ceride levels were computed by adding up the numbers of dyslipidae-
mia risk alleles each individual carried. Groups including less than 10
respondents, at the tails of the distribution, were combined.

Lipid levels for each risk allele score were compared with rec-
ommended guidelines from The National Cholesterol Education
Panel.11 Levels outside the normal range suggest that an individual
will need a form of intervention, lifestyle, or otherwise. The thresholds
are also quoted in the definition of the metabolic syndrome and recog-
nized as risk factors for coronary heart disease. Specifically, these cut-
points are defined as follows: HDL �40 mg/dL, LDL �130 mg/dL, and
triglycerides �150 mg/dL.

To determine the impact of the combined effect of SNPs on lipid
levels, we performed two analyses: (i) risk-altering alleles were
treated as a continuous variable; (ii) we divided allele counts as near
as possible into quartiles. In the latter analysis, we determined the
odds ratios for crossing the intervention threshold. To determine
whether the genetic risk counts were independent of conventional
risk factors for raised lipid levels, we then examined associations
adjusting for age, body mass index (BMI), cigarette smoking, and
alcohol consumption (grams per day). Data were analysed with
STATA SE 9.2 using linear regression with nominal two-sided signifi-
cance taken as P , 0.05.

Our genotyped sample (n ¼ 635) had a mean age of 75 years
(Table 1): 22.2% had LDL levels �60 mg/dL and 11.1% had triglyceride

Figure 3 Frequency of respondents by triglyceride allele count,
with box-plots of the distribution of logged serum triglyceride
levels. Dotted lines indicate recommended intervention levels
of .150 and 200 mg/dL.
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Table 3 Linear regression models for continuous lipid levels against increasing number of lipid-altering risk alleles,
including adjustments for conventional risk factors

Lipid risk
allele count

Lipid
concentration
(mg/dL)

Unadjusted Adjusteda

Per allele effect size b

(95% CI)
P-value Variability

explained
(%)

Per allele effect size
b (95% CI)

P-value Variability
explained
(%)

LDL raising LDL levels 5.59 (3.96, 7.22) 4.1 � 10211 7.14 4.85 (2.80, 6.89) 4.4 � 1026 8.51

HDL
lowering

Logged HDL
levels

20.026 (20.04, 20.02) 3.2 � 1026 3.38 20.021 (20.03, 0.01) 0.001 20.1

Triglyceride
raising

Logged
triglyceride
levels

0.056 (0.04, 0.08) 4.0 � 1028 4.84 0.047 (0.02, 0.07) 1.5 � 1024 11.4

aAge (years), gender, smoking status, alcohol consumption (g/day), and body mass index (kg/m2) adjusted.
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levels �200 mg/dL. In total, 73 respondents (10.4%) reported having
had an MI at baseline or during the 6 years of follow-up.

We examined associations of 7 variants with LDL, 9 with HDL, and
11 with triglycerides in an additive model (Table 2). We next computed
simple risk allele counts (see Methods): these ranged from 4 to 14
(n ¼ 594) for LDL-raising alleles, 5 to 16 (n ¼ 635) for HDL-lowering
alleles, and 7 to 16 (n ¼ 611) for triglyceride-raising alleles, respect-
ively (Figures 1–3).

Results

Low-density lipoprotein levels
The LDL allele count was associated with an increase of 5.59 mg/
dL in serum LDL levels per additional risk allele (P ¼ 4.1 � 10211)
(Figure 1 and Table 3). This estimate was similar after adjustment
for smoking status, alcohol consumption, and BMI. The allele
count explained 7.1% (95% CI 2.5–9.4) of the variance in serum
LDL levels, which was more than that explained by BMI (0.95%,
95% CI 0.1–2.5).

We examined the effect of allele counts on the likelihood of
crossing the intervention threshold in adjusted logistic regression
models (Table 4). Individuals with an LDL-raising allele count of
10 or more (comprising 31%, or approximately the top quartile,
of the sample) formed the highest genetic risk group, and those
with 7 or less alleles formed the lowest risk group (21% of
sample or bottom quartile). The highest allele count group were
nearly three times more likely to qualify for intervention (OR
3.37, 95% CI 1.64–6.94, P ¼ 0.001, in fully adjusted model) com-
pared with the lowest group.

High-density lipoprotein levels
The HDL related allele count was associated with (logged) HDL
levels (b: 20.026, 95% CI 20.04 to 20.02, P ¼ 3.2 � 1026)
(Table 3), which relates to a 2.6% decrease per allele in average
HDL levels (2.0 mg/dL). The allele count explained 3.4% (95% CI

1.2–6.4) of the variance in HDL levels. This was less than the var-
iance explained by the CETP rs1800775 SNP alone (4.76%).

For HDL, a score of 12 or more HDL-lowering alleles (33% of
individuals) formed the highest risk group, whereas those with 9 or
less alleles formed the lowest risk group (25% of sample) (Table 4).
The HDL allele groups were not associated with HDL levels below
the treatment threshold (HDL ,40 mg/dL, OR 1.41, 95% CI
0.62–3.24, P ¼ 0.416), but there was a trend towards those with
the highest HDL genetic risk scores being less likely to be above
the protective levels of HDL (�60 mg/dL) (OR 0.55, 95% CI
0.31–0.99, P ¼ 0.045) (Table 4 and Figure 2), in fully adjusted
models.

We also analysed the data separately in men and women using
the cut-points of 40 mg/dL for men and 50 mg/dL for women
according to the guidelines for the definition of metabolic syn-
drome. There was a strong association between the HDL-C
allele count and serum levels in men, with each additional
HDL-lowering allele was associated with a 5.2 mg/dL reduction
in HDL levels (P ¼ 4.4 � 1024) (see Supplementary material
online, Figure S1). In women, each allele was associated with only
a 1.05 mg/dL reduction (P ¼ 0.386) (see Supplementary material
online, Figure S1). Males in the highest HDL-C genetic risk group
(27% of the sample) had an adjusted odds ratio of 2.83 (95% CI
1.44–6.18, P ¼ 0.054) for having HDL-C levels �40 mg/dL.
Females in the highest risk group (35% of the sample) had an
adjusted odds ratio of 1.35 (95% CI 0.57–3.18, P ¼ 0.499) for
having serum levels �50 mg/dL.

Triglyceride levels
Serum triglyceride levels were strongly associated with the
triglyceride-raising allele count, each additional allele raising
average triglyceride levels by 5.6%, which relates to a 1.45 mg/dL
increase in mean levels (P ¼ 4.0 � 1028) (Figure 3 and Table 3).
The count of combined triglyceride-raising alleles explained 4.8%
of the variance, again comparable to the 4.6% explained by BMI.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Logistic regression odds ratios for lipid levels crossing the therapeutic intervention threshold, comparing
highest risk alleles count group against the lowest, with adjustment for conventional risk factors

Lipid measure,
Intervention thresholds

Lipid risk allele count Lipid risk alleles as quartiles

OR (95% CI) P-value Highest vs. lowest quartile
(age- and sex-adjusted OR)

Highest vs. lowest quartile
(fully adjusteda)

P-value for trend
across quartiles

OR (95% CI) P-value OR (95% CI) P-value

LDL cholesterol (mg/dL)

Borderline high: .130 1.32 (1.19, 1.48) 5.7 � 1027 3.38 (2.09, 5.47) 7.2 � 1027 3.28 (1.81, 5.93) 8.9 � 1025 ,0.001

High: .160 1.34 (1.18, 1.53) 7.1 � 1026 3.00 (1.67, 5.39) 2.5 � 1024 3.37 (1.64, 6.94) 0.001 ,0.001

HDL cholesterol (mg/dL)

Low levels: ,40 1.14 (1.01, 1.29) 0.04 2.13 (1.10, 4.12) 0.025 1.41 (0.62, 3.24) 0.416 0.022

High levels: .60 0.83 (0.76, 0.91) 7.9 � 1025 0.49 (0.31, 0.76) 0.002 0.55 (0.31, 0.99) 0.045 ,0.001

Triglycerides (mg/dL)

Borderline high: .150 1.36 (1.22, 1.52) 3.8 � 1028 3.50 (2.06, 5.93) 3.3 � 1026 2.77 (1.48, 5.19) 0.001 ,0.001

High: .200 1.35 (1.16, 1.57) 8.2 � 1025 2.98 (1.43, 6.22) 0.004 2.58 (1.09, 6.09) 0.030 ,0.001

aAge (years), gender, smoking status, alcohol consumption (g/day), and body mass index (kg/m2) adjusted.
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A triglyceride allele count of 13 or more formed the highest
genetic risk group (35% of sample), whereas a count of 10 or
less formed the lowest risk group (24% of the sample) (Table 4).
The highest count group had an odds ratio of 2.77 (95% CI
1.48–5.19, P ¼ 0.001) for having serum triglyceride levels above
the recommended limit of 150 mg/dL, compared with those in
the lowest group, in fully adjusted models.

Associations with myocardial infarction
We had only limited power to detect associations with disease
outcomes because the number of affected individuals was relatively
small. However, we examined associations between allele risk
counts and 67 patients with MI (Table 5). Combining the allele
scores for all three lipid measures, in a total allele count score
that included all 21 risk variants, resulted in an association
between combined allele count and MI with an OR of 1.16 (95%
CI 1.04–1.30, P ¼ 0.007): all but the LDL risk variant score gave
nominally significant P-values (,0.05). Individuals with the
highest combined number of risk alleles (count �25, 36% of
sample) had an odds ratio of 3.68 (95% CI 1.21–11.2, P ¼ 0.021)
for a history of MI compared with those with the lowest number
of risk alleles (count �21, 22% of sample). We found no associ-
ations between allele counts and the occurrence of stoke or PAD.

Discussion
Low HDL and raised LDL and triglyceride levels have emerged as
important independent risk factors for cardiovascular disease,
especially in older people. Recent genome-wide scans have
robustly replicated associations between lipid levels and many
genetic loci. We have demonstrated that the cumulative effect of
the 21 common genetic variants are clinically relevant: those in
the approximate top quartile of LDL and triglyceride genetic risk
have clearly raised odds of being outside recommended lipid
levels compared with the bottom quartile. In addition, we have
shown an association between the overall lipid risk allele count
and MI outcomes, similar to findings in younger samples. Although
the SNP counts explain ,6% of the unadjusted variance in their
respective lipid levels, this is similar or greater than the variance
explained by the most powerful conventional risk factor, BMI,
and therefore it should not be surprising that it is clinically relevant.
By combining genetic risk variants, we have demonstrated that we
can explain clinically relevant changes in lipid levels in older people,
raising the possibility that genetic variants could be used for prog-
nostic purposes, particularly as more variants are discovered.
Further work is required, but it is possible that genetic variants
may be a better prognostic indicator than measuring lipid levels
directly, as they are invariant over time and thus represent lifetime
exposure.

The association of the 21 lipid variants with their respective lipid
levels has been very robustly demonstrated in younger samples.19

Many of these SNPs have only recently been discovered, and to the
best of our knowledge, there are no other analyses covering as
complete a set of variants, especially from older populations. As
noted, Kathiresan14 recently showed that an allele count combining
nine variants for LDL and HDL levels was associated with lipid
levels and MI in a cardiovascular cohort of 5414 subjects with a
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mean age of 57 years. A combined LDL and HDL genotype score
was associated with incident cardiovascular disease (n ¼ 238
cases), in models adjusted for covariates (P , 0.001). Similarly,
the LDL-increasing variants identified from GWAS were all more
common in a sample of approximately 2000 people with CAD
compared with controls. However, in that study, other
lipid-altering genetic variants were not more common in CAD
cases, with the exception of an SNP near TRIB1, which is associated
with triglyceride levels.13 A recent meta-analysis18 of the
LDL-altering APOE haplotype including 121 studies (37 850 cases
and 82 727 controls) found an association with coronary disease:
OR 1.06 (95% CI 0.99–1.13) in e4 carriers and OR 0.80 (95%
CI 0.70–0.90) in e2 carriers, compared with e3/e3 group. In
addition, a meta-analysis of variants in the CETP gene confirmed
effects on HDL levels and an association with MI.20 In our analysis
of associations with MI outcomes, one shortcoming is clearly the
limited sample size available (n ¼ 67 cases). As a result, the confi-
dence intervals on the associations for the individual lipids are
wide, with the LDL estimates not reaching formal significance.
Clearly, a much larger replication study in older people is justified.

Using allele counts to compute the combined effects of variants
can be criticized as being somewhat crude. Tiret et al.21 pointed
out that such un-weighted counts make two major assumptions:
first, that polymorphisms act independently and additively on the
risk of disease, and secondly that their effects are approximately
interchangeable. We have included only independent markers in
our allele risk scores and found no evidence of statistical inter-
actions. However, accurate estimates of the weights to be used
in older populations for the effects of each SNP on their respective
lipid level and on outcomes are not available. Using the effect sizes
from our own sample would introduce an element of circular logic,
magnifying any random fluctuations in the InCHIANTI study. We
have therefore followed Kathiresan et al.14 in using a simple
allele count. We would expect that the strengths of associations
will increase, as more accurate ways of combining the studied
SNP effects become available. In the case of the HDL count, the
CETP rs1800775 SNP alone did explain more of the variance
than the HDL allele score in our data set, illustrating that the
allele count is an approximate measure with shortcomings, as
well as the strength of simplicity.

Conclusions
In a representative older population, the cumulative effects of
proven LDL- and triglyceride-altering genetic variants had a substan-
tial effect on serum lipid levels, increasing the odds by approximately
three-fold of an individual crossing the therapeutic intervention
threshold of lipid levels, based on ATP-NCEP guidelines.

Supplementary material
Supplementary Material is available at European Heart Journal
Online.
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